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Abstract9

We consider a simple diploid population-genetic model with potentially high variability of10

offspring numbers among individuals. Specifically, against a backdrop of Wright-Fisher repro-11

duction and no selection there is an additional probability that a big family occurs, meaning that12

a pair of individuals has a number of offspring on the order of the population size. We study how13

the pedigree of the population generated under this model affects the ancestral genetic process of14

a sample of size two at a single autosomal locus without recombination. Our population model15

is of the type for which multiple-mergers coalescent processes have been described. We prove16

that the conditional distribution of the pairwise coalescence time given the random pedigree17

converges to a limit law as the population size tends to infinity. This limit law may or may not18

be the usual exponential distribution of the Kingman coalescent, depending on the frequency19

of big families. But because it includes the number and times of big families it differs from the20

usual multiple-merger coalescent models. The usual multiple-merger coalescent models are seen21

as describing the ancestral process marginal to, or averaging over, the pedigree. In the limiting22

ancestral process conditional on the pedigree, the intervals between big families can be modeled23

using the Kingman coalescent but each big family causes a discrete jump in the probability of24

coalescence. Analogous results should hold for larger samples and other population models. We25

illustrate these results with simulations and additional analysis, highlighting their implications26

for inference and understanding of multi-locus data.27

Keywords: coalescent theory; population pedigree; genealogy; multiple mergers; ancestral inference28

Introduction29

Population-genetic background. Population geneticists routinely make inferences about the30

past by applying statistical models to DNA sequences or other genetic data. Because past events31

have already occurred, these models describe what might have happened. They are necessary32

because patterns of variation in DNA provide only indirect evidence about the past. But the33

decisions made in building these statistical models have important consequences for inference. A34

key question has received little attention: when and how should some parts of the past be treated35

as random variables, while others are viewed as fixed objects? Our particular concern here will be36

with the treatment of pedigrees, or the reproductive relationships among diploid individuals.37
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With limited exceptions the statistical models of population genetics have inherited the initial38

decisions which Fisher (1922, 1930) and Wright (1931) made in deriving allele frequency spectra39

and probability density functions of allele frequencies at stationarity. They modeled neutral alleles40

as well as those under selection in a large well-mixed population which in the simplest case was41

assumed to be of constant size over time. Accordingly it has been common in population genetics42

to think of population sizes as fixed, not random. Today’s coalescent hidden Markov models, for43

example, infer a fixed trajectory of population sizes over time under the assumption of neutrality44

(Li and Durbin, 2011; Sheehan et al., 2013; Wang et al., 2020; Schweiger and Durbin, 2023).45

Although coalescent models reflect later developments and were a significant shift in thinking46

for the field, fundamentally they depend on the same assumptions as the classical models of Fisher47

and Wright (Ewens, 1990; Möhle, 1999). This is clear even in the earliest treatments of ancestral48

genetic processes by Malécot (1941, 1946, 1948). What coalescent theory did was to broaden the49

scope of population genetics beyond forward-time models of changes in allele counts or frequencies50

to include gene genealogies constructed by series of common-ancestor events backward in time51

(Kingman, 1982; Hudson, 1983a,b; Tajima, 1983). Mathematically, the forward-time and backward-52

time models of population genetics are dual to each other (Möhle, 1999).53

Most importantly for our purposes here, Fisher (1922, 1930) and Wright (1931) obtained their54

predictions about genetic variation by averaging over an assumed random process of reproduction.55

The particular random process they used is now called the Wright-Fisher model (Ewens, 2004).56

Because the outcome of the process of reproduction is a pedigree, their method is equivalent to57

averaging over the random pedigree of the population. That they did this without explanation in58

this context is somewhat curious given the attention to pedigrees in Fisher’s infinitesimal model of59

quantitative genetics (Fisher, 1918; Barton et al., 2017) and in Wright’s method of path coefficients60

whose very purpose was to make predictions conditional on pedigrees (Wright, 1921a,b,c,d,e, 1922).61

The pedigree of the entire population is the set of reproductive relationships of all individuals62

for all time when reproduction is bi-parental. The corresponding graph is a genealogy in the usual63

sense. It has been referred to as an organismal pedigree (Ball et al., 1990) and the population64

pedigree (Wollenberg and Avise, 1998; Wakeley et al., 2012; Ralph, 2019). Here we simply call65

it the pedigree. Patterns of genetic variation depend on the pedigree because genetic inheritance66

happens within it. In particular, transmission of an autosomal genetic locus forward in time through67

the pedigree occurs by Mendel’s law of independent segregation. Multi-locus transmission follows68

Mendel’s law of independent assortment or is mediated by recombination if the loci are linked.69

These processes, which may also be viewed backward in time, are conditional on the pedigree.70

Within any pedigree, many possible uni-parental paths can be traced backward in time from71

each individual. If there are two mating types, for example karyotypic females (F) and karyotypic72

males (M), then one such path might be depicted F→F→M→F→M→ · · · (Avise and Wollenberg,73

1997). For the ancestry of a single allele at an autosomal locus in a single individual, applying74

Mendel’s law of independent segregation backward in time generates these uni-parental paths with75

equal probabilities 1/2g for any path extending g generations into the past. When two such paths76

meet in the same individual, then with equal probability, 1/2, the alleles either coalesce in that77

individual or remain distinct. Thus coalescence is conditional on the pedigree, and many possible78

gene genealogies are embedded in any one pedigree. Some loci, such as the mitochondrial genome79

and the Y chromosome in humans, are strictly uni-parentally inherited. They follow only paths80

F→F→F→ · · · and M→M→M→ · · · , respectively, and two such paths coalesce with probability81

one when they meet. For these loci, there is only one gene genealogy within the pedigree.82

Under Wright-Fisher reproduction, parents are chosen at random uniformly from among all83
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possible parents. This determines the structure of the pedigree in that generation. Assume that84

there are Nf karyotypic females and Nm karyotypic males in every generation. For autosomal loci,85

the familiar effective population size Ne = 4NfNm/(Nf +Nm) from classical forward-time analysis86

(Wright, 1931) and its backward-time counterpart 1/(2Ne) for the pairwise coalescence probabil-87

ity (Möhle, 1998a,b) come from averaging over the possible outcomes of reproduction in a single88

generation. Sections 6.1 and 6.2 in Wakeley (2009) give a detailed illustration. For uni-parentally89

inherited loci, this averaging yields 1/Nf and 1/Nm for the pairwise coalescence probabilities. In the90

diploid monoecious Wright-Fisher model or by setting Nf = Nm = N/2, these average probabilities91

of coalescence become 2/N for uni-parentally inherited loci and 1/(2N) for autosomal loci. For92

simplicity in this work we will focus on the diploid monoecious Wright-Fisher model.93

Averaging over pedigrees is what leads to the effective population size, Ne, being the primary94

determinant of forward-time and backward-time dynamics in neutral population genetic models.95

For very large populations, Ne becomes the only parameter of the Wright-Fisher diffusion (Ewens,96

2004) and the standard neutral or Kingman coalescent process (Sjödin et al., 2005). In particular,97

Ne sets the timescale over which mutation acts to produce genetic variation. Such averaging98

removes the pedigree as a possible latent variable which could be important for structuring genetic99

variation. As a result, from the perspective of the standard neutral coalescent, information about100

the (marginal) gene genealogical process together with the mutation process is all we can hope to101

infer from genetic data (Sjödin et al., 2005).102

The situation in which it makes the most sense to use this marginal process of coalescence is when103

the only data available come from a single non-recombining locus. In fact, the initial applications104

of ancestral inference to single-locus data, namely to restriction fragment length polymorphisms105

in human mitochondrial DNA (mtDNA) (Brown, 1980; Cann et al., 1987) then to sequences of106

the hyper-variable control region (Vigilant et al., 1989, 1991; Ward et al., 1991; Di Rienzo and107

Wilson, 1991), did not even use of the statistical machinery of population genetics. They instead108

took the gene genealogy and times to common ancestry to be fixed, and estimated them using109

traditional phylogenetic methods (Felsenstein, 2004). But this in turn spurred the development110

of likelihood-based methods of ancestral inference using coalescent prior distributions for gene111

genealogies (Lundstrom et al., 1992; Griffiths and Tavaré, 1994; Kuhner et al., 1995). We note that112

in the interim it has also become common to treat phylogenies as random variables using a wide113

variety of prior models (Ronquist et al., 2012; Suchard et al., 2018; Bouckaert et al., 2019).114

The desirability of accounting for variation in gene genealogies became especially clear when the115

first sample DNA sequences of the human ZFY gene was obtained and was completely monomorphic116

(Dorit et al., 1995). The mutation rate is lower on the Y chromosome than in the hyper-variable117

region of mtDNA but it is not equal to zero (Brown et al., 1979; Wilson et al., 1985; Ingman et al.,118

2000; The 1000 Genomes Project Consortium, 2015). Using coalescent priors it was shown that the119

complete lack of variation in that first sample at ZFY was consistent with a wide range of times120

to common ancestry for the Y chromosome (Dorit et al., 1995; Donnelly et al., 1996; Fu and Li,121

1996; Weiss and von Haeseler, 1996).122

If instead data come from multiple loci, it is impossible to ignore variation in gene genealogies123

regardless of whether one thinks of the pedigree as fixed or random. Variation in gene genealogies124

across the genome is, for example, what coalescent hidden Markov models use to estimate trajecto-125

ries of population sizes. The simplest illustrative case is when the loci are on different chromosomes126

or far enough apart on the same chromosome that they assort independently into gametes, and127

when within each locus there is no recombination. The gene genealogies of such loci will vary128

due to the particular outcomes of Mendelian segregation. They will also be independent due to129
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Mendelian assortment, but only given the pedigree. Mendel’s law of independent assortment is a130

law of conditional independence. It applies once relationships have been specified.131

However, throughout much of the history of population genetics, it was assumed that inde-132

pendently assorting loci would have completely independent evolutionary histories. In coalescent133

theory, this means independent gene genealogies. As Charlesworth (2022) recently noted, Fisher134

(1922, 1930) and Wright (1931) intended their results on allele frequency spectra and probability135

density functions of allele frequencies at stationarity to be descriptions of the behavior of large136

numbers of independently assorting loci in the same genome. This is evident in their application of137

these distributions to the multiple Mendelian factors of Fisher’s infinitesimal model (Fisher, 1918)138

in their arguments about the Dominance Ratio (Fisher, 1922; Charlesworth, 2022).139

An early application to multi-locus data was made by Cavalli-Sforza and Edwards (1967) and140

Felsenstein (1973) who developed likelihood-based methods to infer trees of populations within141

species from multi-locus allele-frequency data, specifically human blood group data, by model-142

ing the forward-time process of random genetic drift independently at each locus conditional on143

the population tree. Felsenstein (1981) further developed and applied these methods to gel elec-144

trophoretic data. Today’s methods of inferring admixture from single nucleotide polymorphism, or145

SNP, data using F -statistics are based on the same notion of independence (Patterson et al., 2012).146

Like the population size itself, demographic features such as the splitting of populations have147

mostly been treated as fixed in population genetics. Cavalli-Sforza and Edwards (1967) and Felsen-148

stein (1973) did discuss but did not implement prior models for trees of populations, specifically as149

outcomes of birth-death processes. More recently, Heled and Drummond (2009) did implement this150

in a coalescent framework for multi-locus sequence data, using the prior distribution of Gernhard151

(2008); see also Lambert and Stadler (2013). Yang (2002) and Rannala and Yang (2003) took a152

different approach, using gamma-distributed pseudo priors for times in trees.153

Previous work on pedigrees. Although the underlying assumption that unlinked loci have154

completely independent evolutionary histories is mistaken because it would require them having155

independent pedigrees, most theoretical work has followed the lead of Fisher (1922, 1930) and156

Wright (1931). Examples in which this is made explicit include Karlin and McGregor (1967),157

Kimura (1969), Ewens (1974), and Ewens and Maruyama (1975). Multiplying likelihoods across158

loci in applications to genetic data subsequently became common practice (Watterson, 1985; Pad-159

madisastra, 1988; Sawyer and Hartl, 1992; Wakeley, 1999; Nielsen, 2000; Wooding and Rogers, 2002;160

Adams and Hudson, 2004). It is built into current inference packages, including ∂a∂i (Gutenkunst161

et al., 2009), momi2 (Kamm et al., 2020) and fastsimcoal2 (Excoffier et al., 2013, 2021).162

As it happens, this conceptual mistake has almost no practical ramifications if the population163

is large and well mixed, and the variance of offspring numbers among individuals is not too large.164

Ball et al. (1990) were the first to address the question of gene genealogies within pedigrees. They165

used simulations to show that the distribution of pairwise coalescence times among loci on a single166

pedigree do not differ substantially from their distributions among loci which have independent167

pedigrees. Their population model was similar to the Wright-Fisher model with population size168

N = 100: Poisson offspring numbers with strong density regulation to a carrying capacity of 100.169

Their results were based on simulations of 50 gene genealogies for each of 50 pedigrees and samples170

of size n = 100, in which a single gene copy was taken at random at each locus within each171

individual. They also showed that the distribution of coalescence times among pairs of individuals172

on a single pedigree are very similar to the prediction obtained by averaging over pedigrees.173

Wakeley et al. (2012) confirmed these results and related them to coalescent theory using174
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simulations of 108 gene genealogies for n = 2 for each of 104 pedigrees and population sizes up175

to 105, together with more limited treatments of larger samples n = 20 and n = 100. Pedigrees176

were constructed in three different ways: assuming Wright-Fisher reproduction, using empirically177

derived human family structures, and under a model in which the outcome of a single generation178

of Wright-Fisher reproduction was repeated over time, resulting in a so-called cyclical pedigree.179

These simulations showed that times to common ancestry conditional on the pedigree conform180

well to the probability law underlying coalescent theory, with a constant coalescence probability181

1/(2Ne) = 1/(2N) each generation under the Wright-Fisher model with Nf = Nm = N/2, except for182

in the recent past where they differ greatly and depend on the pedigree. But they also showed that183

as long as N is large these idiosyncrasies in the short-time behavior of the ancestral process have184

little effect on the overall distribution of coalescence times given the pedigree, whether it is among185

independent loci in the same individuals or among independently sampled pairs of individuals.186

Here “recent” means proportional to log2(N) generations, which is the timescale for the first187

occurrence of a common ancestor of all present-day individuals (Chang, 1999) and for the complete188

overlap of all individuals’ ancestries in a well-mixed bi-parental population (Chang, 1999; Derrida189

et al., 1999, 2000a,b; Barton and Etheridge, 2011; Coron and Le Jan, 2022). This is much shorter190

than the N -generations timescale required for common ancestry of uni-parental genetic lineages191

(Chang, 1999; Donnelly et al., 1999). Additional work on these properties of pedigrees include192

Rohde et al. (2004) and Lachance (2009) who showed that population structure and inbreeding193

do not strongly affect the time to the first occurrence of a common ancestor of all individuals.194

Blath et al. (2014) proved that the ancestries of the great majority of individuals overlap even in195

cyclical pedigrees as N → ∞. Matsen and Evans (2008) and Gravel and Steel (2015) showed that196

ancestral genetic lineages pass through only a small minority of the shared pedigree ancestors. See197

Agranat-Tamir et al. (2024) for further developments and an extension to admixed populations.198

Sainudiin et al. (2016) constructed a model with recombination which interpolates between uni-199

parental common ancestry on the N -generations timescale and bi-parental common ancestry on200

the log2(N)-generations timescale.201

Tyukin (2015) proved what was implied by the simulations of Ball et al. (1990) and Wakeley202

et al. (2012), specifically that when the population is large and well mixed the pedigree-averaged203

coalescent process is a good substitute for the actual coalescent process conditional on the pedigree.204

Questions of this sort have a long history in mathematical physics and probability theory, where205

“quenched” and “annealed” are often used to refer to conditional as opposed to averaged processes.206

Molchanov (1994) and Bolthausen and Sznitman (2002b) provide background and developments in207

the classical context of random walks in random environments. What Tyukin (2015) proved is that208

the quenched coalescent process conditional on the pedigree converges to the pedigree-averaged209

standard neutral or Kingman coalescent process in the limit N → ∞. Tyukin (2015) did this under210

a broader set of reproduction models with mating analogous to Wright-Fisher but with a general211

exchangeable distribution of offspring numbers (Cannings, 1974) in the domain of attraction of212

Kingman’s coalescent (Möhle and Sagitov, 2001; Sagitov, 2003).213

Since time in the Kingman coalescent process is measured in units proportional toN generations,214

the result of Tyukin (2015) provides insight into the role of the pedigree in the recent ancestry of215

the sample (∝ log2(N) generations) under the Cannings and Wright-Fisher models. Specifically,216

the chance of any events in the recent past which would dramatically alter the rate of coalescence217

must be negligible as N → ∞. Intuitively we might surmise that (1) individuals randomly sampled218

from a large well mixed population are unlikely to be closely related, and barring coalescence for219

some small number of generations until their ancestries overlap does not affect the limit, and (2)220

by the time their ancestries do overlap in the pedigree, their numbers of ancestors are approaching221
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the population size, making the chance of coalescence of order 1/N .222

Two cases have been identified using simulations where quenched and annealed results are no-223

ticeably different. The first is population subdivision, especially with limited migration. Wollenberg224

and Avise (1998) showed that as the migration distance decreases in a linear habitat, fewer inde-225

pendent loci are needed to accurately measure pairwise coefficients of coancestry on the pedigree.226

Wilton et al. (2017) described increasingly strong pedigree effects as the migration rate decreased227

in a two-subpopulation model, specifically spikes in the distribution of pairwise coalescence times228

corresponding to the particular series of individual migration events that occurred in the ancestry.229

These results illustrate how even single gene genealogies may contain information about events in230

the ancestry of geographically structured populations, via the pedigree. Thus they are relevant for231

applications of ancestral inference to single-locus data, such as mtDNA, as well as to the broader232

field of intraspecific phylogeography (Avise et al., 1987; Avise, 1989, 2000). For recent empiri-233

cal studies of spatiotemporally structured pedigrees and their effects on local patterns of genetic234

variation, see Aguillon et al. (2017) and Anderson-Trocmé et al. (2023).235

The second situation in which pedigrees have a strong effect on coalescence times and gene236

genealogies is when there is a high variance of offspring numbers among individuals. This variance237

is comparatively low in the Wright-Fisher model, which has a multinomial distribution of offspring238

numbers (becoming Poisson as N → ∞). In deriving the standard neutral coalescent process,239

Kingman (1982) started with the general exchangeable model of Cannings (1974) then assumed240

that the variance of offspring numbers was finite asN → ∞. Without this assumption, the ancestral241

limit process is not the Kingman coalescent process but rather a coalescent process with multiple242

mergers (see below). In addition in this situation simulations have shown that the pedigree has a243

marked effect on genetic ancestries.244

Wakeley et al. (2016) simulated pedigrees in which a single individual had a very large number245

of offspring in some past generation and otherwise there was Wright-Fisher reproduction. This246

large reproduction event greatly increased the probability of coalescence in the generation in which247

it occurred, causing a spike in the distribution of pairwise coalescence times and altering the allele248

frequency spectrum. A strong selective sweep at one locus gave similar effects at unlinked loci via249

the pedigree (Wakeley et al., 2016). Similar deviations from standard neutral coalescent predictions250

are produced by cultural transmission of reproductive success (Guez et al., 2023).251

Plan of the present work. Here, we present a new quenched limit result for coalescent processes252

in fixed pedigrees under a modified Wright-Fisher model which allows for large reproduction events.253

Wright-Fisher reproduction on its own produces various kinds of large reproduction events but these254

are all extremely rare. Our model adds big families with two parents and numbers of offspring255

proportional to the population size. These are inserted into the pedigree either on the same N -256

generations timescale as coalescent events in the Wright-Fisher background model or much faster so257

that they completely dominate the ancestral process. In both cases, the limiting ancestral process258

conditional on the pedigree is different than the limiting ancestral process which averages over259

pedigrees. For simplicity, we focus on samples of size two. Consistent with the results of Tyukin260

(2015), our result reduces to the Kingman coalescent with n = 2 in the case where there are no big261

families.262

Note that the corresponding averaged process is not the Kingman coalescent but rather a263

coalescent process with multiple mergers; see Tellier and Lemaire (2014) for an overview of these264

models in the context of population genetics. Multiple-mergers coalescent processes arise asN → ∞265

limits when the variance of offspring numbers is large, and so may be applicable to a broad range266
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of species with the capacity for high fecundity (Eldon, 2020). They also arise from recurrent267

selective sweeps, when differences in offspring numbers are determined by individuals’ genotypes268

(Durrett and Schweinsberg, 2004, 2005; Schweinsberg and Durrett, 2005). Whereas the Kingman269

coalescent includes only binary mergers of ancestral genetic lineages, these more general processes270

allow mergers of any size. At issue here is how these models should be interpreted and applied.271

By averaging over the process of reproduction, two kinds of multiple-mergers coalescent pro-272

cesses have been described: Λ-coalescents which have asynchronous multiple-mergers (Donnelly and273

Kurtz, 1999; Pitman, 1999; Sagitov, 1999) and Ξ-coalescents which have simultaneous multiple-274

mergers (Schweinsberg, 2000; Möhle and Sagitov, 2001; Sagitov, 2003). Multiple-mergers processes275

for diploid organisms are always Ξ-coalescents with the possibility of an even number simultaneous276

mergers (Birkner et al., 2018). Our quenched limit result brings into question what seems like a277

natural extension from applications of the standard neutral coalescent model, namely to assume278

that multiple-mergers models may be applied independently to independent loci as has been done279

both in theoretical explorations (Der and Plotkin, 2014; Eldon et al., 2015; Spence et al., 2016;280

Matuszewski et al., 2018) and in analyses of SNP data (Birkner et al., 2013a; Blath et al., 2016;281

Árnason et al., 2023; Freund et al., 2023).282

To establish the quenched limit process, we adapt the method that Birkner et al. (2013c) used283

for a quenched limit of a random walk in a random environment. See also the earlier work of284

Bolthausen and Sznitman (2002a). In this approach, the problem of convergence in distribution285

is addressed by analyzing a pair of conditionally independent processes, here corresponding to the286

ancestries of samples at two independently assorting loci on the pedigree. As Koskela (2018) has287

pointed out, positive correlations of coalescence times for pairs of unlinked loci are a hallmark288

of (pedigree-averaged) multiple-mergers coalescent models. Our result frames this in terms of289

pedigrees, in which big families are the only elements that persist as N → ∞. If a big family290

has occurred in a particular generation, the probability of coalescence is greatly increased in that291

generation for all loci. All other aspects of the pedigree, that is to say the outcomes of ordinary292

Wright-Fisher reproduction, “average out” such that the Kingman coalescent process describes the293

ancestral process during the times between big families.294

Theory and results295

In this section, we present the population model considered in this paper, the mathematical state-296

ment of our main result and its proof. This result (Theorem 1) is stated as a convergence of the297

conditional distribution of the coalescence time of a pair of gene copies, given that we know the pedi-298

gree and which individuals were sampled. We assume that the pedigree is the outcome of a random299

process of reproduction, the population model described in the following section, and that the two300

individuals are sampled without replacement from the current generation. To connect with known301

results and highlight the effect of conditioning, we first state and prove the corresponding result302

(Lemma 1) for the unconditional distribution of the coalescence time. This corresponds to fixing303

the sampled individuals and averaging over the pedigree. We close this section with simulations304

illustrating multi-locus genetic ancestry and further analysis showing how non-zero correlations of305

coalescence times at unlinked loci result from averaging over the pedigree.306
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The population model307

We consider a diploid, monoecious, bi-parental, panmictic population of constant fixed size N ∈ N308

with discrete, non-overlapping generations. Implicitly there is no selection, but we do not in fact309

model mutation or genetic variation, only the generation of the pedigree and coalescence within310

it. There are two different types of reproduction. With high probability, reproduction follows the311

diploid bi-parental Wright-Fisher model. With small probability αN each generation, there is a312

highly reproductive pair whose offspring comprise a proportion ψ ∈ [0, 1] of the population. Note313

that ψ is a fixed deterministic constant. More precisely, for each positive integer g, the reproductive314

dynamics between the parent generation g + 1 and the offspring generation g is given as follows:315

1. With probability 1 − αN , each individual in the next generation is formed by choosing two316

parents at random, uniformly with replacement from the N adults of the current generation.317

Genetically, each offspring is produced according to Mendel’s laws which means each of the318

two gene copies in a parent is equally likely to be the one transmitted to the offspring. In319

this case we call g a “Wright-Fisher generation”. An example of this standard reproduction320

dynamics between the parent generation g+1 and the offspring generation g is depicted below321

for a population of size N = 7.322

(offspring) g

(parents) g+1

323

2. With probability αN , a pair of adults is chosen uniformly without replacement to have a very324

large number of offspring, [ψN ] where ψ ∈ [0, 1] is a fixed fraction of the population. The325

other N − [ψN ] offspring are produced as above according to the Wright-Fisher model. In326

this case we call g a “generation with a big family”. An example of this special reproduction327

dynamics is depicted below for N = 7 and ψ = 0.72 in which the highly reproductive pair328

(I1, I2) = (4, 5) in generation g + 1 has [ψN ] = [0.72 · 7] = 5 offspring in generation g.329

(offspring) g

(parents) g+1

330

These two possibilities happen independently for all generations g ∈ Z≥0. The classical Wright-331

Fisher model corresponds to the case when αN = 0. In this case every g ∈ Z≥0 is a Wright-Fisher332

generation. Note, we allow selfing with probability 1/N for all offspring produced by Wright-Fisher333

reproduction but we assume that the [ψN ] offspring of big families have two distinct parents.334

The parent assignment between (parental) generation g + 1 and (offspring) generation g is the335

collection of edges connecting the offspring with their parents. The diagram in (1) below shows the336

parent assignment corresponding to the example above in which g is a Wright-Fisher generation.337

(parents) g+1 1 2 3 4 5 6 7

(offspring) g 1

OO AA

2

OO AA

3

AA
88

4

OO]]

5

OO AA

6

OO AA

7

ff
OO

(1)338
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On the other hand, the diagram in (2) below shows the parent assignment corresponding to the339

example above in which g is a generation with a big family.340

(parents) g+1 1 2 3 4 5 6 7

(offspring) g 1

OO AA

2

33 55

3

AA ??

4

OO II

5

]] VV

6

ff ff

7

]] OO
(2)341

Pedigree The collection of all the parent assignments among all pairs of consecutive generations is342

called the pedigree and it is denoted as A(N). The pedigree models the set of all family relationships343

among the members of the population for all generations. The pedigree is shared among all loci.344

It is the structure through which genetic lineages are transmitted. Patterns of ancestry, or gene345

genealogies are outcomes of Mendelian inheritance in this single shared pedigree.346

Frequency of big families Recall that αN denotes the probability of a big family to appear in347

a generation. We set348

αN =
λ

N θ
, (3)349

where θ ∈ (0, 1] and λ ∈ R≥0 is a fixed parameter which determines the relative frequency of big350

families on the timescale of N θ generations.351

Timescale Suppose two individuals are sampled uniformly without replacement among the N352

individuals of the current generation g = 0 and we sample one gene copy from each. Let τ (N,2) be353

the pairwise coalescence time, that is, the number of generations in the past until the two sampled354

gene copies coalesce. How long is the pairwise coalescence time τ (N,2)? This will depend on N and355

also on θ owing to our assumption (3). In considering the limiting ancestral process for the sample,356

we re-scale time so that it is measured in units of N θ generations. We study the distribution of357

the re-scaled pairwise coalescence time, τ (N,2)/N θ, with different results depending on whether358

θ ∈ (0, 1) or θ = 1. In the latter case, our timescale is N generations, which we note is 1/2 the359

usual coalescent timescale for diploids. In the former case, where we may infer from (3) that big360

families will dominate the ancestral process, the timescale is accordingly much shorter than the361

usual coalescent timescale. Coalescence times in both cases also depend on a combined parameter362

ψ2/4 which is the limiting probability of coalescence when a big family occurs.363

Limiting process by averaging over the pedigree364

For reference and to illustrate our choice of timescale, we begin with a Kingman coalescent ap-365

proximation for the pairwise coalescence time in the classical Wright-Fisher model, here the special366

case θ = 1 and λ = 0 or αN = 0. Averaging over the process of reproduction in a single generation367

gives a coalescence probability of 1/(2N). With θ = 1, we measure time in units of N generations.368

To parallel the derivation of our main result, we consider the probability that the coalescence time369

τ (N,2) is more than [tN ] generations. The limiting ancestral process is obtained as370

P(N)(τ (N,2) > [tN ]) =

(
1− 1

2N

)[tN ]

→ e−t/2 as N → ∞. (4)371

In words, the re-scaled coalescence time τ (N,2)

N converges in distribution to an exponential random372

variable with rate parameter 1/2.373
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Before stating our main result, we first prove Lemma 1 below, generalizing (4) to our population374

model, in the sense that for θ = 1 with ψ = 0 or λ = 0 in Lemma 1 we recover (4).375

Lemma 1. Let λ ∈ R≥0, θ ∈ (0, 1], and set αN = λ
Nθ . The re-scaled coalescence time τ (N,2)

Nθ376

converges in distribution to an exponential random variable with rate parameter377 
λψ

2

4 , when θ ∈ (0, 1)

1
2 + λψ

2

4 , when θ = 1.

(5)378

We note that in Birkner et al. (2013b), the full ancestral recombination graph for samples379

of arbitrary size and genomes consisting of arbitrary numbers of linked loci is described for a380

population model nearly identical to ours here. The ancestral recombination graph (Hudson, 1983a;381

Griffiths and Marjoram, 1997), like the Kingman coalescent itself, averages over the pedigree.382

Lemma 1 describes the marginal ancestral process for a sample of size two at a single locus.383

Proof of Lemma 1 The lineage dynamics of our model can be analyzed using a Markov chain.384

In any generation g in the past, the ancestral lineages of a pair of gene copies must be in one of385

the three states {ξ0, ξ1, ξ2}, where386

ξ0 = (•)(•) represents two ancestral lineages in two distinct individuals,387

ξ1 = (••) represents two ancestral lineages on different chromosomes in the same individual,388

ξ2 = (•) represents that the ancestral lineages have coalesced.389

The diploid ancestral process for a pair of gene copies can thus be represented as a Markov chain390

(Mg)g∈Z≥0
with state space {ξ0, ξ1, ξ2}, where Mg is the state of the two lineages g generations in391

the past. Its one-step transition matrix ΠN is given by392

ΠN := (1− αN )Π
WF
N + αNΠ

BF
N (6)393

where394

ΠWF
N =

ξ0 ξ1 ξ2


ξ0 1− 1
N

1
2N

1
2N

ξ1 1− 1
N

1
2N

1
2N

ξ2 0 0 1

(7)395

and396

ΠBF
N =

ξ0 ξ1 ξ2


ξ0 1− ψ2

2
ψ2

4
ψ2

4

ξ1 1 0 0

ξ2 0 0 1

+O

(
1

N

)
. (8)397
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The matrix ΠWF
N in (7) is the transition matrix for a Wright-Fisher generation, whereas ΠBF

N in398

(8) is for a generation with a big family. The entries of ΠBF
N in (8) are derived by conditioning on399

the parent assignment(s) for the individual(s) containing the ancestral lineages, with respect to the400

highly reproductive pair. For instance, for ancestral lineages currently in two distinct individuals,401

the coalescence probability is 1/4 if both individuals are members of the big family and 1/(2N)402

otherwise. Thus we have403

P(Mg+1 = ξ2|Mg = ξ0,BF) =
[ψN ]([ψN ]− 1)

N(N − 1)

1

4
+

(
1− [ψN ]([ψN ]− 1)

N(N − 1)

)
1

2N
404

=
ψ2

4
+O

(
1

N

)
405

for the transition ξ0 → ξ2 in ΠBF
N , and where we have also specified that this contribution to the406

overall probability in (6) is conditional on the occurrence of a big family.407

The rest of the proof is a straightforward application of Möhle (1998a, Lemma 1). This is a408

separation-of-timescales result. To see how it works, using (3) we can rewrite (6) as409

ΠN := A+
1

N θ
BN +O

(
1

N θ+1

)
(9)410

where411

A =

ξ0 ξ1 ξ2


ξ0 1 0 0

ξ1 1 0 0

ξ2 0 0 1

(10)412

and413

BN =

ξ0 ξ1 ξ2


ξ0 −Nθ

N − λψ
2

2
Nθ

N
1
2 + λψ

2

4
Nθ

N
1
2 + λψ

2

4

ξ1 −Nθ

N
Nθ

N
1
2

Nθ

N
1
2

ξ2 0 0 1

. (11)414

The matrix A contains the fastest parts of the process. The matrix BN contains the next-fastest415

parts of the process, specifically those occurring on the timescale of N θ generations.416

Möhle’s result depends on the existence of equilibrium stochastic matrix P := limk→∞Ak which417

in this case is equal to A. Möhle’s result also requires the existence of the limiting infinitesimal418

generator G := limN→∞ PBNP . Note that in our application B := limN→∞BN itself converges.419

From (11) it is clear that the limiting result will differ depending on whether θ ∈ (0, 1) or θ = 1. If420

θ ∈ (0, 1), the contribution of Wright-Fisher generations to the coalescence rate shrinks to zero in421

the limit. If θ = 1, the contribution of Wright-Fisher generations, which is 1/2 on our timescale,422

remains comparable to the contribution of generations with big families in the limit.423

Applying Möhle (1998a, Lemma 1) to compute our probability of interest,424

P(N)(τ (N,2) > [tN θ]) = (1, 0, 0)Π
[tNθ]
N (1, 1, 0)T (12)425
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= (1, 0, 0)

(
A+

1

N θ
BN +O

(
1

N θ+1

))[tNθ]

(1, 1, 0)T (13)426

→ (1, 0, 0)PetG (1, 1, 0)T as N → ∞. (14)427

The initial vector (1, 0, 0) enforces our assumed starting state, ξ0. The end vector (1, 1, 0)T enforces428

the requirement that the lineages remain distinct at generation [tN θ], i.e. that the Markov chain429

(Mg)g∈Z≥0
has not reached state ξ2. Möhle’s result PetG is in the middle. Recall that P , which430

here is equal to A, instantaneously adjusts the sample so that the effective starting state is ξ0 even431

if the sample state is ξ1. The lineages then enter the continuous-time process with rate matrix G.432

Overall we have433

P etG (1, 1, 0)T =


(
e−tλ

ψ2

4 , e−tλ
ψ2

4 , 0

)T
, if θ ∈ (0, 1),(

e−t
(

1
2
+λψ

2

4

)
, e−t

(
1
2
+λψ

2

4

)
, 0

)T
, if θ = 1.

(15)434

The right hand side of (14) is equal to (5), and the proof of Lemma 1 is complete.435

Remark 1 (Robustness against perturbation of initial condition). The form of P shows that the436

limiting result in Lemma 1 holds regardless of whether the sample begins in state ξ0, as we have437

assumed, or in state ξ1. So, other sampling schemes could be considered. In fact Lemma 1 still438

holds if the initial distribution lies in the set I := {(c, 1 − c, 0) ∈ [0, 1]3 : c ∈ [0, 1]}. This can be439

seen clearly in (15).440

Limiting process by conditioning on the pedigree441

Our main result is about the conditional distribution. We let442

FN (t,A(N,2)) := P(N)
(
τ (N,2) > [tN θ]

∣∣ A(N,2)
)

(16)443

be the conditional probability of the event {τ (N,2) > [tN θ]} given the (random) pedigree and the444

sampled pair of individuals. Mathematically, A(N,2) is the sigma-field (all information) generated445

by the outcome of the random reproduction of the population and the knowledge which pair of446

individuals was sampled.447

Theorem 1. Let λ ∈ R≥0, θ ∈ (0, 1], and set αN = λ
Nθ . For all t ∈ (0,∞), we have the following448

convergence in distribution as N → ∞449

FN (t,A(N,2)) →


(
1− ψ2

4

)Y (t)
, when θ ∈ (0, 1),

e−t/2
(
1− ψ2

4

)Y (t)
, when θ = 1,

(17)450

where Y (t) is Poisson process with rate λ. In fact, the convergence in (17) holds jointly for all451

t > 0, see the discussion in Remark 4 in the Appendix section A.4 for details.452

Theorem 1 offers a description of the conditional distribution of the coalescence time τ (N,2) for453

a sample of two genes in a population of size N given the pedigree. It says that the law of τ (N,2)

Nθ ,454

under the conditional probability P(· | A(N,2)), converges weakly as N → ∞ to the law of a random455
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variable (call it T ) under a probability measure PY that depends on the Poisson process Y with456

rate λ. Furthermore, the survival function PY (T > t) is equal to the right hand side of (17). In457

what follows, we will refer to FN (t,A(N,2)) defined in (16) as the discrete survival function.458

Theorem 1 has an intuitive interpretation. Taking the case θ = 1, the e−t/2 represents the prob-459

ability that the two lineages have not coalesced by time t due to ordinary Wright-Fisher/Kingman460

coalescence. Against this smooth backdrop there are Y (t) points, representing essentially instan-461

taneous events in which a big family occurs and the lineages have a large probability, ψ2/4, of462

coalescing. Thus there is an additional factor in the survival function representing the probability463

that the pair does not coalesce in any of these extreme events. The case θ ∈ (0, 1) is analogous464

except the timescale is so short that there is no chance of an ordinary Wright-Fisher/Kingman465

coalescent event.466

Note that when λ = 0, there are no large reproduction events and Y (t) ≡ 0. Then for θ ∈ (0, 1),467

the right hand side of (17) is 1, i.e. there is no coalescence with probability 1. For θ = 1, the right468

hand side of (17) is e−t/2 which is expected from the cumulative distribution function (CDF) of469

the Kingman coalescent for a sample of size 2, with our timescale. The degenerate case λ > 0 but470

ψ = 0 effectively gives these same results for any Y (t).471

Proof of Theorem 1472

Recall that each g ∈ Z≥0 is a Wright-Fisher generation (resp. a generation with a big family) with473

probability 1− αN (resp. αN ), independently for all g ∈ Z≥0. The number of generations with big474

families in {0, 1, . . . , G−1}, denoted by HN (G), therefore has the binomial distribution Bin(G,αN ).475

We begin by addressing the technical point that we cannot actually know just by looking at the476

pedigree whether g is a generation with a big family, the way we have defined these as occurring477

only in special generations. Even in the classical Wright-Fisher model, every individual has the478

capacity to produce a large number of offspring. But reproductive outcomes as extreme as our big479

families are exceedingly rare under ordinary Wright-Fisher reproduction when N is large.480

To illustrate, consider the event that, spanning generations g + 1 and g, there exists a pair481

of parents with at least [ψN ] offspring. In our population model, this is guaranteed to occur482

in generations with big families. Note that the two parents of a big family have an additional483

∼Poisson(2(1− ψ)) offspring because the other N − [ψN ] offspring are produced according to the484

Wright-Fisher model. The event that a pair of parents with at least [ψN ] offspring can also occur485

randomly in Wright-Fisher generations, but only with small probability486

ϵN ≤
(
N

2

)(
N

[ψN ]

) (
1(
N
2

))[ψN ]

≤ 2[ψN ]−1

N [ψN ]−2
.487

Let QN (G) be the number of generations g ∈ {0, 1, . . . , G−1} in which such an event occurs between488

g+1 and g. Then QN (G) is extremely close to the binomial variable HN (G) ∼ Bin(G,αN ) because489

HN (G) ≤ QN (G) and QN (G) ≤ Bin(G,αN + ϵN ), (18)490

where the first inequality holds almost surely and the second is a stochastic dominance. Since491

αN = λ
Nθ , for each t ∈ (0,∞) and θ ∈ (0, 1] we have convergence in distribution492

QN ([tN
θ]) → Y (t) as N → ∞ (19)493
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which is identical to the limiting result for HN ([tN
θ]). In other words, ϵN is so small for any494

sizeable N , that we are safe in assuming that such extreme events in the pedigree reliably signify495

generations with big families as defined under our model.496

Indeed, from the discussion above we have497

lim
N→∞

E(N)

∣∣∣∣∣
(
1− ψ2

4

)HN ([tN ])

−
(
1− ψ2

4

)QN ([tN ])
∣∣∣∣∣
2
 = 0 (20)498

so that we can (and will) in the following computations replace HN ([tN ]) by QN ([tN ]) without499

changing any limit as N → ∞.500

Proof of (17) when θ = 1 In this case it suffices to show that501

lim
N→∞

E(N)

∣∣∣∣∣FN (t,A(N,2))− e−t/2
(
1− ψ2

4

)QN ([tN ])
∣∣∣∣∣
2
 = 0. (21)502

Expanding the square in (21) gives503

E(N)

[
F 2
N (t,A(N,2)) − 2e−t/2 FN (t,A(N,2))

(
1− ψ2

4

)QN ([tN ])

+ e−t
(
1− ψ2

4

)2QN ([tN ])
]
, (22)504

which requires the computation of three expectations. The first is the expectation of the square of505

the discrete survival function,506

E(N)
[
F 2
N (t,A(N,2))

]
. (23)507

The second is the expectation of the discrete survival function times the probability that a single508

pair of lineages does not coalesce in any of the generations with big families in the pedigree up to509

time t,510

E(N)

[
FN (t,A(N,2))

(
1− ψ2

4

)QN ([tN ])
]
, (24)511

The third is the expectation of the square of the same, latter probability that a single pair of512

lineages does not coalesce in any of the generations with big families in the pedigree up to time t,513

E(N)

[(
1− ψ2

4

)2QN ([tN ])
]
. (25)514

First term in (22) The expectation in (23) can be computed by considering two samples of size 2515

whose lineage dynamics are conditionally independent given A(N,2). Genetically, this corresponds516

to the ancestral processes of two unlinked loci given the pedigree and the two sampled individuals,517

and where one gene copy has been sampled at each locus from each of the individuals. Let τ518

and τ ′ be the coalescence times of these two pairs of sampled gene copies. Due to the conditional519

independence of these coalescence times, for all g ∈ Z+ we have520

P(N)

A(N,2)

(
τ > g, τ ′ > g

)
= P(N)

A(N,2) (τ > g) P(N)

A(N,2)

(
τ ′ > g

)
(26)521
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in which PA(N,2)(·) is short-hand for P
(
·|A(N,2)

)
in (16). Setting g = [tN ] and taking expectations522

on both sides of (26) gives523

E(N)
[
F 2
N (t,A(N,2))

]
=E(N)

[
P(N)

A(N,2) (τ > [tN ]) P(N)

A(N,2)

(
τ ′ > [tN ]

)]
524

=E(N)
[
P(N)

A(N,2)

(
τ > [tN ], τ ′ > [tN ]

)]
525

=P(N)
(
τ > [tN ], τ ′ > [tN ]

)
. (27)526

In order to compute the limit as N → ∞ in (27), we introduce the ancestral process of two527

conditionally independent samples given the pedigree.528

Joint diploid ancestral process The stochastic dynamics of the two conditionally independent,529

given the pedigree, pairs of lineages are described by the joint diploid ancestral process M̃ :=530

(M̃g)g∈Z≥0
. This is a Markov chain with state space S = {ξ(4)00 , ξ

(3)
00 , . . . , ξ∆} described below, where531

M̃g is the state of the two pairs of lineages in a common pedigree g generations backwards in time.532

Denote by Π̃N its transition matrix, the derivation of its entries is available at A.1.1 and its entries533

are available at A.1.2 for a generation with a big family and at A.1.3 for a Wright-Fisher generation.534

Similarly to the proof of Lemma 1, denote by • an ancestral lineage of a gene copy in the first535

pair and by ⋆ the same for the second pair. Parentheses are used to denote individuals. More536

precisely, consider the following 10 states:537

ξ
(4)
00 = (•)(•)(⋆)(⋆)538

ξ
(3)
00 = (•)(•⋆)(⋆)539

ξ
(2)
00 = (•⋆)(•⋆)540

ξ
(2)
10 = (• • ⋆)(⋆)541

ξ
(2)
01 = (⋆ ⋆ •)(•)542

ξ
(3)
10 = (••)(⋆)(⋆)543

ξ
(3)
01 = (⋆⋆)(•)(•)544

ξ
(2)
11 = (••)(⋆⋆)545

ξ
(1)
11 = (• • ⋆⋆)546

ξ∆ = coal.547

The superscript indicates the total number of individuals in which the 4 ancestral lineages reside.548

The two subscripts tell us the states of the two pairs respectively: 0 means a pair of lineages in state549

ξ0 and 1 means a pair of lineages in state ξ1, with these as defined in the proof of Lemma 1. For550

example, ξ
(3)
10 involves 3 individuals in which the first pair of lineages are in the the same individual551

and the second pair of lineages is in different individuals. Finally, the state ξ∆ is an absorbing state552

which represents the event that at least one of the two pairs has coalesced. The order of the states553

is arbitrary, based first on the subscripts then on the superscripts.554

By definition, the two pairs of gene copies are drawn from the same pair of individuals at the555

present generation g = 0, where for each pair one gene copy is picked from each of the individuals.556

Hence the initial state M̃0 must be ξ
(2)
00 . In other words, the distribution p⃗0 of M̃0 is given by557

p⃗0 = (0, 0, 1, · · · , 0). (28)558
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It follows from Lemma 2 in Appendix Section A.1.4 that559

lim
N→∞

P(N)
(
τ > [tN ], τ ′ > [tN ]

)
= lim

N→∞
p⃗0 · Π̃[tN ]

N (1, · · · , 1, 0)T (29)560

=(0, 0, 1, 0, · · · , 0)P̃ etG̃(1, · · · , 1, 0)T (30)561

= e−te−λt(
ψ2

2
−ψ4

16
), (31)562

where (29) follows from the definition of M̃ and p⃗0, (30) from (Möhle, 1998a, Lemma 1) as explained563

in Section A.1.4 and (31) by Lemma 2. Note that the vector (1, · · · , 1, 0)T in (29)-(30) amounts to564

the Markov chain (M̃g)g∈Z≥0
not reaching state ξ∆, i.e. that neither pair has coalesced.565

Remark 2 (Robustness of joint process to initial condition). Our assumed initial state ξ
(2)
00 is the566

usual way multi-locus data are sampled in population genetics. But Lemma 2 and Theorem 1 both567

hold for any initial state p⃗0 whose last coordinate is zero. This is because the sample will undergo568

an instantaneous adjustment by P̃ given in (A20), so that the effective starting state is always ξ
(4)
00 .569

Whatever idiosyncrasies A(N,2) may possess, especially in the recent past, sensu Chang (1999),570

meaning the most recent log2(N) generations, these matter less and less as N grows. In the limit,571

the lineages of any sample immediately disperse to different individuals without undergoing any572

coalescent events. Similarly, the factors of P̃ in G̃ guarantee that the lineages will remain in state573

ξ
(4)
00 throughout the ancestral process, except for instants in which they have a chance to coalesce.574

This robustness against initial condition is analogous to (14).575

Second term in (22) We now show that (24) converges to e−t/2e−λt(
ψ2

2
−ψ4

16
) as N → ∞. Through576

the use of the law of total expectation, (24) is equal to577

[tN ]∑
k=0

E(N)
[
P(N)

A(N,2) (τ > [tN ]) | QN ([tN ]) = k
] (

1− ψ2

4

)k
P(N)(QN ([tN ]) = k). (32)578

By the fact that QN ([tN ]) is known given the pedigree and an application of the tower property,579

the conditional expectation in (32) is equal to580

P(N) (τ > [tN ] | QN ([tN ]) = k) ,581

which is approximately equal to582

P(N) (τ > [tN ] | HN ([tN ]) = k) ,583

by (18). That is to say584

E(N)

[
P(N)

A(N,2)(τ > [tN ])

(
1− ψ2

4

)QN ([tN ])
]
≈ E(N)

[
P(N)
HN

(τ > [tN ])

(
1− ψ2

4

)HN ([tN ])
]
,585

in the sense that (20) holds. By Lemma 3 in the Appendix, for g = [tN ], it follows that for each586

N ≥ 2 and t ∈ (0,∞),587

E(N)

[
P(N)
HN

(τ > [tN ])

(
1− ψ2

4

)HN ([tN ])
]
= (1, 0, 0)

(
Πmid
N

)[tN ]
(1, 1, 0)T , (33)588
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where Πmid
N is defined as589

Πmid
N := αN

(
1− ψ2

4

)
ΠBF
N + (1− αN )Π

WF
N . (34)590

It now follows by Lemma 4 that the right hand side of (33) converges to e−t/2e−λt(
ψ2

2
−ψ4

16
).591

Third term in (22) Finally, (25) is computed by first noticing that the number of big families592

up to generation T , QN (T ), is (almost) binomially distributed according to Bin([T ], αN ) for all593

T ≥ 1, as observed by (18). Using the probability generating function of QN (T ) we get that the594

third term in (22) is equal to e−λt(
ψ2

2
−ψ4

16
).595

Putting everything together As N → ∞, (22) is equal to 0 since (25) multiplied by e−t and596

(23) add up to 2e−te−λ(
ψ2

2
−ψ4

16
)t which cancel out with (24) multiplied by −2e−t. This gives (21)597

which concludes the proof of Theorem 1 in the case of θ = 1.598

Convergence (17) when θ ∈ (0, 1) The proof is similar to the case of θ = 1. In all of the above,599

substitute [tN ] by [tN θ], and show instead of (22) that600

lim
N→∞

E(N)

∣∣∣∣∣FN (t,A(N,2))−
(
1− ψ2

4

)QN ([tNθ])
∣∣∣∣∣
2
 = 0. (35)601

Expanding (35) gives the same three terms as in (23)-(25). In this faster timescale, as N → ∞,602

(23) is now equal to603

lim
N→∞

E(N)
[
F 2
N (t,A(N,2))

]
= e−λt(

ψ2

2
−ψ4

16
), (36)604

as available in Lemma 2. The limiting behavior of (24) is the same as before, that is605

lim
N→∞

E(N)

[
FN (t,A(N,2))

(
1− ψ2

4

)QN ([tN ])
]
= e−λt(

ψ2

2
−ψ4

16
) (37)606

and607

lim
N→∞

E(N)

[(
1− ψ2

4

)2QN ([tNθ)
]
= e−λt(

ψ2

2
−ψ4

16
). (38)608

Multiplying (37) by −2 and summing it up with (36) and (37) concludes the proof in the case of609

θ ∈ (0, 1).610

The proof of Theorem 1 is complete.611

Remark 3 (Only big families matter). Let G⃗ (N) = (G
(N)
1 , G

(N)
2 , . . . ), where 0 ≤ G

(N)
1 < G

(N)
2 <612

· · · , be the generations with big families that have (randomly) occurred. Then G⃗ (N) is known if613

we know the pedigree. Similar to (16), we let614

FN (t, G⃗
(N)) := P(N)

(
τ (N,2) > [tN θ]

∣∣ G⃗ (N)
)

(39)615

be the conditional probability of the event {τ (N,2) > [tN θ]} given the (random) generations G⃗ (N).616

Hence, here we condition on less information than on the left hand side of (17). We can show that617

Theorem 1 still holds (i.e. the weak convergence in (17) still holds) if we replace FN (t,A(N,2)) by618

FN (t, G⃗
(N)). For a proof sketch see Appendix A.2.1.619
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Coalescence times, gene genealogies and correlations620

Here we briefly recap then provide three illustrations of our results. Our main result is Theorem 1621

which describes two limiting distributions of coalescence times conditional on the pedigree. As the622

number of unlinked loci examined in the sampled individuals increases, the empirical distribution of623

their coalescence times should converge to Theorem 1. In this case, conditional on the pedigree, the624

probability of coalescence in a generation depends on whether that particular generation includes625

a big family. For background and comparison, Lemma 1 presents the corresponding two limiting626

distributions obtained by the usual method of averaging over pedigrees, i.e. over all possible out-627

comes of reproduction in a single generation, including the possibility of a big family. In this case,628

the probability of coalescence is the same in every generation.629

Time is re-scaled in all of these limiting ancestral processes. It is measured in units of N θ
630

generations for some θ ∈ (0, 1]. When θ ∈ (0, 1), the timescale for big families to occur is much631

shorter than the usual Wright-Fisher coalescent timescale of N generations. When θ = 1, the632

timescales for big families and for ordinary Wright-Fisher coalescence are the same. Big families633

occur at rate λ in re-scaled time, and their offspring comprise a fraction ψ ∈ [0, 1] of the population634

in that generation. Underpinning our results is the fact that as N → ∞ ancestral genetic lineages635

spend the overwhelming majority of their time in separate individuals, i.e. in state ξ0 for a pair of636

lineages at the same locus (cf. Lemma 1) or state ξ
(4)
00 for two pairs of lineages at two unlinked loci637

(cf. Theorem 1 and Remark 2). Thus when a big family occurs, each lineage independently: (i)638

is among the offspring of the highly reproductive pair with probability ψ and (ii) if so, is equally639

likely to descend from each of the four copies of the corresponding locus in the two parents. A pair640

of lineages at the same locus coalesces in the big family with probability ψ2/4. Pairs of lineages at641

different, unlinked loci do this independently.642

Our first illustration compares our limiting results to the cumulative distribution function (CDF,643

i.e. one minus the survival function) of pairwise coalescence times in the discrete model. Figure 1a644

displays CDFs for five simulated pedigrees for N = 500, assuming that the probability of a big645

family is equal to the expected pairwise coalescence probability, 1/(2N) = 0.001, and the offspring646

make up the entire population in that generation. This corresponds to the limiting process in647

Theorem 1 with θ = 1, λ = 1/2 and ψ = 1. This makes the coalescence probability (ψ2/4) equal to648

1/4 in each generation with a big family. We computed coalescence probabilities on each pedigree in649

each generation starting from a pair of randomly sampled individuals using the method in Wakeley650

et al. (2012). The corresponding “expected” CDF of the pedigree-averaged process from Lemma 1,651

i.e. of an exponential random variable with rate parameter 5/8, is shown for comparison.652

The left panel of Figure 1a illustrates that the ancestral process conditional on the pedigree is653

quite close to limiting result in Theorem 1, even when N = 500. The CDFs make discrete jumps654

whenever big families occur. In this case with ψ = 1 the magnitude of a jump is always 1/4 of655

the remaining distance to 1. Between jumps the CDFs show a steady increase in the cumulative656

coalescence probability, in line with the limiting prediction with its rate of 1/2. In contrast, the657

pedigree-averaged process in Lemma 1 predicts a faster rate of increase of the CDF and no jumps.658

The right panel of Figure 1a details the short-time behavior of the ancestral process conditional659

on the pedigree, displaying these same CDFs only over the most recent 40 generations. The scale660

on the vertical axis is such that the diagonal corresponds approximately to the prediction of the661

background Wright-Fisher model (not shown) and a line with slope 1.25 corresponds approximately662

to prediction of Lemma 1 which is shown. After a small number of generations, which from Chang663

(1999) should be of order log2(N), the CDFs for the five pedigrees start to show the predicted664
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(a)

(b)

Figure 1: Cumulative distribution functions (CDFs) of pairwise coalescence times for θ = 1 and
λ = 1/2. (a), left panel: CDFs for five simulated pedigrees for populations of size N = 500 together
with the corresponding expected CDF from Lemma 1. (a), right panel: The same five CDFs and
the corresponding expectation from Lemma 1, only plotted over the most recent 40 generations.
(b): corresponding results for a single pedigree for a population of size N = 500 but five different
pairs of individuals, each sampled independently without replacement from the population.

Wright-Fisher slope of one. However, they start at different places depending on the particular665

ancestries of the sampled individuals, specifically whether there are very recent shared ancestors as666

in pedigree 5 or more likely there are no very recent shared ancestors as in pedigrees 1 through 4;667

cf. also Wakeley et al. (2012). These differences are barely visible on the timescale of the left panel668

of Figure 1a, and it is implicit in Theorem 1 that they become negligible as N → ∞.669

As stated in (26), the predictions for each of the five pedigrees in Figure 1a apply equally670

and independently to every locus in the sampled individuals. These five, like five instances of671

Theorem 1, are again predictions for the empirical distributions of coalescence times among unlinked672

loci. Different instances of A(N,2) will have different times of big families (Figure 1a, left panel)673

and different patterns of recent common ancestry of the samples (Figure 1a, right panel). For674

comparison, Figure 1b shows the same two graphs for five independently sampled pairs of individuals675

on a single pedigree. Again, each sample has its own pattern of recent common ancestry, producing676

visible differences on the scale of the right panel. But now all five samples access the same shared677

set of big families, resulting in the five closely overlapping CDFs in the left panel of Figure 1b.678
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Next we illustrate the effects that big families have on the gene genealogies of larger samples,679

in particular the sharing of identical coalescence times at unlinked loci. Rather than simulating680

pedigrees for finite populations, we use the limiting model directly so that big families are the only681

possible cause of shared coalescence times. We set ψ = 1 as before, and for simplicity assume that682

big families drive the ancestral process, i.e. θ ∈ (0, 1). We set λ = 1 without loss of generality, as683

λ is arbitrary except when θ = 1.684

Based on Theorem 1, we model gene genealogies by generating a series of exponential waiting685

times between big families and, since θ ∈ (0, 1), disallowing coalescence between them. When the n686

ancestral lineages of the sample reach the first big family, their distribution among the four parental687

gene copies will be multinomial with parameters n and (1/4, 1/4, 1/4, 1/4). Anywhere from one to688

four simultaneous multiple mergers will occur. The number of ancestral lineages which emerge is689

also at most four. If more than one lineage emerges, the same process is repeated until a single690

lineage remains which is the most recent common ancestor of the entire sample. The only aspects of691

the pedigree which persist in the limit are the big families (cf. Remark 3). Thus, independent runs692

of this multinomial coalescent process using the same series of exponential waiting times correspond693

to gene genealogies of unlinked loci conditional on the pedigree.694

Figure 2a displays the gene genealogies of seven unlinked loci for a sample of size 16, assuming in695

this way that all loci share the same pedigree. The trees are oriented with the present-day samples696

at the bottom. Solid lines trace (unlabeled) ancestral lineages up into the past. Thin dotted lines697

show the times of the big families. All seven gene genealogies have multiple-mergers at the most698

recent big family in the past, and five have common ancestor events at the second one. In the more699

distant past when there are small numbers of ancestral lineages, there is less sharing of coalescence700

times among gene genealogies. This is expected; for example, the final two lineages only coalesce701

with probability 1/4 each time they encounter a big family.702

Figure 2b shows seven gene genealogies, again for samples of size 16, but now assuming that703

each locus has its own pedigree. These are equivalent to seven gene genealogies sampled from seven704

independent populations, each with its own series of exponential waiting times between big families705

as in Figure 2a (not displayed in Figure 2b). These gene genealogies differ from the ones in the706

top row, most obviously in the different timings of their first common ancestor events. Clearly, the707

distribution of gene genealogies produced in this way will not be close to the distribution of gene708

genealogies of unlinked loci in the same genome which perforce come from the same population.709

Finally, we illustrate how averaging over pedigrees as in Lemma 1 results in positive correlations710

of coalescence times between unlinked loci. Explicitly modeling pedigrees as in Theorem 1 predicts711

these to be zero as might be expected for independently assorting loci. Based on the property712

of ancestral lineages spending the overwhelming majority of their time in separate individuals, cf.713

Remarks 1 and 2, we consider the two-locus analogue of Lemma 1 with reduced state space714

ξ00 = (•)(•)(⋆)(⋆)715

ξ10 = (•)(⋆)(⋆)716

ξ01 = (•)(•)(⋆)717

ξ11 = (•)(⋆)718

where now the first and second subscripts are indicators of whether locus 1 or locus 2 has coalesced.719

By extension from Lemma 1, the limiting ancestral process for two unlinked loci has transition rate720
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(a)

(b)

Figure 2: Simulated gene genealogies for seven independently assorting loci when all seven share
the same pedigree (a) versus when each locus has its own independently generated pedigree (b).
The sample size is n = 16 for every locus. Gene genealogies were generated as described in the text
for the limiting model with θ ∈ (0, 1) and λ = ψ = 1. Thin dotted lines in the top row show the
particular series of times of big families in that population.

matrix721

Q =

 λQBF, if θ ∈ (0, 1)

QWF + λQBF, if θ = 1

(40)722

where723

QBF =

ξ00 ξ10 ξ01 ξ11



ξ00 −ψ2

4

(
2− ψ2

4

)
ψ2

4

(
1− ψ2

4

)
ψ2

4

(
1− ψ2

4

)
ψ4

16

ξ10 0 −ψ2

4 0 ψ2

4

ξ01 0 0 −ψ2

4
ψ2

4

ξ11 0 0 0 0

(41)724
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and725

QWF =

ξ00 ξ10 ξ01 ξ11


ξ00 −1 1

2
1
2 0

ξ10 0 −1
2 0 1

2

ξ01 0 0 −1
2

1
2

ξ11 0 0 0 0

. (42)726

Focusing on the case θ = 1, the rate matrix Q is the sum of a Wright-Fisher (or Kingman coalescent)727

component and a big-family component. We have factored the tuning parameter λ out of the latter728

to emphasize that, conditional on the occurrence of a big family, samples at the two loci coalesce729

or do not coalesce independently of each other.730

Let T1 and T2 be the coalescence times at the two loci. These correspond to the limiting random731

variables τ/Nθ and τ ′/N θ in Lemma 2. Here individually they are the times to state ξ11 starting732

from states ξ01 and ξ10, respectively. From the rate matrix Q in (40) or from Lemma 1 directly, T1733

and T2 are identically distributed. In particular,734

T1 ∼


exponential

(
λψ

2

4

)
, if θ ∈ (0, 1)

exponential
(
1
2 + λψ

2

4

)
, if θ = 1.

(43)735

However, T1 and T2 are not necessarily independent. Lemma 2 accounts for this non-independence736

in the proof of Theorem 1, and we note that (40) also gives (A22). Here, we use first-step analysis737

to compute the correlation coefficient, Corr[T1, T2]. Let W be the waiting time to the first event738

in the ancestry of the two loci starting from state ξ00, and T
∗
1 and T ∗

2 be the additional times to739

coalescence at each locus following the first event. In this formulation,740

Ti =W + T ∗
i (44)741

for i ∈ {1, 2}. From (40), we have742

W ∼


exponential

(
λψ

2

4

(
2− ψ2

4

))
, if θ ∈ (0, 1)

exponential
(
1 + λψ

2

4

(
2− ψ2

4

))
, if θ = 1.

(45)743

and we point out that, since W is exponentially distributed,744

E[W 2] = 2E[W ]2. (46)745

Conditioning on the first step from state ξ00 and simplifying,746

E[T1T2] = E[W 2] + E[W ]E[T ∗
1 ] + E[W ]E[T ∗

2 ] + E[T ∗
1 T

∗
2 ] (47)747

= 2E[W ]E[T1]. (48)748

Going from (47) to (48) uses (46), (44), E[T1] = E[T2], and the fact that either T ∗
1 or T ∗

2 or both749

are equal to zero following the first event. Then for the correlation coefficient, we have simply750

Corr[T1, T2] =
2E[W ]E[T1]− E[T1]2

Var[T1]
, (49)751
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which, using (43) and (45), becomes752

Corr[T1, T2] =


ψ2

8− ψ2
, if θ ∈ (0, 1) (50a)

λψ4

16 + λψ2(8− ψ2)
, if θ = 1. (50b)

753

Even though the loci assort independently, their ancestries in the pedigree-averaging model jointly754

depend on the random process that generates big families in the population. As a result, their755

coalescence times are positively correlated.756

The correlation coefficient (50b), obtained here under the assumption that the loci are unlinked,757

corresponds to Equation 31 in Birkner et al. (2013b, p. 266), obtained there by modeling recom-758

bination explicitly and then taking the limit as the re-scaled recombination parameter tends to759

infinity. The timescales in these two works differ by a factor of two. Our (50b) becomes identical760

to Equation 31 in Birkner et al. (2013b) by putting λ = c/2.761

For a given value of ψ, the correlation coefficient is smaller when θ = 1 than when θ ∈ (0, 1).762

When coalescence can be due to either big families or ordinary Wright-Fisher reproduction (θ = 1),763

the correlation tends to zero as λ tends to zero. As λ grows, (50b) grows until it approaches764

(50a). Thus, the occurrence of big families may be said to be the source of positive correlations765

in coalescence times at unlinked loci. In a similar vein, Corr[T1, T2] tends to zero as the fraction766

of the population replaced by each big family, ψ, tends to zero. This is true even if θ ∈ (0, 1), i.e.767

when there is no Wright-Fisher/Kingman component in the limit process. At the other extreme, as768

ψ → 1, Corr[T1, T2] → 1/7 which is considerably less than one. Even when all coalescence happens769

in big families and the offspring of each big family replace the entire population, there are still two770

diploid parents and the loci will generally have different coalescence times.771

The following alternate derivation of (50a) shows how these positive correlations arise. In short772

it is because T1 and T2 have a shared dependence on the times between big families in the pedigree.773

Implicitly, Lemma 1 averages over these times whereas Theorem 1 retains them.774

When θ ∈ (0, 1), coalescence can only happen when a big family occurs. Let K1 and K2 be775

the numbers of such events it takes for locus 1 and locus 2 to coalesce, respectively. These do not776

depend on the times between big families when θ ∈ (0, 1). Further, K1 and K2 are independent777

because the loci are unlinked. They are geometric random variables with parameter ψ2/4. Let Xi,778

i ∈ Z≥0, be the time from the (i−1)th to the ith big family backward in time, with X0 ≡ 0. In the779

context of Theorem 1, these times are independent and identically distributed exponential random780

variables with rate parameter λ. Under this formulation,781

Ti =

Ki∑
j=1

Xj (51)782

for i ∈ {1, 2}. There are two sources of variation in Ti: variation in Ki and variation in the lengths783

of the intervals, Xj , j ∈ {1, . . . ,Ki}. Starting with (51), it is straightforward to confirm that the784

distribution of Ti is exponential with rate parameter λψ2/4 as in (43) or Lemma 1.785

From (51) and the fact that Xi and Xj are independent for i ̸= j, it is also clear that intervals786

in a common to T1 and T2 are a key source of their covariation. For given values of K1 and K2,787

they are the only source. The first interval is always shared, as are all subsequent intervals until788
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one or the other locus coalesces. Let K12 be the number of these shared intervals and789

T12 =

K12∑
i=1

Xi (52)790

be the corresponding total length of time. By definition K12 = min(K1,K2). The more ancient791

K1 −K2 or K2 −K1 intervals are only ancestral to one of the loci.792

Applying the conditional covariance formula, or law of total covariance, we have793

Cov[T1, T2] = E
[
Cov[T1, T2|K1,K2]

]
+Cov

[
E[T1|K1,K2],E[T2|K1,K2]

]
794

= E
[
Var[T12|K12]

]
+Cov

[
E[T1|K1],E[T2|K2]

]
. (53)795

The outer expectation and covariance are with respect to the joint distribution of K1 and K2.796

Note that K12 is a marginal property of this distribution. The inner variance (or covariance) and797

expectations are with respect to the joint distributions of the Xi which are the only parts of T1798

and T2 that vary conditional on K1 and K2.799

At this point, in (53), we have not applied the fundamental property that K1 and K2 are800

independent since the loci are unlinked, nor have we assumed any particular distribution(s) for801

the Xi. We have only used the definitions of T1 and T2 as sums of random variables and the802

assumption that Xi and Xj are independent for i ̸= j. So we may consider that the interval times803

are fixed numbers: Xi ≡ xi, i ∈ Z≥0. They could be the outcomes of the exponential random times804

implicit in Theorem 1. Fixing the Xi means fixing the only aspects of the pedigree that persist in805

the limiting model. Conditioning on the pedigree, T1 and T2 are independent even in the limiting806

model; cf. (26). The point we wish to emphasize here is that fixing the Xi removes one particular807

source of covariation of T1 and T2. It makes Var[T12|K12] = 0.808

Continuing from (53) and assuming thatXi, i ∈ Z≥0, are independent and identically distributed809

Cov[T1, T2] = E[K12]Var[Xi] + E[Xi]
2Cov[K1,K2]810

= E[K12]Var[Xi], (54)811

the latter following from the independence of K1 and K2. Again, Xi ∼ exponential(λ), and from812

the definition of K12 as the number of big-family events it takes for one locus or the other to813

coalesce,814

K12 ∼ geometric

(
1−

(
1− ψ2

4

))
. (55)815

Putting the required quantities in (54) and simplifying gives816

Cov[T1, T2] =
16

λ2ψ2(8− ψ2)
(56)817

which is exactly the covariance needed to produce the correlation coefficient (50a). In sum, the818

model of Lemma 1 predicts a positive correlation of coalescence times at unlinked loci because it819

averages over the distributions of the intervals Xi. Starting instead with the model of Theorem 1820

shows that the particular quantity controlling these positive correlations is Var[Xi].821
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Discussion822

The use of random models to describe past events raises many questions in population genetics.823

Everything in the past has already occurred, including all instances and timings of reproduction and824

genetic transmission. For empirical work this may be a truism. But population genetics has always825

been concerned with evolutionary processes. How do mutation, recombination, selection, random826

genetic drift, non-random mating, limited dispersal, etc., conspire to produce observable patterns of827

variation? By emphasizing the fixed nature of the past, we highlight the subjectivity of theoretical828

work, specifically when the goal is to interpret data from natural populations. Ultimately, the829

choices one makes about modeling the past may be application-dependent.830

Motivated by applications to multi-locus data, we singled out the pedigree as a key feature of831

the past and obtained a result (Theorem 1) concerning the application of neutral coalescent models832

in sexually reproducing species. We have the following sampling structure in mind. Processes833

of survival and reproduction result in a pedigree. Genetic transmission, including mutation and834

recombination across the entire genome, occurs within the pedigree. A number of individuals are835

sampled from the population and some or all of their genomes are sequenced. We modeled the836

single-locus coalescent process conditional on the pedigree. Our results specify the distribution837

of coalescence times given the pedigree and the sampled individuals. This distribution can be838

interpreted either as a prior for a single locus or as a prediction about the distribution of coalescence839

times among unlinked loci. We contrasted our results conditional on the pedigree with results840

obtained by averaging over pedigrees, noting that the latter is the tradition of theoretical population841

genetics. We did not model mutation or recombination, but our fundamental conclusion—that some842

population processes cause the quenched and averaged processes to be very different—should be as843

important for genetic variation as it is for coalescence times.844

We can compare our framework with that of Ralph (2019). The two have a lot in common.845

Ralph (2019) takes the pedigree and the outcomes of genetic transmission, including recombination846

across the entire genome, to be fixed. The latter is referred to as the ancestral recombination847

graph (ARG), which we note differs slightly from the corresponding objects in Hudson (1983a) and848

Griffiths and Marjoram (1997) because it is embedded in the fixed pedigree. Without specifying849

a generative model for the pedigree, Ralph (2019) focuses on the ARG as the fixed but unknown850

object of interest in empirical population genetics. A sample is taken and some stretch of the genome851

is sequenced. Its ancestry is a collection of gene genealogies, a subset of the ARG. Implicitly, it is852

the outcome of the random process of genetic transmission within the fixed pedigree, but this too853

is not modeled.854

The only randomness is in how the collection of gene genealogies of the sample is revealed by855

mutation. Ralph (2019) assumes the infinite-sites mutation process and uses this to show that856

predictions about summary statistics of DNA sequence variation, such as the average number of857

pairwise nucleotide differences or the F -statistics of Patterson et al. (2012), can be expressed in858

terms of the fixed branch lengths in the sampled subset of the ARG. This is the empirical version859

of what Slatkin (1991), Griffiths and Tavaré (1998), Nielsen (2000), McVean (2002) and Peter860

(2016) had done in the context of the standard neutral coalescent, where instead the moments of861

summary statistics can be expressed in terms of corresponding moments of branch lengths. Ralph862

et al. (2020) describe a hybrid approach, with the ARG conceived as in Ralph (2019) and with863

times of events in the ARG for data from humans (The 1000 Genomes Project Consortium, 2015)864

estimated with the aid of the standard neutral coalescent (Speidel et al., 2019).865

Whereas we model the production of the pedigree and the process of coalescence within it but866
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do not model mutation, Ralph (2019) models only mutation on the fixed ARG. Consider a species867

in which recurrent selective sweeps across the genome have structured the ARG. An empirical868

estimate of the ARG would find regions of the genome with reduced variation due to reduced times869

to common ancestry. In order to relate these observations to an evolutionary process within the870

empirical framework of Ralph (2019), for example to describe them in terms of recurrent selective871

sweeps as in Durrett and Schweinsberg (2005), additional modeling would be needed. In contrast,872

in a theoretical approach such as ours here, recurrent sweeps would be included in the model at873

the outset, and this in turn would facilitate the interpretation of patterns in the data. Under our874

model, it is important to keep in mind that the ARG is in fact a fixed object and that the process875

of coalescence within the pedigree models the sampling of a locus in the ARG.876

Today detailed estimates of the ARG for large samples of human genomes are available (Wohns877

et al., 2022; Zhang et al., 2023). These have been obtained, like other recent estimates (Kelleher878

et al., 2019; Speidel et al., 2019; Albers and McVean, 2020), using the standard neutral coalescent879

as a prior for gene genealogies and times to common ancestry. Our results and those of Tyukin880

(2015) help to justify using such a prior despite the fact that the pedigree is fixed, so long as the881

processes which laid down the pedigree are not too different from the Wright-Fisher or Cannings882

models with relatively low variation of offspring numbers. The empirically oriented interpretations883

in these works, for example in Wohns et al. (2022), connect features of the ARG with major884

events in human history, such as the out-of-Africa event which has been studied genetically since885

the first mtDNA discoveries (Cann et al., 1987; Vigilant et al., 1991) and the novel finding of886

an accumulation of ancestry in Papua New Guinea more than 100-thousand years ago. This is887

intraspecific phylogeography (Avise et al., 1987; Avise, 1989, 2000) at genome scale.888

Our model for generating the pedigree includes the possibility of special generations in which a889

big family is guaranteed to occur. We obtained different coalescent processes as N → ∞, depending890

on the relative rate of these big families in the limit and whether the ancestral process is conditional891

on the pedigree (Theorem 1) or not (Lemma 1). This essentially negative result, that the averaged892

process cannot be used in place of the conditional process, includes the positive finding that the893

Kingman coalescent can be used between big families in the case that both occur on the same894

timescale (Theorem 1 with θ = 1). The numbers and timings of big families are all that is left of895

the pedigree in the limit (cf. Remark 3). Needing to keep track of just these is much less daunting896

than the prospect of including entire pedigrees in all of our population-genetic models. There may897

be other circumstances in which aspects of the pedigree are important, but so far the only other898

instance identified is when sub-populations are connected by limited migration (Wilton et al., 2017).899

Limiting coalescent processes for our model generally involve simultaneous multiple-mergers.900

Yet the familiar extensions of the Kingman coalescent to include multiple-mergers have been derived901

by averaging over the pedigree, not by conditioning on it. They begin with single-generation902

marginal probabilities of coalescence, whereas in truth the individuals in the sample either have or903

do not have common ancestors in any preceding generation and this is what determines probabilities904

of coalescence. Without big families, our results and those of Tyukin (2015) provide belated905

justification for the early uses of the Kingman coalescent process as a prior model for the gene906

genealogy of a single locus (Lundstrom et al., 1992; Griffiths and Tavaré, 1994; Kuhner et al.,907

1995). Our work also clarifies what is involved in using pedigree-averaged ancestral processes as908

single-locus priors in cases where big families can occur.909

If the only data available were from a single locus without recombination, one could model the910

gene genealogy using the pedigree-averaged ancestral process. The logic would be that a single911

locus has one unknown random pedigree and one unknown random gene genealogy within that912
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pedigree, and that the gene genealogies from multiple-mergers coalescent models are marginal pre-913

dictions over both of these unknowns. For example, with n = 2, a single draw of a coalescence time914

from the appropriate exponential distribution in Lemma 1 accounts for both sources of variation.915

Implicit in this accounting is that repeated samples would each have their own pedigree and con-916

ditional gene genealogy. This two-fold sampling structure is precisely what Theorem 1 describes.917

It is straightforward to show that repeated sampling under Theorem 1 (each time drawing a new918

pedigree) gives the same exponential distributions as in Lemma 1. Yet even for a single locus, it919

may be preferable to record the additional information about big families as in Theorem 1.920

Applying this type of repeated sampling (i.e. including re-sampling the pedigree) to multiple921

loci is another matter. Population-genetic models should not allow the pedigree to vary among loci.922

Theorem 1 is a simple initial example of the kind of coalescent modeling required for multi-locus data923

generally but especially when multiple-mergers processes are implicated. In cases where big families924

may occur with some frequency, it is crucial to retain the information about the pedigree which925

matters for the gene genealogies at all loci. All multiple-mergers coalescent models so far described,926

which implicitly average over the pedigree, are inadequate in this sense. The broader implication927

of Lemma 1 and Theorem 1 is that there exists a collection of quenched limits conditional on the928

pedigree which await description and are the appropriate models for multi-locus data.929

The diploid exchangeable population models in Birkner et al. (2018) are a natural starting point930

for the description of general quenched-pedigree Ξ-coalescent models. Alternatively, parameterized931

models could be considered, controlling for example rates of monogamy and the distribution of932

offspring numbers as in the program SLiM 3 (Haller and Messer, 2019) or the Pólya urn scheme933

of Gasbarra et al. (2005). The latter was used for the prior in the Bayesian inference methods934

of Gasbarra et al. (2007a,b) and Ko and Nielsen (2019) for estimating the recent few generations935

of the pedigree from sequence data. Selfing in the production of big families, which we assumed936

does not occur, could also be considered. Non-exchangeable models for generating pedigrees are937

possible, for example with recurrent selective sweeps (Durrett and Schweinsberg, 2005) or cultural938

transmission of reproductive success (Guez et al., 2023). It could also be of interest to describe939

these coalescent models directly in terms of the properties of pedigrees as directed graphs, and here940

we note the study of Blath et al. (2014) as a start in this direction.941

The model underlying Lemma 1 and Theorem 1 is very simple. Only one type of big family942

is allowed, these are distributed in time according to a Poisson process, and we only considered943

a sample of size two. We hypothesize that the basic principles of Theorem 1 will be robust to944

all of these. For example, other ways of generating big families should be possible, such that945

Y (t) ∼ Poisson(λt) would be replaced by some other distribution. Extensions to larger sample946

sizes and to variation in the numbers and types of big families seem straightforward in principle,947

though they will require a lot more bookkeeping. Such generalization of big families will need to948

include sufficient details that Mendel’s laws can be applied. For example, if four parents have [ψN ]949

offspring, it will matter whether they form two monogamous pairs or comprise one big family with950

four parents, and in either case just how many offspring each pair has. In a more general model,951

such details will need to be specified for each big-family event.952

The implications of our results for inference can be sketched as follows. Consider a general953

situation in which there may be special events like our big families in a well mixed population954

which has possibly changed in size over time. Assume that data are available for L unlinked955

loci and there is no intra-locus recombination. Let D, G, A, Θm and Θc represent the data, the956

collection of gene genealogies at the loci, the pedigree, the parameters of a mutation model and957

the parameters of a coalescent model, specifically a trajectory of relative population sizes over time958
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in a Kingman coalescent with variable size. Let Di and Gi be the data and the gene genealogy at959

the ith locus. Consider the likelihood, which is key to any sort of statistical inference. Traditional960

coalescent-based inference disregards A and computes the likelihood P(D; Θm,Θc) in which we use961

“;” to indicate that Θm and Θc are treated as fixed parameters. The traditional computation962

proceeds by conditioning on G, treating this as a random variable, but does so under the erroneous963

assumption that P(G; Θc) is equal to the product of P(Gi; Θc) across loci.964

Instead, because a shared pedigree has been fixed by past events, a better approach would be965

to use A as the parameter in place of Θc and to compute the likelihood966

P(D; Θm,A) =
∑
G

P(D|G; Θm)P(G;A)967

=
∑
G

L∏
i=1

P(Di|Gi; Θm)P(Gi;A) (57)968

where now in (57) the independence assumption of gene genealogies (given the pedigree) is correct.969

Theorem 1 is a simple example of what we expect will be possible under a variety of population970

models. Intuitively, A can be replaced by the pair {Y,A \ Y}, where Y is a list of special events971

and A \ Y is the remainder of the pedigree. In the limiting ancestral process, Y may need to be972

preserved while A\Y can be replaced by a coalescent model with parameters Θc. For our model, Y973

would be the times and sizes (ψ) of big families, and the coalescent model would be the Kingman974

coalescent. Thus our results suggest the simplification975

P(D; Θm,A) ≈ P(D; Θm,Y,Θc) =
∑
G

L∏
i=1

P(Di|Gi; Θm)P(Gi;Y,Θc) (58)976

where the approximation is for largeN . In the present work, (58) has the probabilistic interpretation977

in Theorem 1, where A and the limiting object Y are random outcomes of a population process.978

Then P(Y) could also serve as the prior for Bayesian inference of Y, using (58) but with “|” not “;”979

for conditioning on A and Y. In any case, the pair {Y,Θc} is a much more manageable variable980

than A. For many species, it will not be necessary to record special events in the limiting model.981

Without Y, (58) reduces to traditional coalescent-based inference.982

The issues we raise here about pedigrees parallel those in recent work on population bottle-983

necks. Like the trajectories of population sizes through time in coalescent hidden Markov models,984

bottlenecks have traditionally been considered fixed events of the past. But models of recurrent985

bottlenecks have recently been considered. A bottleneck is the event that a population ordinarily of986

size N0 has size NB < N0 for a period of time. In Birkner et al. (2009, Section 6) it was shown that987

a Ξ-coalescent describes the limiting gene-genealogical process for a model with recurrent severe988

bottlenecks, specifically with the bottleneck duration going to zero and NB/N0 → 0 as both NB and989

N0 go to infinity. González Casanova et al. (2022) used a similar framework but allowed that NB990

could be finite. They described a new class of Ξ-coalescents they called the symmetric coalescent.991

A model like ours with ψ = 1 and random selfing between the parents of the big family would992

give one of these, being identical to a short drastic bottleneck (González Casanova et al., 2022,993

Definition 3) with NB = 4 and our θ and λ corresponding to their α and k(N). But as noted in994

Birkner et al. (2009), Ξ-coalescent models are only obtained for recurrent bottlenecks by averaging995

over the exponential process which generates them. When the times and severities of bottlenecks996

are fixed, the result will depend on these and will not be a time-homogeneous Markov process.997

Against this backdrop of similarities, a small but notable difference is that the bottleneck models998

in Birkner et al. (2009) and González Casanova et al. (2022) are haploid rather than diploid.999
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The proof of Theorem 1 uses the idea of two independent copies of the coalescent process1000

on the same pedigree. Genetically, these are the gene-genealogies of two independently assorting1001

loci conditional on their shared pedigree. Our results suggest a reinterpretation of population-1002

genetic models which predict non-zero correlations or positive covariances of coalescence times at1003

unlinked loci. Eldon and Wakeley (2008) found that the correlation could be positive in a model1004

of recombination and the haploid (or gametic) equivalent of big families. Birkner et al. (2013b)1005

extended this finding to a diploid model of recombination with big families similar to the ones we1006

studied here. It appears that such correlations result from averaging over the pedigree. In the1007

simple model we considered, they arise from averaging over the times of big families, cf. (53) and1008

(54). On any fixed pedigree the correlation of coalescence times at unlinked loci must be zero.1009

The comparison with recurrent bottlenecks is apt here as well. Schaper et al. (2012) constructed1010

a recurrent-bottleneck model for recombination and coalescence at two loci with recombination.1011

They note that what is relevant for data is the covariance of coalescence times conditional on the1012

series bottleneck events in the ancestry of the population, not the unconditional covariance which1013

averages over these. They showed that the conditional covariance goes to zero as the recombination1014

parameter goes to infinity. They also showed, in the Ξ-coalescent limit of Birkner et al. (2009) that1015

the covariance could be positive even as the recombination parameter goes to infinity. We note1016

an analogous finding for yet another model in Wakeley and Lessard (2003), in which non-zero1017

correlations of coalescence times at unlinked resulted from taking the number of subpopulations1018

to infinity in an island migration model, even though for any finite number of subpopulations the1019

correlation goes to zero as the recombination parameter tends to infinity.1020

In sum, for a century it has been common practice in population genetics to compute probabil-1021

ities of past events by averaging over an assumed process of reproduction. What we have shown1022

is that when big families occur with some frequency, or more generally when the descendants of a1023

small number of individuals take over a sizable fraction of the population in a short period of time,1024

this averaging is not justified and can produce spurious results. Instead, such extreme outcomes1025

of reproduction should be viewed as fixed, and probabilities of coalescence and other events condi-1026

tioned upon them. In light of this, existing multiple-mergers coalescent models must be reassessed1027

and most likely replaced with conditional or quenched models. A comparison with how population1028

size has been treated as fixed is of some interest because it too is an outcome of reproduction. In1029

both cases, it is when population-genetic models are applied to explain variation among loci that1030

the importance of conditioning on past events is most readily apparent.1031
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Malécot G. La consanguinité dans une population limitée. Comptes Rendus de l’Académie des1270

Sciences, Paris, 222:841–843, 1946.1271
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