We are devoted to the study of theoretical population genetics. The goal of population genetics is to identify and understand the forces that produce and maintain genetic variation in natural populations. These forces include mutation (also recombination and gene conversion), natural selection, various kinds of population structure (e.g. subdivision with migration), and the random fluctuations of gene frequencies through time known as genetic drift. We study these forces mathematically, using both analysis and computation. We also develop statistical methods to make inferences about these forces from DNA sequences or other kinds of genetic data. For more information about specific areas of research, follow the leads to lab members.


Wilton PR, Baduel P, Landon MM, Wakeley J. Population structure and coalescence in pedigrees: Comparisons to the structured coalescent and a framework for inference. Theoretical Population Biology. 2017;115 :1-12.Abstract

Contrary to what is often assumed in population genetics, independently segregating loci do not have completely independent ancestries, since all loci are inherited through a single, shared population pedigree. Previous work has shown that the non-independence between gene genealogies of independently segregating loci created by the population pedigree is weak in panmictic populations, and predictions made from standard coalescent theory are accurate for populations that are at least moderately sized. Here, we investigate patterns of coalescence in pedigrees of structured populations. We find that the pedigree creates deviations away from the predictions of the structured coalescent that persist on a longer timescale than in the case of panmictic populations. Nevertheless, we find that the structured coalescent provides a reasonable approximation for the coalescent process in structured population pedigrees so long as migration events are moderately frequent and there are no migration events in the recent pedigree of the sample. When there are migration events in the recent sample pedigree, we find that distributions of coalescence in the sample can be modeled as a mixture of distributions from different initial sample configurations. We use this observation to motivate a maximum-likelihood approach for inferring migration rates and mutation rates jointly with features of the pedigree such as recent migrant ancestry and recent relatedness. Using simulation, we show that our inference framework accurately recovers long-term migration rates in the presence of recent migration events in the sample pedigree.

King L, Wakeley J. Empirical Bayes estimation of coalescence times from nucleotide sequence data. Genetics. 2016;204 :249-257.Abstract

We demonstrate the advantages of using information at many unlinked loci to better calibrate estimates of the time to the most recent common ancestor (TMRCA) at a given locus. To this end, we apply a simple empirical Bayes method to estimate the TMRCA. This method is both asymptotically optimal, in the sense that the estimator converges to the true value when the number of unlinked loci for which we have information is large, and has the advantage of not making any assumptions about demographic history. The algorithm works as follows: we first split the sample at each locus into inferred left and right clades to obtain many estimates of the TMRCA, which we can average to obtain an initial estimate of the TMRCA. We then use nucleotide sequence data from other unlinked loci to form an empirical distribution that we can use to improve this initial estimate.

Wakeley J, King L, Wilton PR. Effects of the population pedigree on genetic signatures of historical demographic events. PNAS. 2016;113 (29) :7994-8001.Abstract

Genetic variation among loci in the genomes of diploid biparental organisms is the result of mutation and genetic transmission through the genealogy, or population pedigree, of the species. We explore the consequences of this for patterns of variation at unlinked loci for two kinds of demographic events: the occurrence of a very large family or a strong selective sweep that occurred in the recent past. The results indicate that only rather extreme versions of such events can be expected to structure population pedigrees in such a way that unlinked loci will show deviations from the standard predictions of population genetics, which average over population pedigrees. The results also suggest that large samples of individuals and loci increase the chance of picking up signatures of these events, and that very large families may have a unique signature in terms of sample distributions of mutant alleles.