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a b s t r a c t

Contrary to what is often assumed in population genetics, independently segregating loci do not have
completely independent ancestries, since all loci are inherited through a single, shared population pedi-
gree. Previous work has shown that the non-independence between gene genealogies of independently
segregating loci created by the population pedigree is weak in panmictic populations, and predictions
made from standard coalescent theory are accurate for populations that are at least moderately sized.
Here, we investigate patterns of coalescence in pedigrees of structured populations. We find that the
pedigree creates deviations away from the predictions of the structured coalescent that persist on a longer
timescale than in the case of panmictic populations. Nevertheless, we find that the structured coalescent
provides a reasonable approximation for the coalescent process in structuredpopulationpedigrees so long
as migration events are moderately frequent and there are no migration events in the recent pedigree of
the sample. When there are migration events in the recent sample pedigree, we find that distributions of
coalescence in the sample can be modeled as a mixture of distributions from different initial sample con-
figurations. We use this observation to motivate a maximum-likelihood approach for inferring migration
rates and mutation rates jointly with features of the pedigree such as recent migrant ancestry and re-
cent relatedness. Using simulation, we show that our inference framework accurately recovers long-term
migration rates in the presence of recent migration events in the sample pedigree.

© 2017 Elsevier Inc. All rights reserved.
1. Introduction

The coalescent is a stochastic process that describes the distri-
bution of gene genealogies, the tree-like structures that describe
relationships among the sampled copies of a gene. Since its intro-
duction (Kingman, 1982a,b; Hudson, 1983; Tajima, 1983), the co-
alescent has been extended and applied to numerous contexts in
population genetics and is now one of the foremost mathematical
tools for modeling genetic variation in samples (Hein et al., 2005;
Wakeley, 2009).

In a typical application to data from diploid sexual organisms,
the coalescent is applied to multiple loci that are assumed to have
entirely independent ancestries because they are found on dif-
ferent chromosomes and thus segregate independently, or are far
enough apart along a single chromosome that they effectively seg-
regate independently. Even chromosome-scale coalescent-based
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inference methods that account for linkage and recombination
(e.g., Li and Durbin, 2011; Sheehan et al., 2013; Schiffels and
Durbin, 2014) multiply probabilities across distinct chromosomes
that are assumed to have completely independent histories due to
their independent segregation.

In reality, the ancestries of gene copies sampled at indepen-
dently segregating loci from a fixed set of diploid, sexually re-
producing individuals are independent only after conditioning on
the population pedigree, i.e., the set of familial relationships be-
tween all individuals in the population throughout all time. Fig. 1
illustrates this. Fig. 1(A) depicts coalescence within the frame-
work of standard coalescent theory under a diploid, monoecious
Wright–Fisher model with the possibility of selfing. Under this
model, fromwhich the coalescent can be derived as a limiting pro-
cess, the probability that two distinct ancestral lineages coalesce
in a given generation is 1/(2N), where N is the diploid popula-
tion size. The averaging over pedigrees in this model is depicted
in Fig. 1(A) by each individual having a ‘‘parental’’ relationship to
every individual in the previous generation. Thus, two ancestral
lineages follow parental relationships to the same individual with
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Fig. 1. A conceptual inconsistency in the application of standard coalescent theory to independently segregating loci sampled from a diploid population. Each panel depicts
coalescence between two sampled gene copies at a pair of unlinked loci (green and orange lines, respectively) sampled from a pair of individuals in the present generation
(black squares). Individuals within a generation are represented by circles arranged horizontally across a row, and generations are arranged vertically, with the present
generation at the bottom of the figure and the most ancient generation at the top of the figure. Panel (A) is a conceptual depiction of coalescence at unlinked loci under
the assumptions of standard coalescent theory. Under these assumptions, at each unlinked locus, an ancestral lineage has an equal probability of being derived from any
individual in the previous generation, and thus it is as if each individual has every potential ancestral individual as a parent. Panels (B) and (C) depict coalescence at two
unlinked loci in actual diploid sexual populations, in which the same population pedigree governs the process of coalescence at all loci. In these pedigrees, each individual
has exactly two parents (including the possibility of selfing, here), and the distribution of coalescence times amongst unlinked loci depends on both the initially sampled
individuals and the particular shape of the pedigree. Panel (B) shows the pedigree of a panmictic population. The probability of coalescence of two ancestral lineages in a
given generation depends on the pedigree and generally differs from the 1/(2N) that would be assumed after marginalizing over the pedigree. Panel (C) depicts a two-deme
population pedigree, with fixed migration events (red lines) constraining the movement of ancestral lineages between the two demes. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
probability 1/N , and in that individual are derived from the same
parental chromosomewith probability 1/2.When this probability,
1/(2N), is applied independently to unlinked loci, any correlation
in ancestry between these loci caused by the pedigree is erased by
this averaging over pedigrees.

A conceptually more correct model of coalescence of unlinked
loci sampled from individuals in a diploid sexual population is
depicted in Fig. 1(B). Here, coalescence occurs within a single
diploid population pedigree, with probabilities of coalescence in
a given generation determined by the particular shape of the
pedigree of the sampled individuals and generally differing from
the 1/(2N) predicted under the standard interpretation of the
diploidWright–Fisher model. For example, if in a given generation
the number of shared parental relationships happens to be greater
than usual, the probability of coalescence will tend to be greater,
and when the number of shared parental relationships in a
given generation is fewer, the probability of coalescence in that
generation will tend to be lesser.

These effects of the population pedigree on coalescence in sex-
ual populations were investigated by Wakeley et al. (2012), who
studied coalescence in randomly generated population pedigrees
of diploid populations reproducing under basicWright–Fisher-like
dynamics, i.e., populations with constant population size, random
mating, non-overlapping generations, and no population structure,
and in this context, it was found that the shape of the population
pedigree affects coalescence probabilities mostly during the first
∼ log2(N) generations back in time. During these first few gener-
ations back in time, there is relatively large variation from pedi-
gree to pedigree in the degree of overlap in the pedigree of the
sampled individuals. It may be that for several generations there
is zero overlap in the pedigree of the sampled individuals, and
consequently the probability of coalescence amongst these indi-
viduals will be zero. On the other hand, if by chance the sample
contains close relatives (i.e., two individuals possessing a shared
pedigree ancestor in these recent generations), the probability of
coalescence in the generation of that shared ancestor will tend to
exceed the probability of coalescence predicted by standard the-
ory. After the first log2(N) generations, the pedigrees of different
individuals begin to overlap more completely, and the probabili-
ties of coalescence in these later generations depend less on the
pedigree (Wakeley et al., 2012, see also Fig. 2).

This log2(N) timescale of convergence ormixing of the pedigree
has been studied in other contexts. Chang (1999) found that the
number of generations until two individuals share an ancestor
(in the biparental pedigree sense) converges to log2(N) as the
population size grows. Likewise, Derrida et al. (2000) showed that
the distribution of the number of repetitions in an individual’s
pedigree ancestry becomes stationary around log2(N) generations
in the past. This log2(N)-generation timescale is the natural
timescale of convergence in pedigrees due to the approximate
doubling of the number of possible ancestors each generation back
in time until the entire ancestral population potentially becomes
part of the pedigree.

In these studies it is assumed that the population is panmictic,
i.e., that individuals mate with each other uniformly at random.
One phenomenon that may alter this convergence in pedigrees
is population structure, with migration between subpopulations
or demes. In a subdivided population, the exchange of ancestry
between demes depends on the history of migration events
embedded in the population pedigree (Fig. 1(C)). These fixed past
migration events may be infrequent or irregular enough that the
generation-by-generation probabilities of coalescence depend on
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the details of themigration history rather than on the reproductive
dynamics underlying convergence in panmictic populations.

The question of how population structured affects pedigree
ancestry has received some previous attention. Rohde et al. (2004)
found that population structure did not change the log2(N)-scaling
of the number of generations until a common ancestor of everyone
in the population is reached. Barton and Etheridge (2011) studied
the expected number of descendants of an ancestral individual, a
quantity termed the reproductive value, and similarly found that
population subdivision did not much slow the convergence of this
quantity over the course of generations. Kelleher et al. (2016)
studied how pedigree ancestry spreads in spatially explicit models
of population structure, finding that when dispersal is local, the
mixing of pedigree ancestry occurs on a longer timescale than the
log2(N)-scaling found by Rohde et al. (2004).

While these studies give a general characterization of howpedi-
grees are affected by population structure, a direct examination of
the coalescent process for loci segregating through the pedigree of
a structured population is still needed. Fixing the migration events
in the pedigreemay produce long-term fluctuations in coalescence
probabilities thatmake thepredictions of the structured coalescent
inaccurate. The pedigree may also bias inference of demographic
history. Any migration events or overlap in ancestry in the most
recent generations of the sample pedigree will have a relatively
great probability of affecting sampled genetic variation, and thus
demographic inference methods that do not take into account the
pedigree of the sample may be biased by how these events shape
genetic variation in the sample.

Here, we explore how population structure affects coalescence
through randomly generated population pedigrees. Using simula-
tions, we investigate how variation in the migration history em-
bedded in the pedigree affects coalescence probabilities, and we
determine how these pedigree effects depend on population size
andmigration rate. We also study the effects of recent migrant an-
cestry on patterns of coalescence and use our findings to develop a
simple framework for modeling the sample as a probabilistic mix-
ture ofmultiple ancestrieswithoutmigration ancestry.Wedemon-
strate how this framework can be incorporated into demographic
inference by developing a maximum-likelihood method of infer-
ring scaled mutation and migration rates jointly with the recent
pedigree of the sample in a population with two demes andmigra-
tion between the demes.We test this inference approachwith sim-
ulations, showing that including the pedigree in inference corrects
a bias that is present when there is unaccounted-for migration in
the ancestry of the sample.

2. Theory and results

2.1. Pedigree simulation

Except where otherwise noted, each population we consider
has two demes of constant size, exchanging migrants symmetri-
cally at a constant rate. This model demonstrates the effects of
population structure in one of the simplest ways possible. Under
the assumptions of standard coalescent theory, coalescence in such
a two-deme population is described by the structured coalescent
(Notohara, 1990; Hudson, 1991), a model describing migration of
ancestral lineages between demes and coalescence of ancestral lin-
eages within a deme. With just two demes and a constant rate
of migration, this model has a relatively simple mathematical de-
scription (Wakeley, 2009).

We assume that generations are non-overlapping and that the
population has individuals of two sexes in equal number. In each
generation, each individual chooses amother uniformly at random
from the females of the same deme with probability 1 − m and
from the females of the other deme with probabilitym. Likewise a
Fig. 2. Coalescence time distribution for independently segregating loci sampled
from two individuals in a panmictic population. The gray line shows the distribution
from the pedigree, and the black line shows the exponential prediction of the
standard coalescent. The population size is N = 500 diploid individuals.

father is chosen uniformly at random from the males of the same
demewith probability 1−m and from themales of the other deme
with probability m. This system of reproduction corresponds to
reproduction by broadcast spawning, where gametes migrate but
individuals do not. This migration scheme maintains a constant
deme size from generation to generation.

In our depictions of pedigrees in the figures of this paper, we do
not distinguish between males and females, as none of our results
depend on the sexes of the individuals. The present generation,
from which individuals are always sampled, is depicted at the
bottom of the pedigree, with the two lines extending upwards
showing the maternal and paternal relationships to the previous
generation. When there are two demes, individuals inhabiting one
or the other deme are colored white or gray, respectively.

All simulations were carried out with coalseam, a program
for simulation of coalescence through randomly-generated pop-
ulation pedigrees. The user provides parameters such as pop-
ulation size, number of demes, mutation rate, and migration
rate, and coalseam simulates a population pedigree under a
Wright–Fisher-like model meeting the specified conditions. Gene
genealogies are constructed by simulating segregation back in time
through the pedigree, and the resulting genealogies are used to
produce simulated genetic loci. Output is in a format similar to that
of the program ms (Hudson, 2002), and various options allow the
user to simulate and analyze pedigrees featuring, for example, re-
cent selective sweeps or fixed amounts of recent pedigree related-
ness and migrant ancestry.

The program coalseam is written in C and released under
the GPLv3 license. It is available online at https://github.com/
ammodramus/coalseam.

2.2. Structured population pedigrees and probabilities of coalescence

As described by Wakeley et al. (2012), in a well-mixed
population of size N , the distribution of coalescence times for
independently segregating loci sampled from two individuals
shows large fluctuations over the first ∼ log2(N) generations
depending on the degree of overlap in the pedigree of the two
individuals. After this initial period, the coalescence probabilities
quickly converge to the expectation under standard coalescent
theory, with small fluctuations around that expectation (Fig. 2, see
also Wakeley et al., 2012). The magnitude of these fluctuations
depends on the population size, but even for small to moderately
sized populations (e.g., N = 500), the exponential prediction
of the standard coalescent is a good approximation to the true
distribution after the first log2(N) generations.

In a large structured population of two populations with sym-
metric migration rate m per generation and diploid deme size N ,
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the coalescent process is described by the two-deme structured
coalescent with scaled migration rate M/2 = 2Nm per lineage
and coalescence rate 1 for every pair of lineages in the same deme
(Wakeley, 2009). The distribution of pairwise coalescence times
under this model can be calculated by exponentiating a matrix of
migration and coalescence rates, giving the distribution of coales-
cence times for two chromosomes sampledwithin the same deme,

fTw (t) =
1

2γ 2
e−

t
2 (1+2M+γ )


γ 2

+ γ + eγ t

γ 2

− γ

, (1)

and the distribution of coalescence times for two chromosomes
sampled from different demes,

fTb(t) =
M
γ

e−
t
2 (1+2M+γ )


eγ t−1 , (2)

where t is measured in units of 2N generations and γ =
√
4M2 + 1. These are the predicted distributions of pairwise co-

alescence times in a two deme population using the standard ap-
proach that implicitly involves marginalizing over pedigree rela-
tionships.

When the pedigree of a two-deme population is fixed, coales-
cence probabilities depend on the history of migration embed-
ded in the population pedigree. Deviations from the predictions
of the structured coalescent are especially pronounced when the
average number of migration events per generation is of the same
order as the per-generation pairwise coalescence probability, i.e.,
Nm ≈ 1/N (Fig. 3(A)). In this migration-limited regime, two lin-
eages may be ‘‘stuck’’ in different demes and have zero probability
of coalescing before a migration event in the pedigree can bring
them together into the same deme. This creates large peaks in the
coalescence time distributions for loci segregating independently
through the same pedigree, with each peak corresponding to a mi-
gration event (Fig. 3(A)).

Even when the migration rate is greater and there are many
migration events per coalescent event, the pedigree can still
cause coalescence probabilities to differ from the predictions of
the structured coalescent. Under these conditions, coalescence is
not constrained by individual migration events, but there may
be stochastic fluctuations in the realized migration rate, with
some periods experiencing more migration and others less. These
fluctuations can cause deviations in the predicted coalescence
probabilities long past the log2(N)-generation timescale found in
well-mixed populations (Figs. 3(B), S1, S2). The degree of these
deviations depends on the rate of migration and the population
size, with smaller populations and lower migration rates causing
greater deviations, and deviations from predictions are generally
larger for samples taken between demes than samples within
demes. Overall, however, when there are many migration events
per coalescent event (i.e., when Nm ≫ 1/N), the predictions of the
structured coalescent fit the observed distributions in pedigrees
reasonably well (Figs. S1–S2).

To investigate the dependence of the coalescence time distribu-
tion on the pedigree more systematically, we simulated 20 repli-
cate population pedigrees with different deme sizes andmigration
rates. From each pedigree, we sampled two individuals in differ-
ent demes and calculated the distribution of pairwise coalescence
times for independently segregating loci sampled from those two
individuals.Wemeasured the total variation distance of this distri-
bution from the distribution of coalescence times predicted under
a two-deme discrete-time Wright–Fisher model with migration
rate equal to that of the simulation. The total variation distance of
two discrete distributions P and Q is defined as

DTV (P,Q ) =
1
2


i

|P(i)− Q (i)| . (3)
Fig. 3. Distribution of coalescence times for two individuals sampled fromdifferent
demes. In both panels, the black line shows the distribution calculated from a single
random pedigree, and the purple line shows the prediction from the structured
coalescent. Red vertical lines along the horizontal axis show the occurrence of
migration events in the population, with the relative height representing the total
reproductiveweight (see Barton andEtheridge, 2011) of themigrant individual(s) in
that generation. (A) Low migration pedigree, withM = 4Nm = 0.04 and N = 100.
Under these conditions, coalescence is limited by migration events, so there are
distinct peaks in the coalescence time distribution corresponding to individual
migration events. (B) Higher migration pedigree, with M = 0.4 and N = 1000.
With the greater migration rate, coalescence is no longer limited by migration,
but stochastic fluctuations in the migration process over time cause deviations
away from the standard-coalescent prediction on a timescale longer than log2(N)
generations. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

In theory this is an infinite sum, but in practice, we sum through
10 E[Tb] ≈ 40N(1+1/M) generations (where E[Tb] is the expected
between-deme coalescence time), beyondwhich there is very little
probability remaining in these distributions and thus very little
additional contribution to the total variation distance. We find
that the total variation distance between the distributions from
pedigrees and the distributions from standard theory increases as
both the population size and migration rate decrease (Fig. 4(A)).
When the total, population-scaled rate of migration (i.e., Nm) is
greater than the rate of coalescence within demes (i.e., when
Nm ≫ 1/N , or N2m ≫ 1, dotted line in Fig. 4(B)), total
variation distance depends more on the population size than on
the migration rate. When the total migration rate is less than the
rate of coalescence within demes (Nm ≪ 1/N), total variation
distance increases greatly and depends more on the population-
wide migration rate than on the deme size (Fig. 4(B)). This shows
that the pedigree has strong effects on coalescence when the
average number of migrants per generation, Nm, is relatively small
compared to the per-generation probability of coalescence within
a deme, 1/(2N). In this case, patterns of coalescence are not well
approximated by typical coalescent theory.

2.3. Recent migrant ancestry and coalescence distributions in pedi-
grees

As is also the case for panmictic populations, the details of
the recent sample pedigree are most important in determining
the patterns of genetic variation in the sample. In panmictic
populations, overlap in ancestry in the recent past increases the
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Fig. 4. Mean total variation distance between distributions of coalescence times in
two-deme population pedigrees and distributions of coalescence times predicted
under a two-deme Wright–Fisher model. For each of a range of migration rates,
twenty replicate pedigrees were simulated, and for each pedigree a distribution
of coalescence times for a randomly sampled pair of individuals was calculated,
and a total variation distance was calculated from the distribution that would be
predicted under an analogous two-deme Wright–Fisher model. Each line shows
how the mean of these total variation distances varies with migration rate. In Panel
(A), total variation distance is shown against the average number of migration
events per generation Nm. In Panel (B), total variation distance is shown against
the mean number of migration events per coalescence event, N2m. The dotted line
shows the point at which N2m = 1.

probability of coalescence in the very recent past, resulting in
identity-by-descent. In structured populations, an individual may
also have recent relatives from another deme. When this occurs,
the distribution of pairwise coalescence times is potentially very
different from the prediction in the absence of recent migrant
ancestry due to the migration paths in the pedigree that lead
to a recent change in demes. The degree of the difference in
distributions is directly related to the amount of migrant ancestry,
with more recent migration events causing greater changes in the
coalescence time distribution (Fig. 5).

If an individual in the sample has a migration event in its
recent pedigree, there will be some probability that a gene copy
sampled from this individual was inherited via the path through
the pedigree including this recent migration event. If this is the
case, it will appear as if that gene copy was actually sampled from
a deme other than the one it was sampled from. In this way, the
recent sample pedigree ‘‘reconfigures’’ the sample by changing
the location of sampled gene copies, with the probabilities of the
different sample reconfigurations depending on the number and
timing of migration events in the recent pedigree.

If gene copies are sampled at many independently segregating
loci from individuals having migrant ancestry, samples at some
loci will be reconfigured by recent migration events, and others
a b

dc

Fig. 5. Pairwise coalescence time distributions for samples with migrant ancestry.
Each panel shows the distribution of pairwise coalescence times for a pair
of individuals with a different sample pedigree. In each simulated population
pedigree, there are two demes of size N = 1000, and the scaled migration rate
is 4Nm = 0.1. In each panel, the population pedigree was simulated conditional
on the sample having the pedigree shown in the panel. The purple line shows the
between-deme coalescence timedistribution thatwould be expected in the absence
of recent migrant ancestry, and the gold line shows the mixture of the within-
and between-deme coalescence time distributions that corresponds to the degree
of migrant ancestry. Black lines are numerically calculated (i.e., exact) coalescence
time distributions for the simulated example pedigrees. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

will not. In this scenario, the sample itself can be modeled as a
probabilistic mixture of samples taken in different configurations,
and probabilities of coalescence can be calculated by considering
this mixture. For example, consider a sample of independently
segregating loci taken from two individuals related by the pedigree
shown in Fig. 5(C), where one of two individuals sampled from
different demes has a grandparent from the other deme. The
distribution of pairwise coalescence times for loci sampled from
this pair resembles the distribution of XTw + (1 − X)Tb, where
Tb is the standard between-deme pairwise coalescence time
for a structured-coalescent model with two demes, Tw is the
corresponding within-deme pairwise coalescence time, and X ∼

Bernoulli(1/4) (Fig. 5(C)). This particular mixture reflects the
fact that a lineage sampled from the individual with migrant
ancestry follows the path of migration through the pedigree with
probability 1/4.

This sample reconfiguration framework can also be used to
model identity-by-descent (IBD) caused by very recent coalescence
due to branch overlap in the recent sample pedigree. If the pedigree
causes an IBD event to occur with probability Pr(IBD), then the
pairwise coalescence time is amixture of the standard distribution
(without IBD) and instantaneous coalescence (on the coalescent
timescale) with probabilities 1−Pr(IBD) and Pr(IBD), respectively.
If there is both recent coancestry and recent migration in the
sample pedigree (or if there are multiple migration or coancestry
events), the sample can be modeled as a mixture of several sample
reconfigurations (e.g., Fig. 6).

This approach to modeling the sample implicitly assumes that
there is some threshold generation separating the recent pedigree,
which determines the mixture of sample reconfigurations, and the
more ancient pedigree, where the standard coalescent models are
assumed to holdwell enough. The natural boundary between these
two periods is around log2(N) generations, since any pedigree
feature more ancient than that tends to be shared by most or all of
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Fig. 6. Distribution of pairwise coalescence times for a sample whose pedigree
contains both recentmigration and recent pedigree coancestry. The recent pedigree
of the sample is shown, with the two sampled individuals located at the bottom of
the pedigree. The distribution for the simulated pedigree (gray line) is calculated
numerically from a pedigree of two demes of size N = 1000 each, with migration
rate M = 4Nm = 0.2. The colored lines show mixtures of the within-deme
coalescence time distribution (fTw ) and the between-deme distribution (fTb ). The
inset shows the probability of coalescence during the first five generations; the
probability mass at generation 1 (orange circle) is predicted by the mixture model
accounting for both recent coancestry and migration (orange line). The red line
shows the distribution if recent coancestry is ignored, and the blue line shows the
distribution if both coancestry andmigration are ignored. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

the population (making such features ‘‘population demography’’),
whereas any more recent features are more likely to be particular
to the sample.

We note that there is a long history in population genetics of
modeling genetic variation in pedigrees as a mixture of different
sample reconfigurations. Wright (1951) wrote the probability of
observing a homozygous A1A1 genotype as p2(1 − F) + pF ,
where p is the frequency of A1 in the population and F is
essentially the probability of IBD calculated from the sample
pedigree. This can be thought of as a probability for a mixture of
two samples of size n = 2 (with probability 1 − F ) and n =

1 (with probability F ). The popular ancestry inference program
STRUCTURE (Pritchard et al., 2000) and related methods similarly
write the likelihood of observed genotypes as a mixture over
different possible subpopulation origins of the sampled alleles.
Here, motivated by our simulations of coalescence in pedigrees,
we explicitly extend this approach to modeling coalescence. In
the next section, we propose an approach to inferring population
parameters such as mutation and migration rates jointly with
features of the sample pedigree such as recent coancestry and
recent migrant ancestry. In the Discussion, we further consider the
similarities and differences between our inference approach and
existing methods.

2.4. Joint inference of the recent sample pedigree and population
demography

The sample reconfiguration framework for modeling genetic
variation in pedigrees, described above, can be used to calculate
how recent migrant ancestry and overlap in the pedigree bias
estimators of population-genetic parameters. In Appendix A, we
calculate the bias of three estimators of the population-scaled
mutation rate θ = 4Nµ in a panmictic populationwhen the recent
sample pedigree contains recently related or inbred individuals. In
Appendix B, we calculate the bias of a moments-based estimator
of M due to recent migration events in the sample pedigree. We
use simulations to confirm these calculations (Figs. S3, S4). In both
cases, if the recent sample pedigree is known, it is straightforward
to correct these estimators to eliminate bias.

It is uncommon that the recent pedigree of the sample is known,
however, and if it is assumed known, it is often estimated from the
same data that is used to infer demographic parameters. Ideally,
one would infer long-term demographic history jointly with
sample-specific features of the recent pedigree. In this section, we
develop amaximum-likelihood approach to inferring relationships
in the recent sample pedigree and recent migrant ancestry jointly
with long-term scaled mutation and migration rates. The method
uses the approach proposed in the previous section: the sample
pedigree defines some set of possible outcomes of Mendelian
segregation in recent generations, and the resulting, reconfigured
sample is modeled by the standard coalescent process.

We model a population with two demes each of size N , with
each individual having probability m of migrating to the other
deme in each generation. We rescale time by 2N so that the rate of
coalescence within a deme is 1 and the rescaled rate of migration
per lineage is M/2 = 2Nm. We assume that we have sampled
two copies of each locus from each of n1 (diploid) individuals
from deme 1 and n2 individuals from deme 2. We write the total
diploid sample size as n1 + n2 = n so that the total number of
sequences sampled at each locus is 2n. We index our sequences
with In = {1m, 1p, 2m, 2p, . . . , nm, np

}, where im and ip index the
maternal and paternal sequences sampled from individual i. These
are simply notational conventions; we do not assume that these
maternal and paternal designations are known or observed.

The data D = {D1,D2, . . . ,DL} consist of genetic sequences
sampled at L loci. We assume that there is free recombination
between loci and no recombination within loci, and that mutation
occurs according to the infinitely many sites model. We further
assume that the ancestral versus derived status of each allele is
known. Under these assumptions, the data at locus i, Di, can be
stored as a 2n × Si binary matrix, where Si is the number of
segregating sites at locus i. In thismatrix, the first two rows pertain
to the two sequences sampled from individual 1, the second two
rows to the sequences sampled from individual 2, and so on. Since
we assume that we do not know which sequences are maternal
and which are paternal, the two rows pertaining to an individual
are ordered arbitrarily in the matrix.

Each recent pedigree P has some set of possible outcomes
of segregation through the recent past, involving coalescence of
lineages (due to recent pedigree relatedness or inbreeding) and
movement of lineages between demes (due to recent migration
events). The set of these sample reconfigurations is denoted RP ,
and each reconfiguration r ∈ RP is a labeled partition of
In, with the groups in each partition representing the lineages
that survive after segregation back in time through the recent
pedigree and the labels indicating the location (deme 1 or 2) of the
lineage represented by the group. Corresponding to each sample
reconfiguration r ∈ RP , there is a probability Pr(r | P) of that
sample reconfiguration being the outcome of segregation back in
time through the recent pedigree.

The joint likelihood of θ ,M , and P has the form

L(P, θ,M | D) = Pr(D | P; θ,M)

=

L
i=1


r∈RP

Pr(Di | r; θ,M) Pr(r | P). (4)

Probabilities are multiplied across independently segregating
loci because their ancestries are assumed independent after
conditioning on the recent sample pedigree.

In order to calculate Pr(Di | r; θ,M), it is necessary to consider
all the ways the sequences Di could have been inherited mater-
nally and paternally, since we assume that this is unknown. For se-
quences Di, let Λ(Di) represent all 2n possible ways of labeling Di
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as maternal and paternal. Each such labeling associates each row
(or sequence) in Di with an index in In. We then have

Pr(Di | r; θ,M) =
1
2n


λ∈Λ(Di)

Pr(Di | λ, r; θ,M) (5)

since each way of inheriting the sequences is equally likely to have
occurred. Here we implicitly assume that the sequences for each
individual are ordered (versus unordered) in Di. This has no effect
on inference.

Since each reconfiguration r ∈ RP is a partition of In, and each
labeling λ ∈ Λ(Di) assigns each sequence a maternal–paternal la-
bel from In, together the reconfiguration r and maternal–paternal
labeling λ create a deme-labeled partition of the sequences Di,
whichwe denoteπ(Di, rλ). This partition represents the coalesced
ancestral sequences after segregating back in time through the re-
cent pedigree.

Each term in the sum in (5) corresponds to a sampling proba-
bility for one of these partitions. These are

Pr(Di | λ, r; θ,M) = Pr(π(Di, r, λ); θ,M)
= φ({h≠ : h ∈ π(Di, r, λ)}; θ,M)

· I

|h≠| = 1 ∀h ∈ π(Di, r, λ)


, (6)

where h≠ is the set of non-identical sequences in the collection of
sequences h, I(·) is an indicator function, andφ(x; θ,M) is the stan-
dard infinite-sites sampling probability of sequences x, calculated
in the usual way without any reference to a pedigree. This sam-
pling probability can be calculated numerically using a dynamic
programming approach (Griffiths and Tavaré, 1994; Wu, 2010, see
below).

The above equation says that conditional on certain sequences
being IBD (i.e., they are in the same group in the partitioned
sequences), the sampling probability is the standard infinite-sites
probability of the set of sequences with duplicate IBD sequences
removed and the deme labelings of the different groups made
to match any migration events that may have occurred. If any
of the sequences designated as IBD are not in fact identical in
sequence, the sampling probability for that reconfiguration and
maternal–paternal labeling is zero. This is equivalent to assuming
that no mutation occurs in the recent part of the pedigree.

Together, (4), (5), and (6) give the overall joint log-likelihood of
mutation rate θ , migration rateM , and pedigree P given sequences
D:

LL(θ,M,P | D)

=

L
i=1

log


r∈RP

Pr(r | P)


λ∈Λ(Di,r)

Pr(π(Di, r, λ); θ,M)


− nL log(2). (7)

Our goal is to maximize (7) over θ , M , and P in order to
estimate these parameters. The most direct approach would be
to generate all possible recent sample pedigrees and maximize
the log-likelihood conditional on each pedigree in turn. Logically,
it would make sense to consider all sample pedigrees extending
back to generation ∼ log2(N), since pedigree ancestry converges
on this timescale (Chang, 1999; Rohde et al., 2004) and this
is when the pedigree affects probabilities of coalescence the
most. However, with this approach the number of pedigrees to
consider would be prohibitively large, and even enumerating all
such pedigrees would be a difficult problem (e.g., Steel and Hein,
2006). Even if only the first few generations back in time are
considered, the number of possible sample pedigrees will be large,
andmany sample pedigreeswill contain extensive overlap ormany
migration events and thus would be unlikely to occur in nature. In
most populations, it is more likely the case that each individual in
the sample will have few overlaps or migration events in the few
most recent generations, if any.

With this in mind, we limit the set of possible sample pedigrees
to only those sample pedigrees containing two or fewer events,
counting both overlap and migration events. We further limit
the number of possible sample pedigrees by considering only
the first four generations back in time, counting the present
generation as the first generation. This is fewer generations than
the ∼ log2(N) generations until the pedigree converges, but
increasing the maximum generation would increase the number
of possible pedigrees to the point of exceeding computational
resources. However, since events in the pedigree have the greatest
effect on estimates of demographic parameters when they occur
recently (Figs. S3, S4), considering only themost recent generations
addresses the greatest sources of bias in demographic parameters
due to the sample pedigree.

Finally, since we assume that we do not know the parental
origin of each sequence, we further reduce the number of possible
sample pedigrees by including only pedigrees that are unique up
to labeling of ancestors as maternal and paternal.

To generate all two-deme, four-generation sample pedigrees
with two or fewer events, we first generate all possible two-
generation pedigrees by considering all theways that n individuals
(where n is the diploid sample size) can have parents in the
two different demes, and then from each of these two-generation
pedigrees, three-generation pedigrees were produced by doing
the same, and then the four-generation pedigrees were produced
from the three-generation pedigrees. The sample reconfiguration
distribution of each four-generation pedigree was calculated by
enumerating all possible ways of partitioning ancestral lineages
into different ancestral chromosomes in each ancestral generation,
and each such partition was counted as a state in a sparse
matrix containing transition probabilities (calculated by the rules
of Mendelian segregation) from one generation to the next.
The generation-by-generation transitionmatrices were multiplied
together to obtain the final sample reconfiguration distribution.

Not every pedigree in the set we consider produces a unique
distribution of sample reconfigurations, so in our inference
method, the pedigree is not strictly identifiable. Thus, we place the
pedigrees into groups that produce the samedistribution of sample
reconfigurations, and these are taken as the domain of pedigrees in
inference.

To calculate the standard sampling probabilities needed in
(6), we use the dynamic-programming method described by Wu
(2010). In principle, it should be possible to calculate the log-
likelihood of all pedigrees simultaneously, since any reconfigura-
tion of the sample by IBD or migration must correspond to one of
the ancestral configurations in the recursion solved byWu’s (2010)
method (see also Griffiths and Tavaré, 1994). For particular values
of θ and M , after solving the ancestral recursion only once (and
storing the sampling probabilities of all relevant ancestral config-
urations), the likelihood of any pedigree can be calculated by ex-
tracting the relevant probabilities from the recursion. However, in
order to take this approach to maximize the log-likelihood, it is
necessary to solve the recursion on a large grid of θ andM . In prac-
tice, we find that it is faster to maximize the log-likelihood sepa-
rately for each pedigree, using standard derivative-free numerical
optimization procedures to find the M and θ that maximize the
log-likelihood for the pedigree.

To test our inference method we simulated datasets of sam-
ples from 1000 independently segregating loci, generated by sim-
ulating coalescence through a randomly generated pedigree of a
two-deme population with deme size N = 1000 and one of two
migration rates, M ∈ {0.2, 2.0}. We sampled one individual (two
sequences at each locus) fromeach deme. Sequence datawere gen-
erated using coalseam using one of two mutation rates: θ/2 =
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Fig. 7. Maximum-likelihood mutation rates and migration rates for datasets simulated through different sample pedigrees. Each point depicts the maximum-likelihood
estimates of θ andM for a particular simulation. Orange points show estimates obtainedwhen the pedigree is included as a free parameter, and purple points show estimates
obtained when the pedigree is assumed to have no effect on the data. In the first two columns, one of the sampled individuals is conditioned upon having a relative from
the other deme, and in the third column the data are generated from completely random pedigrees. In each panel the true parameter values are shown with a solid white
circle, and horizontal and vertical lines show means across replicates. Gray lines connect estimates calculated from the same dataset. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
0.5 (when M = 0.2) or θ/2 = 1.0 (when M = 2.0). In order to
investigate the effects of recent migration events on the estima-
tion on θ and M , each replicate dataset was conditioned on hav-
ing one of three different sample pedigrees with differing amounts
of recent migrant ancestry (see Fig. 7). We calculated maximum-
likelihood estimates of θ and M for each of the 78 groups of
pedigrees producing distinct reconfiguration distributions. We
compared maximum-likelihood estimates to the estimates that
would be obtained from a similar maximum-likelihood procedure
that ignores the pedigree (i.e., assuming the null pedigree of no
sample reconfiguration).

When there was recent migrant ancestry in the sample,
assuming the null pedigree to be the true pedigree produced a
bias towards overestimation of the migration rate (Fig. 7), since
the early probability of migration via the migration path must
be accommodated by an increase in the migration rate. For this
reason, the overestimation of the migration rate was greater when
the degree of recentmigrant ancestrywas greater. The population-
scaled mutation rate was also overestimated when the recent
migrant ancestry in the pedigreewas ignored, presumably because
migration via the migration path did not decrease allelic diversity
as much as the overestimated migration rate should. Including the
pedigree as a free parameter in the estimation corrected these
biases. Estimates from simulations of samples lacking any features
in the recent pedigree produced approximately unbiased estimates
of θ and M (Fig. 7).

The pedigree was not inferred as reliably as the mutation and
migration rates (Fig. 8). When the simulated pedigree contained
a recent migration event, the estimated pedigree was the correct
pedigree (out of 78 possible pedigrees) roughly 20%–25% of the
time. For pedigrees with no migrant ancestry and no relatedness,
the correct pedigree was inferred about one third of the time. Most
of the errors in pedigree estimation are due to mis-estimation
of relatedness in the sample. If only the details of the migration
ancestry are of interest, results are much better, with the correct
migration ancestry inferred 50%–100% of the time.

In addition to calculating a maximum-likelihood pedigree, it
is possible to construct an approximate 95% confidence set of
pedigrees using the fact that the maximum of the log-likelihood
is approximately χ2 distributed when the number of loci is
large. These pedigree confidence sets contained the true pedigree
∼83%–96% of the time, depending on the true sample pedigree,
mutation rate, and migration rate. A log-likelihood ratio test has
nearly perfect power to reject the null pedigree for the simulations
with the lesser migration rate; for simulations with the greater
migration rate the power depended on the degree of migrant
ancestry, with more recent migrant ancestry producing greater
power to reject the null pedigree (Fig. 8). Type I error rates for
simulationswhere the null pedigree is the true pedigreewere close
to α = 0.05.

Finally, we also simulated datasets of 1000 loci sampled
from individuals with completely random pedigrees (i.e., sampled
without conditioning on anymigration events in the recent sample
pedigree) in a small two-deme population of sizeN = 50 per deme
with one of two differentmigration rates,M ∈ {0.2, 2.0}. Whether
or not the pedigree was included as a free parameter mostly had
little effect on the estimates of θ andM (Fig. 9). However, in the few
cases when the sample pedigree included recent migration events,
the estimates were biased when the sampled pedigree was not
considered as a free parameter, and including the sample pedigree
in inference corrected this bias (Fig. 9).

3. Discussion

Here we have explored the effects of fixed migration events
in the population pedigree on the patterns of coalescence at
independently segregating loci. In contrast to the case of panmictic
populations, in structured populations the population pedigree can
influence coalescence well beyond the time scale of ∼ log2(N)
generations in the past. These effects are greater when the
migration rate is small and are particularly pronounced when
the total number of migration events occurring per generation is
of the same order as the per-generation coalescence probability.
When migration occurs more frequently than this (and there
are no migration events in the recent sample pedigree), the
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Fig. 8. Inference of sample pedigrees. For simulations of 1000 infinite-sites loci,
with θ = 0.5 andM = 0.2 (A) or θ = 1.0 andM = 2.0 (B), differentmeasurements
of the accuracy and power of pedigree inference are shown. The conditioned-
upon sample pedigrees are shown at the bottom of the figure. Blue bars show the
proportion of simulations in which the maximum-likelihood pedigree was the true
pedigree. Purple bars show the proportion of simulations where it was inferred
that sampled individuals had the correct amount of migrant ancestry. Green bars
show the proportion of simulations inwhich the true pedigreewas foundwithin the
approximate 95% confidence set of pedigrees, and pink bars show the proportion of
simulations in which the null pedigree is rejected by a log-likelihood ratio test. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

particular history of migration events embedded in the population
pedigree has less of an effect on coalescence, and the coalescence
distributions based on the structured coalescent serve as good
approximations to coalescent distributions within pedigrees.

We have also proposed a framework for inferring demographic
parameters jointly with the recent pedigree of the sample. This
framework considers how recent migration and shared ancestry
events reconfigure the sample bymoving lineages between demes
and coalescing lineages. The inferred sample pedigree is the sample
pedigree that has themaximum-likelihoodmixture distribution of
sample reconfigurations. In our implementation of this framework,
we consider only sample pedigrees having two or fewer events,
which must have occurred in the most recent four generations.
At the expense of computational runtimes, the set of possible
sample pedigrees could be expanded to include pedigrees with
more events extending a greater number of generations into the
past, but as these limits are extended, the number of pedigrees to
consider grows rapidly. Another approach one could take would
be to consider all of the reconfigurations (rather than sample
pedigrees) with fewer than somemaximum number of differences
from the original sample configuration, and find the mixture
of reconfigurations that maximizes the likelihood of the data,
without any reference to the pedigree that creates the mixture.
Such an approach may allow greater flexibility in modeling the
Fig. 9. Maximum-likelihood mutation rates and migration rates for datasets
of 1000 loci segregated through random pedigrees simulated in a two-deme
population with deme size N = 50. Each point depicts the maximum-likelihood
estimates of θ and M for a particular simulation. Orange points show estimates
obtainedwhen the pedigree is included as a free parameter, and purple points show
estimates obtained when the pedigree is assumed to have no effect on the data.
True parameter values are shown with white circles, and horizontal and vertical
lines show means across replicates. Gray lines connect estimates calculated from
the same dataset. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

effects of the recent pedigree, but searching the space of possible
mixtures of reconfigurations – the k-simplex, if k is the number of
possible reconfigurations – would likely be more challenging than
maximizing over the finite set of sample pedigrees in the method
we have implemented.

The sample reconfiguration inference framework is comple-
mentary to existing procedures for inferring recent admixture
and relatedness in structured populations. The popular program
STRUCTURE (Pritchard et al., 2000) and related methods (Raj et al.,
2014; Alexander et al., 2009; Tang et al., 2005) are powerful
and flexible tools for inferring admixture and population struc-
ture. Likewise, the inference tools RelateAdmix (Moltke and Al-
brechtsen, 2014), REAP (Thornton et al., 2012), and KING-robust
(Manichaikul et al., 2010) all offer solutions to the problem of
inferring relatedness in the presence of population structure and
admixture. Perhaps themost similar in scope is themethod ofWil-
son and Rannala (2003), which uses inferred ancestry proportions
to estimate migration rates in the most recent generations. For in-
put, each of these methods takes genotypes at polymorphic sites,
often biallelic SNPs, that are assumed to segregate independently.
Likelihoods are calculated from the probabilities of observing the
observed genotypes under the rules of Hardy–Weinberg equilib-
rium. These methods are well suited for samples of a large num-
ber of SNP loci sampled from a large number of individuals. The
inference procedure we have implemented, on the other hand, is
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capable of handling a sample of only a few individuals (n ≈ 4), and
likelihood calculations in our method are based on the coalescent
in an explicit population genetic model, the parameters of which
being the primary objects of inference. The pedigree is also explic-
itly modeled. While we have shown that our approach works well
when its assumptions hold, if the narrowassumptions of ourmodel
do not hold, or if the primary goal of inference is to infer recent fea-
tures of the sample pedigree per se, other, more flexible methods
are likely to offer better performance.

Underlying our inference method is a hybrid approach to mod-
eling the coalescent. Probabilities of coalescence are determined
by the sample pedigree in the recent past, and then the standard
coalescent is used to model the more distant past. This is similar
to how Bhaskar et al. (2014) modeled coalescence when the sam-
ple size approaches the population size. In such a scenario, they
suggest using a discrete-time Wright–Fisher model to model co-
alescence for the first few generations back in time and then use
the standard coalescent model after the number of surviving an-
cestral lineages becomes much less than the population size. We
note that this approach still implicitly marginalizes over pedigree
relationships and that in a situation where the sample size nears
the population size in a diploid population, there will be numer-
ous common ancestor events and migration events in the recent
sample pedigree. Thus in this context it may be important to con-
sider the pedigree.

The sample reconfiguration framework could be extended to
models that allow the demography of the population to vary over
time (e.g., Gutenkunst et al., 2009; Kamm et al., 2015). In such
an application, if only a few individuals are sampled, it would
be important to distinguish between the effects of very recent
events that are more likely to be particular to the sample and the
effects of events that are shared by all individuals in the population.
The latter category of events are more naturally considered
demographic history. On the other hand, if a sizable fraction of
the population is sampled, inferred pedigree features may be used
to learn more directly about the demography of the population in
the last few generations. As sample sizes increase from the tens of
thousands into the hundreds of thousands and millions (Stephens
et al., 2015), it will become more and more possible to reconstruct
large (but sparse) pedigrees that are directly informative about
recent demographic processes.

Unexpected close relatedness is frequently found in large
genomic datasets (e.g. Gazal et al., 2015; Pemberton et al., 2010;
Rosenberg, 2006). It is common practice to remove closely related
individuals (and in some cases, individualswith admixed ancestry)
from the sample prior to analysis, but this unnecessarily reduces
the amount of information that is available for analysis. What
is needed is a fully integrative method of making inferences
from pedigrees and genetic variation, properly incorporating
information about both the recent past contained in the sample
pedigree and the more distant past that is the more typical
domain of population genetic demographic inference. Here, by
performing simulations of coalescence through pedigrees, we
have justified a sample reconfiguration framework for modeling
coalescence in pedigrees, and we have demonstrated how this can
be incorporated into coalescent-based demographic inference in
order to produce unbiased estimates of demographic parameters
even when there is recent relatedness or admixed ancestry
amongst the sampled individuals.

Acknowledgments

The authors thank Seungsoo Kim, Mark Martinez, Janet Song,
and Katherine Xue for their assistance during the early phases of
this project. This manuscript was improved by the comments of
Léandra King, Julia Palacios, Jerome Kelleher, and two anonymous
reviewers. Computing resources were provided by Research
Computing Group at Harvard University.
Appendix A. Pedigrees and biased estimators of θ

Estimates of the population-scaled mutation rate θ = 4Nµ
will be downwardly biased if there are overlapping branches
in the recent pedigree of the sample, since sequences will be
identicalwith an artificially inflated probability, and this resembles
coalescence prior to any mutation between the two identical
sequences.

Suppose that we sample two copies of a DNA sequence from
each of n diploid individuals from a panmictic population. As in the
main text, we index these sequences with In := {1m, 1p, 2m, 2p,
. . . , nm, np

}. Let πIn be the set of partitions of In. Each pedigree P
induces a set of sample reconfigurations RP ⊆ πIn , where each
partition r ∈ RP represents a possible outcome of segregation
through the recent sample pedigree. Each reconfiguration r ∈

RP contains |r| non-empty, disjoint subsets, each representing
a distinct lineage that survives after segregating through the
recent pedigree. Associatedwith each pedigree is also a probability
distribution Pr(r | P), r ∈ RP representing the Mendelian
probabilities of the different sample reconfigurations.

We consider the bias of three estimators of θ that are unbiased
in the absence of recent pedigree overlap. One estimator of θ we
consider is Watterson’s (1975) estimator

θ̂S =

L
i=1

S(i)

anL
, (8)

where n is the (haploid) sample size, S(i) is the number of segre-
gating sites at locus i, L is the number of sampled loci, and an =n−1

i=1 1/i. The expected value of θ̂S given pedigree P is

E

θ̂S | P


=


r∈RP

E

θ̂S | r


Pr(r | P)

=


r∈RP

E

S(1)

an
| r

Pr(r | P)

= θ

r∈RP

a|r|

an
Pr(r | RP). (9)

This follows from the fact that when there are |r| lineages surviv-
ing the recent pedigree, the expected number of segregating sites
for that sample is θ

|r|−1
i=1

θ
i = θa|r|.

A second estimator of θ is π̂ , the mean number of differences
between all pairs of sequences in a sample, which can be written
in terms of the site-frequency spectrum:

π̂ =
1 n
2

 n−1
i=1

i(n − i)ξ̂i, (10)

where ξ̂i is the number of segregating sites present in i sequences
in the sample.

To calculate the expected value of π̂ given P , it is necessary
to consider how overlap in the recent pedigree changes the site
frequency spectrum. Define S(n) := {A ⊆ Ω : Ω ∈ πIn} and
ψ : πIn × N → S(n) as

ψ(Ω, i) :=


ω ⊆ Ω :


g∈ω

|g| = i


. (11)

That is,ψ(Ω, i) is the set of all subsets of the partitionΩ such that
the total size of all the groups in each subset is i. For example, for
n = 3 and

Ω =


1m, 1p, 2m , 2p, 3m , 3p ,
ψ(Ω, 1) = {{{3p

}}}
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ψ(Ω, 2) = {{{2p, 3m
}}}

ψ(Ω, 3) = {{{1m, 1p, 2m
}}, {{2p, 3m

}, {3p
}}}

ψ(Ω, 4) = {{{1m, 1p, 2m
}, {3p

}}}

ψ(Ω, 5) = {{{1m, 1p, 2m
}, {2p, 3m

}}}.

Then the expectation of ξ̂i given reconfiguration r ∈ RP is

E

ξ̂i | r


=


ω∈ψ(r,i)

θ

|ω|


|r|
|ω|

 , (12)

since each segregating site that is present in i present-day lineages
must have occurred on the branch ancestral to the post-IBD
lineages represented by some ω ∈ ψ(r, i). The expected number
of mutations occurring on a branch subtending |ω| lineages is
θ/|ω|, and the expected fraction of such mutations that occur
on the branch ancestral to the lineages in ω is 1/


|r|
|ω|


, by

exchangeability. This gives the expectation of π̂ conditional on the
pedigree:

E

π̂ | P


=


r∈RP

E

π̂ | r


Pr(r | P)

=
1 n
2

 
R∈P

Pr(R | P)
n−1
i=1

i(n − i) E[ξ̂i | r]

=
θ n
2

 
r∈RP

Pr(r | P)
n−1
i=1

i(n − i)


ω∈ψ(r,i)

1

|ω|


|R|

|w|

 .
(13)

A third estimator of θ is ξ̂1, the number of singletons in the
sample. The conditional expectation of ξ̂1 given a pedigree P is

E

ξ̂1 | P


= θ


r∈RP

|ψ(r, 1)|
|RP |

Pr(r | P), (14)

since only those mutations that occur on lineages that have not
coalescedwith anyother lineages in the early pedigree canproduce
singletons.

To validate these calculations, we performed simulations of
200 loci sampled from individuals whose pedigree includes some
amount of overlap. The simulations confirm the calculated biases
for the different estimators of θ (Fig. S3).

Appendix B. Pedigrees and biased estimators ofM

In a constant-sized structured populationwith two demes and a
constant rate ofmigrationM = 4Nm between demes, the expected
within-deme and between-deme pairwise coalescence times are

E[Tw] = 2 (15)
E[Tb] = 2 + 1/M. (16)

Let πw and πb be the within-deme and between-deme mean
pairwise diversity, respectively. Since E[πw] = θ E[Tw] and
E[πb] = θ E[Tb], one estimator ofM is

M̂ =
π̂w

2(π̂b − π̂w)
. (17)

If some individuals in the sample have recent migrant ancestry,
M̂ will be biased. In general it is not possible to calculate E[M̂], but
it can be approximated by

E[M̂] ≈
E[π̂w]

2(E[π̂b] − E[π̂w])
. (18)
We sample two sequences from each of n1 individuals from
deme 1 and n2 individuals from deme 2, defining n = n1 + n2
as the total (diploid) sample size. The sample is again indexed by
In = {1m, 1p, . . . , nm, np

}, and we assume that the first 2n1 of
these indices correspond to sequences sampled from deme 1 and
the last 2n2 from deme 2.

In the context of a two-deme population, each group in the
partitioned sample r ∈ RP is labeled 1 or 2 to indicate which
deme the lineage is found in after segregation back in time through
the recent sample pedigree. For two-deme reconfiguration r , let
d(r, i, j), i, j ∈ {1, 2}, be a function that gives the number of
lineages originally sampled from deme i that are found in deme
j after segregation through the recent sample pedigree.

Assume that the recent sample pedigree contains migration
events but no overlap. In this case, we can write the expectations
of π̂w and π̂b conditional on reconfiguration r as

E

π̂w | r


=

1
2n1
2


+


2n2
2

θ E[Tw]

2
i=1


d(r, i, i)

2


+ θ E[Tb] (d(r, 1, 1)d(r, 1, 2)

+ d(r, 2, 2)d(r, 2, 1))


(19)

and

E

π̂b | r


=

1
4n1n2


θ E[Tb]


d(r, 1, 1)d(r, 2, 2)

+ d(r, 1, 2)d(r, 2, 1)

+ θ E[Tw]

× (d(r, 1, 2)d(r, 2, 2)+ d(r, 2, 1)d(r, 1, 1))

. (20)

The approximate expectation of M̂ conditional on a pedigree P
can be calculated using (19) and (20) together with

E[π̂w | P] =


r∈RP

E[π̂w | r] Pr(r | P)

and

E[π̂b | P] =


r∈RP

E[π̂b | r] Pr(r | P).

Simulations of infinite-sites loci taken from samples with a single
migrant ancestor confirm these calculations (Fig. S4). This method
of approximating E[M̂ | P] could be extended to accommodate
recent sample pedigrees that contain both shared ancestry and
migration, but we do not pursue this here.

Appendix C. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2017.01.004.
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