Theory of the effects of population structure and sampling on patterns of linkage disequilibrium applied to genomic data from humans.

(pdf)303 KB

Abstract:

We We develop predictions for the correlation of heterozygosity and for linkage disequilibrium between loci using a simple model of population structure that includes migration among local populations, or demes. We compare the results for a sample of size two from the same deme (single-deme sample) to those for a sample of size two from two different demes (a scattered sample). The correlation in heterozygosity for a scattered sample is surprisingly insensitive to both the migration rate and the number of demes. In contrast, the correlation in heterozygosity for a single-deme sample is sensitive to both, and the effect of an increase in the number of demes is qualitatively similar to that of a decrease in the migration rate: both increase the correlation in heterozygosity. These same conclusions hold for a commonly used measure of the linkage disequilibrium (r2). We compare the predictions of the theory to genomic data from humans and show that subdivision might account for a substantial portion of the genetic associations observed within the human genome, even though migration rates among local populations of humans are relatively large. Because correlations due to subdivision rather than to physical linkage can be large even in a single-deme sample, then if long-term migration has been important in shaping patterns of human polymorphism, the common practice of disease mapping using linkage disequilibrium in “isolated” local populations may be subject to error.

Last updated on 12/16/2015