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INTRODUCTION 
 
The story of population genetics begins with the publication of Darwin’s Origin of 
Species and the tension which followed concerning the nature of inheritance.  Today, 
workers in this field aim to understand the forces that produce and maintain genetic 
variation within and between species.  For this we use the most direct kind of genetic 
data: DNA sequences, even entire genomes.  Our “Great Obsession” with explaining 
genetic variation (Gillespie, 2004a) can be traced back to Darwin’s recognition that 
natural selection can occur only if individuals of a species vary, and this variation is 
heritable.  Darwin might have been surprised that the importance of natural selection in 
shaping variation at the molecular level would be de-emphasized, beginning in the late 
1960s, by scientists who readily accepted the fact and importance of his theory (Kimura, 
1983).  The motivation behind this chapter is the possible demise of this Neutral Theory 
of Molecular Evolution, which a growing number of population geneticists feel must 
follow recent observations of genetic variation within and between species.   

One hundred fifty years after the publication of the Origin, we are struggling to 
fully incorporate natural selection into the modern, genealogical models of population 
genetics.  The main goal of this chapter is to present the mathematical models that have 
been used to describe the effects of positive selective sweeps on genetic variation, as 
mediated by gene genealogies, or coalescent trees.  Background material, comprised of 
population genetic theory and simulation results, is provided in order to facilitate an 
understanding of these models.  A strong thread running throughout is the use of 
population genetic data to draw conclusions broadly about the process of evolution, and 
the shifting ideas about the causes of evolution that have characterized the field at various 
times, as our ability to sample genetic data has improved.   
 
THEORETICAL POPULATION GENETICS 
 
Provine (1971) described the birth of theoretical population genetics, which originated 
with Darwin and culminated in the great works of Fisher, Wright and Haldane.  The latter 
three luminaries established the fundamental dynamics of genetic evolution, of changes 
in allele frequencies through the interaction of mutation, selection and random genetic 
drift.  The term ‘random genetic drift’ always requires explanation: it is the stochastic 
side of evolution, which results from the random transmission of genetic material from 
one generation to the next in a population due to Mendelian segregation and assortment, 
as well as the partially unpredictable processes of survival and reproduction.  The 
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founding works of this field (Fisher, 1918, 1930; Wright, 1931; Haldane, 1932) remain a 
crucial part of any advanced education in evolutionary biology.     
 Relevant aspects of the genetic evolution are reviewed below, but one early result 
deserves to be mentioned here.  Consider the probability of fixation of a new mutant 
allele under the influence of positive natural selection.  Initially, every individual has 
genotype A1A1.  A mutation produces a new allele, A2, which gives its carriers an 
advantage.  If A1A2 individuals have an average of 1+s offspring and A2A2 individuals an 
average of 1+2s offspring, relative to A1A1 individuals, then the probability that the new 
mutant allele A2 goes extinct is approximately 1–2s.  This result holds when s is small 
relative to 1 and the population size, N, is very large (Ns>>1).  It can be derived using a 
branching process model, in which each A2 allele has a Poisson number of descendants 
with mean 1+s each generation (Haldane, 1927; Fisher, 1922, 1930) and it can also be 
obtained using diffusion theory (see below).  The probability of fixation is the probability 
that eventually the entire population will have genotype A2A2.  In a finite population this 
is equal to one minus the probability of extinction, in this case 2s, which is small.  One 
cannot help but marvel at the possible implications of this result: that the many important 
adaptations we observe in nature might first have gone extinct several times before they 
became successful and that many, possibly even better adaptations have not been 
observed at all because they were lost despite their selective advantage.  

It is remarkable that so much of what Fisher, Wright, and Haldane did in the 
1920s and 1930s is still relevant today, given that almost nothing was known at that time 
about the material bases of heredity, development, and ecology.  Although our current 
knowledge of development and ecology is still not sufficient to permit a full evolutionary 
theory—one that would include the richness between genotype and phenotype, and would 
extend to interactions between individuals and their environment—our modern 
understanding of genetics is quite detailed.  This has led to improvements of the models 
of population genetics, away from the simple A1, A2, etc., allelic models above, to models 
which include the structure of DNA, the various kinds of mutations, and, perhaps most 
importantly, recombination within, as well as between, genetic loci.  We may say with 
some confidence that we know the fundamental components of genetic evolution.  As 
Lynch (2007, p. 366) puts it: “Many embellishments have been added to the theory, and 
views have changed on the relative power of alternative evolutionary forces, but no 
keystone principle of population genetics has been overturned by an observation in 
molecular, cellular, or developmental biology.” 

The ‘modern synthesis’ of the mid-twentieth century was initiated in no small part 
by the early work of Fisher, Wright, and Haldane. It later involved the wide application 
of ideas from population genetics to explain the patterns of evolution  (Dobzhanshy, 
1937; Huxley, 1942; Mayr, 1963), although sometimes without the aid of the vital 
mathematical models of that field.  This period also saw the great development of 
mathematical theory, although largely in the absence of data about the genetic variation 
the theory purported to explain (Lewontin, 1974).  We can recognize two additional 
seminal figures of mathematical population genetics from the mid-twentieth century: 
Malécot and Kimura.  Among many important contributions (Nagylaki, 1989; Slatkin and 
Veuille, 2002), Malécot introduced the notion of following a pair of alleles backward in 
time to their common ancestor (Malécot, 1941, 1948).  This is the basic idea behind 
coalescent theory, which is discussed in detail below.  Kimura is best known for the 
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neutral theory of molecular evolution (Kimura, 1983), but his place in mathematical 
population genetics derives from his work on the diffusion theory of allele frequencies.     

 
DIFFUSION THEORY 

 
As the results of diffusion theory are used below and the assumptions of coalescent 
theory and diffusion theory are the same, a brief review of the basic concepts is given 
here.  See Ewens (1979, 2004) for an excellent and thorough treatment.    

Diffusion models approximate the dynamics of allele frequencies over time in 
large populations.  The discrete or exact models of population genetics typically imagine 
a diploid population of constant size N, in which time is measured in discrete units of 
generations.  The number of copies of an allele (e.g., the mutant A2 above) must, at any 
one time, be one of 2N+1 possible values: 0, 1, 2,…, 2N–1, 2N.  If there are k copies of 
an allele, then the frequency of that allele is p = k/(2N).  In a diffusion model, both time 
and allele frequency are measured continuously: p ∈ [0,1], and t ∈ [0,∞).  This is 
achieved by taking a limit of the dynamics, as N tends to infinity, with time rescaled so 
that one unit of time in the diffusion model corresponds to 2N generations in the discrete 
model.  Intuitively, when N is large, p may assume very many possible values, so there 
will be little error in measuring allele frequencies continuously.  Similarly, a single 
generation comprises a very small step when time is viewed on the scale of 2N 
generations.  Diffusion models allow the computation many quantities of interest (in 
order to make predictions, test hypotheses, and estimate parameters), while most discrete 
models are mathematically intractable.  

Discrete models differ in their assumptions about population demography and 
reproduction, and thus about the dynamics of genetic transmission from one generation to 
the next.  The Wright-Fisher model is the most commonly used (Fisher, 1930; Wright, 
1931), although the Moran model is employed often (Moran, 1962).  Besides tractability, 
another advantage of the diffusion approximation is that many different discrete models 
have the same diffusion limit.  Here, “the same” includes the possibility of a constant 
multiplier of the time scale, so that time is measured in units of 2Nc generations.  In the 
Wright-Fisher model, c = 1, and in the Moran model, c = 1/2, but the mathematical form 
of the diffusion equations is identical.  We say that the effective population size is Ne = 
cN diploid individuals (Ewens, 1982; Sjödin et al. 2005).  This means that we may use 
the diffusion approximation of the Wright-Fisher model to illustrate general features of 
the evolution of populations, knowing that if we replace N with Ne the results will be 
valid for other populations that do not conform to the overly simple Wright-Fisher model.   

A single effective population size may not exist, as in the case of two populations 
with little or no gene flow, or when the size of the population changes dramatically over 
time so that the time scale of the diffusion model would also have to change over time.  
In the interest of brevity and simplicity, populations which deviate so dramatically from 
the assumptions of the Wright-Fisher model will not be considered  here.   

On a per-generation basis, the rate of genetic drift, which is the rate at which the 
frequency of an allele will change, at random due to the vagaries of genetic transmission 
in a population, is equal to 1/(2N) in the Wright-Fisher model.  The per-generation effects 
of selection, mutation and recombination are captured in additional parameters, here 
denoted s, u, and r.  We saw the definition of s above, and we now define u and r to be 
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the probability of a mutation at a single nucleotide site and the probability of a 
recombination event between two adjacent nucleotide sites, respectively, between a 
parent and its offspring.  This simple statement of a model leaves our many potentially 
important things, such as possible variation in these parameters across a genome, among 
alleles, or through time, and we should add such details to the model later, as needed.  In 
the diffusion limit, where time is rescaled by 2N, random genetic drift has rate 1 and the 
strengths of selection, mutation and recombination are given by 2Ns, 2Nu, and 2Nr.   

By tradition, the population mutation parameter is defined as θ = 4Nu or twice the 
population rate of mutation on the diffusion time scale.  For consistency, in what follows, 
the population parameters for selection and recombination will be defined as σ = 4Ns and 
ρ = 4Nr.  Note, however, that both α and γ are frequently used in place of σ, and are 
often defined as 2Ns rather than 4Ns.    

Kimura’s (1955a,b) groundbreaking achievement was to obtain the probability 
density function of the frequency of an allele at any future time given its current 
frequency, at a single locus under the influence of natural selection and random genetic 
drift.  Again, it is impossible to make predictions of this sort under most discrete models, 
in particular the Wright-Fisher model.  Kimura’s result spurred much further work on 
diffusion theory, by himself and others, which is reviewed in Ewens (1979, 2004).  
  
NEUTRAL COALESCENT THEORY 
 
Kimura’s use of diffusion theory in the 1950s flowed out of his desire to explore the 
dynamics of genetic drift, which Wright had promoted as having a dramatic role in 
evolution.  In the 1960s, the focus of population genetics shifted to explaining the new 
observations of protein-sequence divergence between species and allozyme variation 
within species (Zuckerkandl and Pauling, 1965; Harris, 1966; Lewontin and Hubby, 
1966).  These and subsequent data caused a dramatic shift in thinking about the role of 
natural selection, with Kimura and others (Kimura, 1968; King and Jukes, 1969) 
suggesting a predominant role for neutral mutations in evolution at the molecular level.  
Later, this concept was greatly expanded by Ohta (1973, 1992) to include weakly 
selected, or ‘nearly neutral’ mutations.   By emphasizing random genetic drift, the new 
theories did seem to provide a simple explanation for the observations of the day: that 
molecular differences between species accumulate surprisingly linearly with time and 
that natural populations harbor tremendous amounts of genetic variation.   

Previously, with little data available, population geneticists had formed two 
opposing selectionist camps: the ‘classical’ and ‘balance’ schools (Dobzhansky, 1955).  
Lewontin (1974) provides a clear analysis of how these gave way to the neutral theory 
when faced with explaining high observed levels of polymorphism and divergence, and 
Crow (2008) recounts the arguments from the key perspective of someone whose career 
spanned this and other controversies.  Lewontin (1974) argued against an unbridled focus 
on neutrality.  He suggested the term ‘neoclassical theory’ because, although a 
shockingly large fraction of the functional differences at the molecular level might be 
invisible to selection, still most mutations are disadvantageous and some or all 
adaptations must be driven by natural selection.  Kimura recognized these points in his 
concept of the neutral theory: he was ready to accept that approximately 10% of amino 
acid substitutions between species could be driven by positive selection (see Ohta and 
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Kimura, 1971), and that 85-95% of non-synonymous, or amino-acid-changing, mutations 
are substantially deleterious (see pp. 206-210 in Kimura, 1983).     

If we wish to infer the action of natural selection, then neutrality is the appropriate 
null hypothesis.  Mathematical models soon began to include the assumption that all 
genetic variation was neutral.  Importantly, they also included increasingly refined 
assumptions about the mutation-structure of variation, in an effort to be appropriate to the 
data at hand (Ewens, 1972; Ohta and Kimura, 1973, Moran, 1975; Watterson, 1975).  It 
seems inevitable in hindsight that this would lead to the consideration of the 
mathematical structure of ancestral relationships among sampled alleles, or gene 
genealogies.  For example, the famous Ewens sampling formula (Ewens, 1972; Karlin 
and McGregor, 1972) clearly has the fundamental structure of gene genealogies under 
neutrality embedded in it; see Hobolth et al. (2008) and section 3 of Kingman (1982a).  
However, a major shift in orientation was required: from the prospective view of classical 
population genetics to the retrospective view of coalescent theory (Ewens, 1990).     

The paper by Watterson (1975) is the earliest in which gene genealogies and their 
relationship to genetic data are easily recognizable.  Remarkably, if all variation is 
selectively neutral, it is possible to model just the ancestors of the sample, and ignore the 
other members of the population.  Figure 1 shows a hypothetical gene genealogy, or 
coalescent tree, for a sample of size n = 6.  It is a binary tree which traces the ancestral 
lines of the sample back (up) to their most recent common ancestor.  Time is measured 
by vertical distance.   The nodes in the tree represent coalescent events, where a pair of 
ancestral lines reaches a common ancestor.  Each branch in the tree depicts all of the 
genetic ancestors of particular members of the sample.  Therefore, any polymorphisms in 
the data must be due to mutations along the branches.  Watterson used this idea to derive 
the expectation and variance of the number of polymorphic nucleotide sites in a sample at 
a locus that does not undergo recombination.   

The coalescent and the diffusion are inextricably related as dual processes; for 
mathematical details, see Möhle (1999).  Under identical assumptions to those made in 
diffusion theory, but for the moment without selection or recombination, each pair of 
ancestral lines coalesces independently with rate equal to one.  In the Wright-Fisher 
model, this corresponds to their being a probability 1/(2N), in each generation looking 
back, that two alleles descend from a common ancestral allele.  In considering the limit 
N→∞, the sample size n is treated as a (finite) constant, and this is the reason that all 
coalescent events occur between pairs of alleles rather than larger numbers. 

Because every pair of ancestral lines coalesces with rate equal to one, neutral gene 
genealogies are random-joining trees and the time, Ti, during which there exist exactly i 
lines ancestral to the sample is exponentially distributed with mean 2/(i(i-1)), which is the 
inverse of the number of possible pairs of i lines.  As a result, T2 tends to be the longest 
coalescent interval, comprising about half of the time to the most recent common 
ancestor (TMRCA = Tn + Tn-1 +…+ T2).  The gene genealogy in Figure 1 is drawn with the 
times, Ti, equal to their expected values.  On the coalescent or diffusion time scale, the 
expected value of TMRCA is equal to   

 

! 
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This can be translated into Wright-Fisher-model generations by multiplying by 2N.  For 
large samples it converges to 4N generations, which is not unexpected because this is also 
the expected fixation time for an allele from forward-time diffusion theory without 
selection (Kimura and Ohta, 1969).  With a choice of mutation model, this standard 
coalescent is an efficient way of predicting patterns of neutral variation.  In modeling or 
simulation, we simply generate the tree and the times, then place mutations randomly 
along each branch with rate θ/2 per site.  

Kingman (1982a,b) gave the mathematical proof of the coalescent process.  
Independently, biologists were introduced to the theory of gene genealogies and their 
biological relevance by Hudson (1983a, 1990) and Tajima (1983).  Tavaré (1984) helped 
bridge the gap between the biological and the mathematical, and between diffusion 
theory and coalescent theory.  Hudson also studied the effects of recombination, and 
described how to simulate gene genealogies both with and without recombination 
(Hudson, 1983a, 1983b, 2002).  Recombination complicates the coalescent process 
substantially, but is difficult to brush aside because the per-site rates of mutation and 
recombination (θ and ρ) appear to be of the same order of magnitude in many species.  
Table 4.1 in Lynch (2007) gives examples.  Thus, a growing number of neutral 
coalescent approaches to inference take recombination into account; for example, see 
Becquet and Przeworksi (2009).  When natural selection is added to the coalescent, it 
becomes absolutely critical to include recombination.  

 Coalescent theory is best known today for having produced a repertoire of tools 
for statistical inference under the assumption that genetic ‘markers’ (i.e. polymorphisms) 
are neutral.  In the 1980s, this was fueled by the remarkable utility of uni-parentally 
inherited, non-recombining animal mitochondrial DNA for uncovering plausible histories 
of population expansions and contractions, and complex patterns of geographic 
subdivision, in many different species (Avise et al., 1987).  Appropriate statistical 
machinery was developed, and work flourished after the introduction of Markov chain 
Monte Carlo, importance sampling, and Bayesian approaches in computational methods 
of coalescent-based inference.  Stephens and Donnelly (2000), Marjoram and Tavavré 
(2006), and Felsenstein (2007) together give a comprehensive review of methods. 
Estimates made using these tools are sensible enough that they have contributed to broad 
debates about ancient processes and events; for example, see Hey (2005).     
 

GENOMIC DATA AND THE MODELING RESPONSE 
 

The continued development of technologies for measuring genetic variation after 
the 1960’s—from restriction-enzyme digests of mitochondrial DNA (Avise et al. 1979; 
Brown, 1980), to early DNA sequence data (Aquadro and Greenberg, 1983; Kreitman, 
1983)—has led us to the massive contemporary genome-sequencing efforts, such as the 
1000 Genomes Project and the Personal Genome Project.  As new data are gathered, 
paradigms are questioned.  At present, genomic polymorphism and divergence data from 
a growing number of taxa suggest staggering amounts of positive selection.  For example, 
Hahn (2008) cites estimates from Drosophila melanogaster and D. simulans that 30% to 
94% of amino acid substitutions between species have been driven by positive selection.  
Halligan et al. (2010) put this figure at 57% for substitutions between the mouse Mus 
musculus castaneus and the rat Mus famulus.  Large fractions of positively selected 
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substitutions (~50%) have also been reported for non-coding regions in Drosophila 
(Begun et al., 2007).  These dramatic observations do not seem to extend to some other 
well studied species, in particular Arabidopsis (Bustamante et al., 2002) and humans.  
Sella et al. (2009) summarize a number of studies of humans, and conclude that ~10% of 
amino acid substitutions have been driven by positive selection.  

The latter figure (~10%) is remarkably similar to the initial estimate that was 
considered broadly consistent with the neutral theory (Ohta and Kimura, 1971; Kimura, 
1983).  As Lewontin (1974) pointed out, the discovery that some genetic loci have been 
the targets of selection does not invalidate the neoclassical view.  In addition, Thornton et 
al. (2007) and Jensen (2009) caution against drawing strong conclusions based on current 
methodologies and data.  Still, Hahn (2008) argues that a new theory is required, one in 
which selection plays the major role, and Sella et al. (2009) agree that at least some parts 
of the neutral, or neolcassical, theory are in dire need of an overhaul.   
 One major tenet of population genetics, which sits at the base of neutral theory, is 
clearly not in question: a large fraction of mutations alter function so ruinously that they 
are extremely unlikely to be observed, either as substitutions between species or as 
polymorphisms within species.  In fact, one of the principal methods of estimating the 
fraction of positively selected amino acid changes (Smith and Eyre-Walker, 2002) is to 
use the ratio of non-synonymous to synonymous polymorphisms within species to set a 
low baseline expectation for the ratio of non-synonymous to synonymous substitutions 
between species.  Positively selected amino acid changes may then be uncovered, by an 
“excess” of non-synonymous substitutions, even if the number of non-synonymous 
substitutions per site is much smaller than the number of synonymous substitutions per 
site.  Such considerations lead to sophisticated yet tractable statistical approaches to 
estimating selection in the case where sites may be assumed independent of one another 
(Sawyer and Hartl, 1992; Sawyer et al., 2003).  
 Positive natural selection for adaptive traits has been the primary source of 
excitement among workers studying the genomic effects of selection.  In addition to 
estimating the overall prevalence of positive selection, effort has focused on identifying 
recently selected loci.  This is possible because the fixation of an advantageous allele at 
one locus affects loci nearby, in a phenomenon is known as genetic ‘hitch-hiking’ 
(Maynard Smith and Haigh, 1974; Kaplan et al. 1989).  The primary signal of this is a 
reduction in variation around the site of selection, but a number of subtler effects occur as 
well (Nielsen, 2005).  The term ‘selective sweep’ is used loosely to mean the fixation of a 
positively selected allele or the attendant reduction in variation.  Thornton et al. (2007) 
review genomic scans for recent selective sweeps in Drosophila, which have identified 
large numbers loci.  In humans, Williamson et al. (2007) suggest that recent hitch-hiking 
affects 10% of sites in the genome.  Although demographic factors can lead to false 
positive inferences of selection (Thornton et al., 2007), and divergence data and 
polymorphism data give rather different estimates of the prevalence of selection (Jensen, 
2009), these recent findings motivate the development of coalescent approaches to 
modeling selective sweeps.  
 
SELECTION AND GENETIC DRIFT FORWARD IN TIME 
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The models of population genetics are often based on diffusion approximations, but are 
the assumptions of diffusion theory reasonable for loci undergoing positive selective 
sweeps?  Diffusion theory assumes that s, u, and r are very small and N is very large.  
Formally, the limit N→∞ is taken with σ = 4Ns , θ = 4Nu, and ρ = 4Nr held constant. 
However, simulations show that many results of diffusion theory are very accurate for 
moderate values of the discrete-model parameters, such as N = 100 and s = 0.01.  The 
occurrence of a sweep implies that selection is strong in some sense, so we ask more 
specifically whether it is reasonable to use a model in which s is assumed to be much less 
than one.  Estimates from recent selective sweeps suggest that the answer is yes.  One 
example, not from Drosophila but from deer mice, was reported recently by Linnen et al. 
(2009).  They estimated s = 0.0056 for a recently swept allele affecting pelage color of 
mice in the Nebraska Sand Hills.  This is similar to the larger estimates for swept loci in 
Drosophila (Thornton et al., 2007; Sella et al., 2009), so assuming small s appears safe.  
Still, a sweep certainly indicates that selection has overwhelmed random genetic drift.  In 
the diffusion model, this occurs when σ is large.  Estimates of σ for swept loci in 
Drosophila range from values in the tens to values in the thousands (Thornton et al., 
2007; Sella et al., 2009).  In sum, the diffusion with large σ appears to be good starting 
point for modeling selective sweeps.   

Note that there is an entirely different diffusion model in population genetics 
(Norman, 1975), which may be more appropriate for large σ.  Unfortunately, few results 
are available for this “Gaussian” diffusion model, and we will not pursue it further.  
Ewens (1979, 2004) points out that the Gaussian diffusion and the standard one should 
overlap for certain parameter values (i.e. large values of σ), and this is illustrated for 
strong balancing selection and mutation in Wakeley and Sargsyan (2009).  

We will define a sweep as the event that a positively selected allele, which starts 
in frequency 1/(2N) as a new mutation, reaches frequency 1, or fixes in the population.  
For simplicity, we will also assume that all parameters are constant over time (but see 
below).  Diffusion theory can tell us about the distribution of trajectories the allele will 
take on its way to fixation.  Knowing this distribution is helpful because many things we 
are interested in are functions of the allele-frequency trajectory.  For example, the 
average duration of the sweep is identical to the expected value of the length of the 
trajectory.  Other quantities, such as the probability of coalescence during a sweep or the 
chance of observing a sweep in a sample of genetic data, also depend on the 
characteristics of allele-frequency trajectories.   

To illustrate the simplest dynamics of genetic evolution, and with the emerging 
estimates from Drosophila and humans as a backdrop, let us imagine a locus comprised 
of a single ‘advantageous’ site, 1000 ‘deleterious’ sites, and 1000 ‘neutral’ sites.  For 
humans, estimates of θ are on the order of 0.001 and estimates of the effective population 
size are on the order of 10000.  Thus, we will use a Wright-Fisher model with N = 104 
and u = 2.5×10-8 for our “humans.”  Then, the total rates of mutation are θa = 0.001 for 
‘advantageous’ sites and θd = θn = 1.0 (i.e., 1000×0.001) for ‘deleterious’ and ‘neutral’ 
sites.  Let us also assume fairly strong selection, in particular σa = 100 and σd = –100.  
With N = 104, this corresponds to s = 0.0025 for advantageous and deleterious 
mutants.  Of course, we have σn = 0.  Estimates of θ for Drosophila are somewhat more 
than an order of magnitude greater than those for humans.  For computational efficiency, 
let us get our “Drosophila” parameters simply by multiplying the “human” diffusion-
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scale parameters by ten, so that θa = 0.01, θd = θn = 10.0,  σa = 1000, and σd = –1000.  In 
the simulations presented below, this is realized by using the same per-generation 
parameters as for humans, but with N = 105 instead of  N = 104.   

This idealized model will serve to generate intuition about selective sweeps and 
the relative magnitudes of the processes involved.  In relation to the estimates of rates of 
adaptive substitution in humans and Drosophila, with these parameters, our model 
predicts that ~9% of substitutions will be driven by positive selection in “humans” and 
~50% of substitutions will be driven by positive selection in “Drosophila.”  These 
percentages are derived, in the usual way, by multiplying the per-generation rates of 
introduction each type of mutation (θd/2, θn/2, θa/2) by their probabilities of fixation from 
diffusion theory,  
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Note that this is the standard result, which is sufficient for our purposes, and does not 
include the s→s/(1+s) correction suggested by Bürger and Ewens (1995).   

For our “humans,” we have P(fix) approximately equal to 5×10-3, 5×10-5, and 
1.9×10-46 for advantageous, neutral, and deleterious mutations, respectively.  For our 
“Drosophila” model, the corresponding values are 5×10-3, 5×10-6, and 2.5×10-437.  Note 
that when σ = 4Ns is large and s is small, as is true here, the second case in the equation 
above gives P(fix) ≈ 2s, which is the classical population genetic result we saw earlier.  
The probabilities of fixation of advantageous mutants are thus the same for our “humans” 
and our “Drosophila,” while the probabilities for neutral mutants differ by a factor of ten 
due to the difference in population size. In both cases deleterious mutations are 
exceedingly unlikely to fix.   
 Figure 2 shows the trajectories of advantageous alleles in simulations of our 
“humans” (Figure 2A,B) and “Drosophila” (Figure 2C,D).  First, a large number of 
trajectories was simulated, from the introduction of a mutant in a single copy until the 
mutant either fixed or went extinct. Then, the origination times of the mutations were 
generated using the per-generation population rates of advantageous mutation, θa/2.  
Thus, these simulations are of independent trajectories; they do not take interference 
between alleles into account.  This is reasonable for “humans” because successful sweeps 
are fairly well separated in time (2A) and alleles go extinct quickly when sweeps fail 
(2B), and does not invalidate the qualitative points we will draw from the figure as a 
whole.  Simulations of each trajectory were done according to the discrete Wright-Fisher 
model, with the parameters above.  
 Before looking in detail at Figure 2, note that our model and simulations follow 
the fairly common convention of using one-locus, two-allele dynamics to portray a 
situation which is probably much more complicated.  For example, we have assumed that 
every mutation at the ‘advantageous’ site has selection parameter σa.  Recalling our 
classical A1/A2 model, this would be realized if the average number of offspring of A2A2 is 
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mysteriously reset from 1+2s to back 1 at the conclusion of the sweep, and the next 
mutation again has selection coefficient s.  We have also assumed that the strength of 
selection is constant over time, which might not be realistic even within a single sweep.  
Gillespie has shown repeatedly (e.g., Gillespie, 1991, 2004b) that key features of the 
dynamics of fully specified, multi-allele models, in which selection parameters differ 
among alleles and may change over time, are simply not captured using two-allele 
approaches, and has further argued that these shortcomings are fatal to neutral-theory 
explanations of the molecular evolution.  For us they are of somewhat less concern 
because our focus is the much shorter time scale of single sweeps.   
 Figure 2 shows the frequency trajectories of advantageous alleles over a period of 
time during which we expect 1000 advantageous mutations to occur.  Sweeps appear as 
nearly vertical curves, in which the frequency (x) of an allele rises quickly from 1/(2N) to 
1. Because the probability of fixation is ~5×10-3 in both “humans” and “Drosophila”, we 
expect about five selective sweeps in each.  This is exactly what was observed in these 
particular simulations, but just by chance: in both cases the number of sweeps is Poisson 
distributed with mean ~5.  The time it takes to observe 1000 advantageous mutations is 
ten times shorter in “Drosophila” than in “humans” because the rate of introduction of 
advantageous mutations (θa/2) is ten times greater.  If we ran our “Drosophila” 
simulations over 2×106 generations, as we did for “humans,” we would expect to see 50 
sweeps.  Time in Figure 2 is measured in generations, and accordingly the panels for 
“Drosophila” (C,D) are one tenth the length of the panels for “humans” (A,B).     
 Panels A and C display the entire range of frequencies, and on this scale only a 
handful of the trajectories are visible.  At our hypothetical locus, with its one positively 
selected site, we expect one advantageous mutation to occur about every 2000 
generations in “humans” and one about every 200 generations in “Drosophila.”  Even 
focusing on much smaller frequencies, as in panels B and D, the trajectories of most 
alleles are difficult to see.  Recall than only ~5×10-3 of advantageous mutations will 
sweep to fixation.  The other ~99.5% of them go extinct, and they do so very quickly, 
without ever reaching substantial frequencies.  The trajectories of the deleterious alleles 
at our loci are not shown.  For our values of σd (–100 and –1000), deleterious alleles will 
essentially never fix in the population.  They enter the population and may drift to 
frequencies of 1% or so, but then are lost.  

Within our “humans,” advantageous and deleterious mutations will not typically 
have much effect on levels of neutral polymorphism.  Either they will never reach 
appreciable frequencies or they will sweep quickly through the population and only rarely 
be observed.  Sweeps in our “humans” occur on average only every 400,000 generations 
while the effective population size, which sets the average time for neutral variation to 
reach equilibrium levels, is only 10,000.  The situation is rather different for our 
“Drosophila,” in which sweeps occur at the locus every 40,000 generations and the 
effective population size is 100,000.   In this case, we expect sweeps to greatly affect 
levels and patterns of neutral polymorphism. 

Methods of inference of selective sweeps often assume that the population has 
been sampled just at the end of the sweep.  In applications this needs to be justified, 
because, a priori, the time back to the last sweep is unknown.  In our model it would be 
roughly exponentially distributed with mean (P(fix)θa/2)-1.  Sweeps appear to go to 
completion almost instantaneously on the time scale in Figure 2.  However, by traveling 
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back to the end of the last sweep that occurred in each case, and changing the time scale, 
we can see the shape of sweeps.  Figure 3 shows this for “humans” (panel A) and 
“Drosophila” (panel B), with the time scale given in the coalescent or diffusion units of 
2N generations.  In both cases, the total range is 0.5 on the new time scale, which is 
equivalent to N generations (10,000 for “humans” and 100,000 for “Drosophila”).  Also, 
time now flows from the moment the population is sampled back into the past, as is the 
custom in coalescent modeling.  In contrast to Figure 2, only those trajectories that went 
to fixation are shown in Figure 3.  
 Figure 3 illustrates that sweeps tend to follow sigmoidal trajectories, with allele 
frequencies changing relatively slowly when x(t) is close to 0 or 1, but moving rapidly 
through the middle frequencies.  With time measured in units of 2N generations, more 
strongly favored alleles will sweep more quickly through the population (σa = 100 in A 
versus σa = 1000 in B).  In addition, in species like our “Drosophila” shown in Figure 
3B, the rate of occurrence of selective sweeps might be such that several will have 
happened in the recent ancestry of a locus under study.  We can recall the results of 
neutral coalescent theory, that the average time back to the common ancestor for a 
sample of size n = 2 is equal to 1 (i.e. 2N generations) and the average time to the most 
recent common ancestor of all members of a large sample is ~2 (i.e. ~4N generations).  

The standard diffusion model, with large σ, allows us to quantify these 
observations.  A fundamental result of diffusion theory in population genetics, due to 
Ewens (1963, 1964), concerns the average time that an allele, which begins in frequency 
p and sweeps through the population, spends at each frequency x on its way to fixation.  
The function, called 
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(x;p)  and given as equation 5.52 in Ewens (1979) or 5.53 in 

Ewens (2004), has the interpretation that    
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is the average amount of time, on the diffusion time scale, that the allele frequency 
spends in the interval (x1,x2) before the allele fixes in the population.  Integrating over the 
entire frequency range gives the expected total sweep time of a new mutant.  When σ is 
large, this may be approximated as  
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The symbol γ above is Euler’s constant (approximately 0.5772). Note that s in Ewens 
(1979, 2004) is equivalent to our 2s, so α = 2Ns in Ewens is equivalent to our σ.  The 
equation above gives ~0.2 for the fixation time when σ = 100, and ~0.03 when σ = 1000, 
and these match the simulation results very well (e.g. see Figure 3).  
 Although this particular result for the fixation time of an strongly advantageous 
allele starting from a single copy seems to have appeared in the literature only recently 
(Hermisson and Pennings 2005; Etheridge et al. 2006; Hermisson and Pfaffelhuber 
2008), it illustrates something that has been known for several decades.  That is, 
deterministic equations for allele-frequency trajectories can drastically overestimate the 
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amount of time an allele will spend in small frequencies (e.g., Ewens (1979) page 149).  
If an advantageous alleleis going to sweep to fixation, it must move away from the 
boundary (x=0) faster than the deterministic equations predict.  Still, it is not uncommon 
to see deterministic results and methods used in this context in the biological literature.  
The deterministic model (e.g., 1.28 in Ewens (1979) but with our s) gives  
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for the fixation time, in generations.  This appears in many publications.  It may be 
compared to the diffusion result above by multiplying tfix by 2N and rearranging:  
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Recall that log(a) < 0 when 0 < a < 1, and tends to negative infinity as a tends to zero.  
Even if σ is large, it might not be reasonable to assume that log(2N) is much greater than 
both –log(2s) and γ.  For any values of s we are likely to consider, the deterministic result 
will overestimate the diffusion result.  In our “humans,” the diffusion result gives 4146 
generations, while the deterministic result gives 7923 generations.  For “Drosophila,” the 
corresponding numbers are 5988 generations and 9765 generations.   
 The fact that allele-frequency trajectories are sigmoidal is key to understanding 
coalescent models of selective sweeps because the rates of events in the ancestry of a 
sample depend on the allele frequencies.  As a final point about diffusion models of 
sweeps before turning to coalescent models, Etheridge et al. (2006) have recently 
obtained the very interesting result that as σ grows, the fraction of the time that the allele 
spends the ‘middle frequencies’ becomes negligible; see their Lemma 3.1 and note that 
their α is our σ/2.  Specifically, the time spent going from frequency ε to 1–ε  becomes 
negligible, for any 0 < ε < 1, so that the allele ultimately spends half of tfix in the interval 
(0,ε) and the other half in the interval (1-ε,1).  Because of this, it is possible to make 
some detailed calculations concerning the approximate behavior of coalescent process 
during selective sweeps when σ is large (Etheridge et al., 2006). 
 Our investigation of coalescent models with selection will be drawn upon these 
results from diffusion theory.  We will focus on selective sweeps, in particular the effect 
these have on ancestral processes at nearby neutral loci.  It seems increasingly clear that 
the hitch-hiking effect studied by Maynard Smith and Haigh (1974), which reduces 
polymorphism levels around the site of a sweep, has affected many loci.  For example, 
based on data from humans, Sabeti et al. (2007) listed 22 regions in the human genome 
where selection appears to have decreased polymorphism over spans of 0.2 to 3.5 Mb, at 
least in some populations.  Kimura (1983) did not cite Maynard Smith and Haigh (1974) 
and yet he accepted the estimate that roughly 10% of substitutions might be driven by 
positive selection (Ohta and Kimura, 1971).  This is roughly what our “human” model 
predicts.  On the one hand, it is true that polymorphism levels at our “human” locus 
should not typically deviate from neutral predictions, because sweeps will occur only 
about once every 20×2N generations.  Using the diffusion result for tfix, with σ = 100, the 
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chance of catching a sweep in progress is only about 1%.  On the other hand, if a large 
number of loci are surveyed, we should not be surprised to find several that have recently 
been affected by sweep.  It is these loci that current genome-wide scans for selection may 
uncover, and coalescent models are being developed to aid both in their identification and 
to make estimates of the strength and timing of selection.  
 
COALESCENT MODELS WITH SELECTION 
 
When selection operates, for example with two alleles A1 and A2, then the population is 
structured by allelic type such that the average number of offspring of genetic lineages 
labeled A1 differs from that of lineages labeled A2.  In order to model the genetic ancestry 
of a sample, we need to keep track of these labels.  Here we will review three different 
approaches to this problem, guided by our concern for selective sweeps.  A fourth 
coalescent approach to selection, the ancestral selection graph (Krone and Neuhauser, 
1997; Neuhauser and Krone, 1997), will not be reviewed because it has not been 
extended to apply to selective sweeps.  Hitch-hiking will be a key phenomenon in our 
investigations: neutral genetic markers contain information about past histories of 
selection just as they do about other demographic processes and events.  The fact that 
strongly selected adaptive substitutions have probably occurred at a small minority of 
sites in the genome means that the bulk of signals of selection will be in patterns linked 
variation.  Recombination is the process that modulates the effect of linkage, so 
recombination is fundamental in what follows.   
 
The Structured Coalescent Approach 
 
Hudson and Kaplan (1986) showed how conditioning on the allelic types of a sample 
alters the coalescent process, in a way that is similar to the effect of geographic stucture 
and migration.  Two lineages with the same allelic type may coalesce, but two lineages 
with different types must wait for mutation to change the type of one or the other.  
Kaplan et al. (1988) applied this idea to a locus under selection, showing that rates of 
coalescence and mutation in the ancestral process depend on the frequencies of the two 
alleles.  Hudson and Kaplan (1988) extended the model to describe the coalescent process 
at a linked neutral locus, conditional on the frequency trajectory at the selected locus.  
Darden et al. (1989) described the joint process of coalescence at the linked neutral locus 
and changes in allele frequencies at the selected locus by the standard diffusion.  Barton 
et al. (2004) investigated this model more rigorously, and found boundary conditions 
necessary to allow analytical work.  Kaplan et al. (1989) considered the specific 
application of this approach to a strong selective sweep and the effect this has on 
variation at the linked neutral locus.   

This structured coalescent approach has led to a number of useful simulation 
methods (Slatkin, 2001; Kim and Stephan, 2002; Przeworski, 2003; Coop and Griffiths, 
2004)., in which an allele-frequency trajectory is generated, then the structured coalescent 
process is run conditional on the trajectory.  A main goal in developing these simulations 
is to devise methods of estimating the characteristics of sweeps, such as the selection 
parameter σ and the time the last sweep began.  Kim and Wiehe (2009) review the issues 
and available software.  
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A key feature of the structured coalescent approach to selection is that the rate of 
coalescence within an allelic class depends inversely on the allele frequency.  Consider 
our selectively favored allele A2, whose frequency is x(t) at time t in the past, measured in 
units of 2N generations.  If there are i ancestral lineages of type A2, then the rate of 
coalescence between any pair of them is 1/x(t), and the total rate is   
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If x(t) = 1, the rate is, rightly, the same as in the standard neutral coalescent.  However, if 
x(t) < 1, then the rate is greater than in the standard neutral coalescent.  The reason for 
this is that, when x(t) is smaller, there are fewer possible parents of the i lineages, so the 
probability of a common ancestor in a single generation is larger.  The same notion 
applies to lineages that possess the A1 label, but with 1–x(t) instead of x(t). 

In considering the effects of linkage, we imagine a site or locus B that sits at a 
distance m from the selected locus A.  Let m be in units of base pairs and the total scaled 
rate of recombination be  
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where ρ is the per-site rate of recombination we defined before.  Recall that ρ = 4Nr, and 
that ρ/2 is the rate of recombination between two adjacent base pairs on the coalescent 
time scale.  In defining ρ* as the product mρ, we have implicitly assumed that m is small 
enough that we can ignore interference between cross-over events.  Note also that, since 
(by assumption) variation at locus B is neutral, we do not yet need to specify allelic types 
at this locus.  Rather, we can use the convenient coalescent technique, discussed above, 
of modeling the genealogical and mutational processes separately.   

Each of the members of a sample of size n taken at the B locus will be linked 
either to an A1 allele or to an A2 allele at the selected locus, and the same is true of the 
ancestral lineages of the sample.  It is this linkage that makes the ancestry at the B locus 
differ from the predictions of the standard neutral coalescent.  Thus, in modeling the 
ancestry of the B-locus sample, the appropriate label for each B-locus lineage is the 
allelic type at the A locus, to which it is linked.   

If i B-locus lineages are linked to A2 alleles, then the rate of coalescence between 
each pair is 1/x(t) and the total rate is identical to the total rate for the A locus given 
above.  This will be true as long as m is not too large, as it neglects the possibility that 
both recombination and coalescence occur in a single generation.  Crucially, B-locus 
lineages can switch labels as we follow them back in time.  This occurs when a lineage 
ancestral to the sample was the product of a recombination event in an individual who 
was heterozygous at the A-locus.  If i B-locus lineages are linked to A2 alleles, then the 
total rate of this type of event at time t in the ancestral process is  
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with ρ* as defined above.  If an event of this type occurs, one of the B-locus lineages 
switches types at the A locus (from A2 to A1).  To explain the equation above, each of the 
i lineages hits a recombination event between A and B with rate ρ*/2, but only 1–x(t) of 
these events occur in heterozygous individuals.  There is no additional 2 in the formula, 
as might be expected given the Hardy-Weinberg proportions implicitly assumed, because 
we have conditioned on the type of one allele.  For B-locus lineages that are linked to A1 
alleles, the rate of label switching depends on x(t) instead on 1–x(t).      
 As suggested above, B-locus lineages can also escape the sweep due to mutations 
at the A locus.  The probability of this depends on the mutation rate (θa) at the A locus but 
not on distance m between the loci, and over the entire sweep is of order θa (Hermisson 
and Pennings, 2005).  For simplicity, we will ignore this possibility.  

Figure 4A shows a hypothetical gene genealogy of a sample of size n = 6 at the B 
locus under this structured coalescent model, for a population that has experienced a 
recent sweep at the A locus.  The allele-frequency trajectory, shown in pink, is from the 
simulations described above.  Blue boxes mark recombination events by which two B-
locus lineages were able to ‘escape’ the sweep by switching labels.  As a result, these two 
members of the sample may carry mutations at the B-locus that occurred in the ancestral 
population before the sweep.  If there is no recombination, then the entire sample will 
coalesce during the sweep, and any variation in the sample must be due to mutations that 
occurred since the sweep.  The hypothetical time scale in Figure 4A can be compared to 
the standard neutral one in Figure 1.  The lineages that predate the sweep travel up out of 
the figure because their expected time to common ancestry is much greater than the range 
given in Figure 4A.  Among these we would expect to see neutral levels of 
polymorphism.  Thus, polymorphism will be reduced at the B locus only to the extent that 
extra coalescent events occur during the sweep.  Due to the dependence on ρ* = mρ, 
larger reductions will occur when locus B is close to locus A. 
 In the ancestral process depicted in Figure 4A, the frequency of A2 decreases from 
1 down to 1/(2N) as we follow it back through the sweep, then the single  A2 is converted 
into an A1 allele by mutation.  For the B-locus alleles that are linked to A2, the rates of 
coalescence and escape by recombination will increase as x(t) decreases.  The rate of 
coalescence increases very dramatically because it depends on 1/x(t), while the rate of 
escape by recombination increases mildly, like 1–x(t).  These rates, and the changes in 
x(t), make coalescent analyses of selective sweeps complicated.  However, we can see 
from the large-σ diffusion approximation for tfix that the duration of a sweep will be small 
on the coalescent time scale, and will become negligible if σ is very large (recall that for 
σ = 1000, we have tfix ≈ 0.03).  The results of Etheridge et al. (2006) imply that a strong 
sweep will be divided fairly neatly into two halves.  Because of the way the rates of 
coalescence and escape by recombination depend on the frequency of A2, we expect most 
events to occur when x(t) is small.  Considered forward in time, small x(t) corresponds to 
the first half of the sweep, during the convex part of the trajectory. 
   Beginning with Kaplan et al. (1989), a number of workers have considered 
approximations to x(t), based on different models of how the frequency of allele A2 
increases from its initial frequency of 1/(2N).  Kaplan et al. (1989) used the supercritical 
branching process, that gave the classical population genetic result P(fix) ≈ 2s, to model 
first part of the trajectory, then followed it with the deterministic model for the middle 
frequencies, and finally a subcritical branching process for part just before fixation.  They 
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chose frequency cuttoffs of 10/σ and 1–10/σ for the boundaries between the three phases, 
based on the fact that once allele A2 reaches frequency 10/σ, it is essentially sure to fix.   

Later, using the deterministic model over the entire trajectory, Wiehe and Stephan 
(1993) were able to obtain an analytical result for the decrease is neutral heterozygosity, 
i.e. for a sample of size n = 2.  Following considerations of Kaplan et al. (1989), the 
formula of Wiehe and Stephan (1993) captures the effects of ‘recurrent’ selective sweeps, 
that is where a neutral locus is linked to several selected loci that undergo adaptive 
fixation events at some rate.  There has been a great deal of interest in recurrent selective 
sweeps, and the formula of Wiehe and Stephan (1993) has been used extensively  
(Jensen, 2009; Sella et al., 2009).   

Barton (1998) inserted a fourth phase into the trajectory, between the initial 
branching process and the deterministic model, based on the finding by Otto and Barton 
(1997) of an acceleration above deterministic increase over a range of small frequencies 
of A2.  Barton (1998) obtained a number of new analytical results, also for samples of size 
n = 2, in particular probabilities of identity by descent, and by extension, distributions of 
pairwise coalescence times.   

Eriksson et al. (2008) recently suggested modeling sweeps deterministically, but 
using the average time that the advantageous allele spends in each frequency class in 
place of the actual deterministic predictions.  The authors used a Moran model, but were 
apparently unaware that some of their results were previously known (Ewens, 1963).  In 
the context of the standard diffusion, their method is equivalent to assuming that the 
fixation event follows the ‘expected trajectory’ 

! 

t
"
(x;p)  exactly.  Although Eriksson et al. 

(2008) offered no mathematical justification for their approach, it has some appeal 
because 
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(x;p)  captures the fact that A2 moves quickly through the small frequencies.    

 
The Yule Process Approximation 
 
Results for the decrease of heterozygosity are simple and useful, but greater power should 
be possible in coalescent approaches to samples larger than n = 2.  For this reason, the 
computational methods of inference discussed above for neutral models aim to compute 
likelihoods for any sample.  The likelihood captures all of the information in the data.  
The goal of simulation-based methods like the one of Coop and Griffiths (2004) is to 
apply this power of the (structured) coalescent approach to inferences about selection.  
However, because it is necessary to account for the unknown allele frequency in the 
population as it changes through time, structured coalescent methods for computing 
likelihoods are computationally costly.  In this section, we consider a promising new 
model called the Yule process approximation.  
 In addition to pairwise measures, Barton (1998) investigated the distribution of 
‘family sizes’ descending from a sweep, using simulations.  Here, families are the 
descendants (in the sample) of each lineage that emerges from the sweep, looking 
backward in time.  For example, in Figure 4A there are three families, and these have 
sizes 4, 1, and 1.  If we knew the distribution of family sizes, we could derive key 
quantities, such as the distribution of allele frequencies after a sweep, using coalescent 
methods rather than forward-time analyses (Kim and Stephan, 2002; Kim, 2006).  The 
Yule process approximation provides a way to generate the numbers and sizes of families 
that descend from the sweep, and the times of events in the ancestry of the sample.  



 17 

 Durrett and Schweinsberg (2004, 2005) introduced this approximation through an 
analysis of selective sweeps in a Moran population model.  Etheridge et al. (2006) 
approached the same problem starting with the standard diffusion, showing that the Yule 
process approximation applies to a variety of models, in the limit as N→∞.  In a 
presentation more accessible to biologists, Pfaffelhuber et al. (2006) describe a 
simulation algorithm for sampling gene genealogies at a neutral locus that is linked to a 
selected locus, based on a modified version of the Yule process approximation.   

Durrett and Schweinsberg (2004, 2005) and Pfaffelhuber et al. (2006) assess the 
accuracy of the Yule process approximation compared to simulations of the discrete 
Wright-Fisher model and of the structured coalescent model with a deterministic 
trajectory.  A number of authors, including Braverman et al. (1995), Simonsen et al. 
(1995), and Przeworski (2002) have used the deterministic model in simulations.  In fact, 
these deterministic simulations are quite accurate for many purposes, especially for small 
samples, but Pfaffelhuber et al. (2006) showed that the Yule process approximation gives 
better predictions for the distribution of family sizes in larger samples.   
 The Yule process approximation is derived under the assumption that σ is large, 
in the model above, of a neutral locus B sitting near the selected locus A.  For very large 
σ, recall that events in the ancestry of the sample are concentrated in the first half of the 
sweep (forward in time), when the frequency of A2 is increasing rapidly.  The Yule 
process approximation is obtained by transforming the diffusion time scale during the 
sweep by the frequency of allele A1, 1–x(t).  The result is that the second half of the 
sweep becomes greatly compressed; see Figure 1 of Pfaffelhuber et al. (2006).  On this 
new time scale, the rate of escape by recombination becomes constant along each 
ancestral lineage.  The process of coalescence between B-locus lineages that are linked to 
A2 alleles follows from the fact that the sample at the A locus can be modeled as a random 
subsample of a larger random tree, called the Yule tree.  If we imagine the whole gene 
genealogy of all the A2 alleles that do not go extinct, then roughly speaking, the Yule tree 
is the portion of this genealogy corresponding to the first half of the sweep.   

Figure 4B depicts the model, with a hypothetical Yule tree drawn in the 
background, in pink, and the lineages that are ancestral to the sample drawn in black.  In 
this representation, the time-change (1–x(t)) used in the Yule process approximation has 
been undone, and the figure is drawn to correspond to the sweep in Figure 4A.  Blue 
boxes again show recombination events by which two B-locus lineages escape the sweep. 
As the range of time on the vertical axis in 4B is the same as in 4A, the three lineages that 
emerge from the sweep again continue up out of the graph, where they are expected to 
accrue standard neutral levels of polymorphism.  Notice, with respect to Figure 4A, we 
have dispensed with the allele-frequency trajectory itself. 

The process that generates the Yule tree is simple enough, but there is no point to 
describing it here.  We note only that it is a binary tree with σ tips, where σ is the 
largest integer less than or equal to σ.  Importantly, it is not necessary to actually generate 
the Yule tree, so this approximation relieves us of the detailed, explicit conditioning 
inherent in the structured coalescent approach, even though we’re modeling the same 
process.  However, in generating coalescent times during the sweep using the algorithms 
in the Appendix Pfaffelhuber et al. (2006), it is necessary to model events in the Yule tree 
and consider whether these events occur in the ancesrtry of the sample.  Because of this, 
simulations of the Yule approximation become slower when σ is larger (Pfaffelhuber et 
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al., 2006), and it might be that other methods are more efficient than the Yule process 
approximation when σ is very large.   

Many mathematical details go into demonstrating the validity of the Yule process 
approximation and in using it to compute quantities of interest analytically.  Readers are 
referred to Etheridge et al. (2006).  Note that if none of the B-locus lineages escape the 
sweep, there will be a single family of size n.  Further let a ‘singleton family’ be a family 
with just one member, like the two families descending from the blue boxes in Figures 
4A and 4B.  Etheridge et al. (2006) were able to prove that the probability there will be 
more than two non-singleton families—one that escapes the sweep (along with some 
number of singleton families) and one that descends from the original A2 allele—is of 
order 1/log(σ)2, which tends to zero, albeit slowly, as N→∞. 

Because family sizes are biased toward singletons, approximations have been 
proposed in which the number of singleton families is a binomial random variable and all 
remaining lineages descend from the original A2 allele (Barton 1998; Kim and Nielsen, 
2004; Pennings and Hermisson, 2006; Schweinsberg and Durrett, 2005).  The heuristic 
argument for this, which illustrates some important features of strong selective sweeps, is 
as follows.  First, only the first half of the sweep is relevant, and this has length 
~2log(σ)/σ when is very large.  Next, the rate of recombination per lineage during this 
period is effectively ρ*/2 (= mρ/2) per unit of time, because x(t) is very small and 1–x(t) 
is close to one.  Thus, in order for there to be an appreciable effect of recombination 
during a sweep, the product ρ*log(σ)/σ must also be appreciable.  This product, which is 
equal to mrlog(σ)/s is the total rate of escape by recombination for a single B-locus 
lineage.  The probability that a single lineage escapes the sweep is given by  
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The final expression is written in terms of the discrete model parameters, so that the 
effects of each can be seen.  One possibly counterintuive result is that, for a given 
selection coefficient, s, and for a locus at a fixed recombination distance from the 
selected site, as measured by mr, the probability of escape is greater when N is greater. 
Increasing N increases ρ proportionally, but does not decrease the duration of sweeps 
proportionally, due to the log(σ) term in the numerator of tfix.    
 
The Coalescent with Multiple Mergers 
 
We can discern three characteristic times in the processes presented above.  The first is 
the time between new mutations that will fix in the population.  The second is the 
duration of a selective sweep.  The third is the neutral coalescence time, for a sample to 
reach its most recent common ancestor.  Only the last of these is simple: the neutral 
coalescence time does not depend on the rates of mutation and recombination or on the 
selection coefficient.  Again, for a large sample it is close to 2 when time is measured in 
units of 2N generations.  In this section, we consider the possibility that the time between 
sweeps is much smaller than this, such that many sweeps may have occurred within 2 
units of time.  However, we will require that the duration of a sweep is much smaller than 
the time between sweeps, so that sweeps are non-overlapping.  In this case, the ancestry 
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of a sample follows a process which is conceptually similar to the neutral coalescent 
process, but which is very different in detail.  

In other words, we consider ancestries of samples of size n under the recurrent 
hitch-hiking model mentioned above.  Coalescence will be driven by the occurrence of 
selective sweeps rather than by a neutral process of reproduction, by ‘genetic draft’ rather 
than by genetic drift (Gillespie, 2000).  Gillespie (2000, 2001) illustrated this idea with 
analyses of samples of size n = 2, and Nielsen (2005), Hahn (2008), and Sella et al. 
(2009) promote it as a possible explanation for genomic patterns of variation.   

Durrett and Schweinsberg (2005) proved that the gene genealogy at a neutral 
locus which is embedded in a genomic region where sweeps occur at some rate and at 
random locations will follow a process known as a coalescent with simultaneous multiple 
mergers.  As the name implies, such processes are distinguished from the standard neutral 
coalesent because more than two lineages may coalesce at the same time.  Multiple-
mergers coalescent processes were in fact discovered first in neutral population models, 
in cases where the variance of reproductive success among individuals is very large 
(Pitman, 1999; Sagitov, 1999; Schweinsberg, 2000; Möhle and Sagitov, 2001; Birkner et 
al., 2005).  An introductory look at the wide range of possible behaviors under one 
particularly simple neutral model of a population, motivated by organisms that repoduce 
by broadcast spawning, can be found in Eldon and Wakeley (2006).  

Without going into the considerable mathematical details of multiple-mergers 
coalescent processes for recurrent selective sweeps, we can understand the basic idea 
from Figure 4C.  Genetic lineages at the neutral locus travel backward in time, 
undergoing a possible burst of coalescent events (with associated family sizes) each time 
a selective sweep happens at a locus in the vicinity of the neutral locus.  In Figure 4C, 
four lineages coalesce in the first sweep and two escape by recombination, then the 
remaining three lineages coalesce during the next sweep.  Note the much shorter range of 
time depicted in Figure 4C than in Figures 4A and 4B.  Sweeps hit the population very 
frequently compared the rate of neutral genetic drift or coalescence.  The rate at which 
they occur may be difficult to describe.  In a simple model, the rate will depend on the 
rate of advantageous mutations, but in reality this may in turn depend on changing 
environments and selection pressures (Gillespie, 1991, 2000, 2001, 2004b).  As a 
consequence, the rate of sweeps may have little to do with the size of the population, so 
polymorphism levels will not necessarily be predicted to depend linearly on population 
size, as they are under standard neutral models.  A long-standing observation, and 
conundrum with respect to the neutral theory, is that levels of polymorphism do not in 
fact increase linearly with estimates of population size (Lewontin, 1974; Gillespie, 1991; 
Meiklejohn et al., 2007).  Thus, while work on these coalescent models with multiple 
mergers for selection is still in its infancy, they could prove useful in long-standing 
debates about the origin and maintenance of genetic variation.    
 

HOPES FOR THE FUTURE 
 
Darwin could scarcely have imagined the world we live in today.  Only the most active 
imagination could find passages in the Origin relevant to coalescent models of natural 
selection.  However, Darwin’s fundamental insights are as relevant today as they ever 
have been.  In the field of population genetics, in particular, attention to natural selection 
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as a factor shaping variation at the molecular level has been boosted greatly by recent 
analyses of genomic data.     

This shift comes after a perhaps overly long focus on neutral models of genetic 
variation, received from Kimura (1983).  Given the lack of force of theoretical arguments 
for the neutral theory (Ewens, 1979), the empirical evidence against it and the fact the 
selective models can both provide a better fit to the observations and mimic neutrality 
itself (Gillespie, 1991), the longevity of the neutral theory may be surprising.  However, 
as Crow (2008) points out, the very simplicity of the neutral theory accounts for a lot of 
its appeal.  In large part, this is probably due to the wonderful paper of Kimura and Ohta 
(1971), which seemingly explained both molecular evolution among species and 
molecular variation within species as different facets of one relatively simple process.   
 Neutrality, as a logical assumption of a null model with respect to selection, has 
also been difficult to reject statistically.  Perhaps we have been lulled into accepting a 
false null model.  Gillespie (1994) has shown that there is low power to detect crucial 
deviations from neutrality and to distinguish among some selective alternatives to the 
neutral theory, at least using simple statistical tests.  A similar conclusion applies to 
multiple-mergers coalescent processes (Sargsyan and Wakeley, 2008).  Another issue, 
which we only glanced at above, is that selective neutrality is just one of several 
assumptions of a “neutral” model, so rejecting such a model does not necessarily identify 
selection as the reason.  Although choosing among alternatives to neutrality will be a 
major challenge—few will “wish to slog through 100 pages of mathematics,” as Gillespie 
puts it, in Chapter 4 of The Causes of Molecular Evolution (Gillespie, 1991)—we can 
have some hope that the current rapid pace of research at the interface of theoretical and 
empirical population genetics will allow more precise inferences to be made.  
 In closing, we can ask what is to become of the sophisticated coalescent 
machinery for making inferences about the demographic history of populations.  To what 
extent will we be able to rely on genetic makers containing information about changes in 
population size over time or patterns of population structure?  Will inferences of 
migration rates or divergence times have to be reinterpreted in terms of selection?  We 
might hope that our inferential tools can be developed in ways that are robust to the 
presence of natural selection, even for species in which selection is a dominant force.   



 21 

LITERATURE CITED 
 
Aquadro, C. F. and B.  D.  Greenberg. 1983. Human mitochondrial DNA variation and 
evolution: analysis of nucleotide sequences from seven individuals. Genetics 103: 287-
312. 
 
Avise, J. C., C. Gilbin-Davidson, J. Laerm, J. C. Patton, and R. A. Lansman. 1979. 
Mitochondrial DNA clones and matriarchal phylogeny within and among geographic  
populations of the pocket gopher, Geomys pinetis. Proc. Natl. Acad. Sci. USA 76: 6694-
6698. 
 
Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C. A. Reeb, 
and N. C. Saunders. 1987. Intraspecific phylogeography: The mitochondrial DNA bridge 
between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489-522.  
 
Barton, N. H., A. M. Etheridge, and A. K. Sturm. 2004. Coalescence in a random 
background. Ann. Appl. Prob. 14: 754-785. 
 
Becquet, C., and M. Przeworski. 2009. Learning about modes of speciation by 
computational approaches.  Evolution 63: 2547-2562. 
 
Begun, D. J., A. K. Holloway, K. Stephens, L. W. Hillier, Y.-P. Poh, M. W. Hahn, P. M. 
Nista, C. D. Jones, A. D. Kern, C. Dewey, L. Pachter, E. Myers, and C. H. Langley. 
2007. Population genomics: whole-genome analysis of polymorphism and divergence in 
Drosophila simulans. PLoS Biol. 5: e310.  
 
Birkner, M., J. Blath, M. Capaldo, A. Etheridge, M. Möhle, J. Schweinsberg, and A. 
Wakolbinger. 2005. Alpha-stable branching processes and beta-coalescents. Electron. J. 
Probab. 10: 303-325. 
 
Braverman, J. M., R. R. Hudson, N. L. Kaplan, C. H. Langley, and W. Stephan. 1995. 
The hitchhiking effect on the site frequency spectrum of DNA polymorphisms. Genetics 
140: 783-796.  
 
Brown, W. M. 1980. Polymorphism in mitochondrial DNA of humans as revealed by 
restriction  endonuclease analysis. Proc. Natl. Acad. Sci. USA 77: 3605-3609.  
 
Bustamante C. D.,  R. Nielsen, S. A. Sawyer, K. M. Olsen, M. D. Purugganan, and D. L. 
Hartl. 2002. The cost of inbreeding in Arabidopsis. Nature 416: 531-534. 
 
Coop, G., and R. C. Griffiths. 2004. Ancestral inference on gene trees under selection. 
Theoret. Pop. Biol. 66: 219-232. 
 
Crow, J. F. 2008. Mid-century controversies in population genetics. Annu. Rev. Genet. 
42:1-16. 
 



 22 

Darden, T., N. L. Kaplan, and R. R. Hudson. 1989. A numerical method for calculating 
moments of coalescent times in finite populations with selection. J. Math. Biol. 27: 355-
368. 
 
Darwin, C. 1859. On the Origin of Species. Murray, London. 
 
Dobzhansky, T. 1937. Genetics and the Origin of Species, 1st ed. Columbia University 
Press, New York. 
 
Dobzhansky, T. 1955. A review of some fundamental problems of and concepts of 
population genetics. Cold Spring Harb. Symp. Quant. Biol. 20: 1-15.  
 
Durrett, R. and J. Schweinsberg. 2004. Approximating selective sweeps. Theoret. Pop. 
Biol. 66: 129-138. 
 
Durrett, R. and J. Schweinsberg. 2005. A coalescent model for the effect of 
advantangeous mutations on the genealogy of a population. Stochast. Proc. Appl. 115: 
1628-1657. 
 
Eldon, B., and J. Wakeley 2006. Coalescent processes when the distribution of offspring 
number among individuals is highly skewed. Genetics 172: 2621-2633. 
 
Etheridge, A., P. Pfaffelhuber, and A. Wakolbinger. 2006. An approximate sampling 
formula under genetic hitchhiking. Annals of Applied Probability 16: 685-729. 
 
Ewens, W. J. 1979. Mathematical Population Genetics, Springer-Verlag, Berlin. Note: 
see also the revised and update version, Ewens (2004).   
 
Ewens, W. J. 1982. On the concept of effective size. Theoret. Pop. Biol. 21: 373-378. 
 
Ewens, W. J. 1990. Population genetics theory—the past and the future. In S. Lessard 
(ed.), Mathematical and Statistical Developments of Evolutionary Theory,  pp. 177-227. 
Kluwer Academic Publishers, Amsterdam. 
 
Ewens, W. J. 2004. Mathematical Population Genetics, Volume I: Theoretical 
Foundations, Springer-Verlag, Berlin.  
 
Felsenstein, J. 2007. Trees of genes in populations. In O. Gascuel and M. Steel (eds.), 
Reconstructing Evolution: New Mathematical and Computational Advances, pp. 3-29. 
Oxford University Press, Oxford.  
 
Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian 
inheritance. Trans. Royal Soc. Edin. 52: 399-433. 
 
Fisher, R. A. 1922. On the dominance ratio. Proc. Royal Soc. Edin. 42: 321-341. 
 



 23 

Fisher, R. A. 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford. 
 
Gillespie, J. H. 1991. The Causes of Molecular Evolution. Oxford University Press, New 
York. 
 
Gillespie, J. H. 1994.  Alternatives to the neutral theory.  In B. Golding (ed.), Non-
Neutral Evolution: Theories and Molecular Data, pp. 1-17. Chapman & Hall, New York. 
 
Gillespie, J. H. 2000. Genetic drift in an infinite population: the pseudohitchhiking 
model. Genetics 155: 909-919.  
 
Gillespie, J. H. 2001. Is the population size of a species relevant to its evolution? 
Evolution 55: 2161–2169. 
 
Gillespie, J. H. 2004a. Population Genetics: A Concise Guide. 2nd ed. Johns Hopkins 
University Press, Baltimore, Maryland. 
 
Gillespie, J. H. 2004b.  Why k = 4Nesu is silly.  In R. Singh and M. Uyenoyama (eds.), 
The Evolution of Population Biology—Modern Synthesis, pp. 181-192. Cambridge 
University Press, Cambridge.   
 
Hahn, M. W. 2008.  Toward a selection theory of molecular evolution.  Evolution 62: 
255-265.   
 
Haldane, J. B. S., 1927.  A mathematical theory of natural and artificial  selection,  Part  
V  Selection  and  mutation.  Proc.  Camb.  Philos. Soc. 23: 838-844.   
 
Haldane, J. B. S. 1932. The Causes of Natural Selection. Longmans Green & Co., 
London. 
 
Halligan, D. L., F. Oliver, A. Eyre-Walker, B. Harr, and P. D. Keightley. 2010. Evidence 
for pervasive adaptive protein evolution in wild mice. PLoS Genetics 6: e1000825. 
 
Harris, H. 1966. Enzyme polymorphism in man. Proc. Royal Soc. London, Ser. B 164: 
298-310. 
 
Hey, J. 2005. On the number of New World founders: A population genetic portrait of the 
peopling of the Americas. PLoS Biol 3(6): e193. 
 
Hermisson, J., and P. S. Pennings. 2005. Soft sweeps: Molecular population genetics of 
adaptation from standing genetic variation. Genetics 169:2335–2352. 
 
Hermisson, J., and P. Pfaffelhuber. 2008. The pattern of genetic hitchhiking under 
recurrent mutation.  Electronic Journal of Probability 13: 2069-2106. 
 



 24 

Hobolth, A., M. K. Uyenoyama, and C. Wuif.  2007. Importance sampling for the infinite 
sites model. Statistical Applications in Genetics and Molecular Biology Vol. 7, Iss. 1, 
Art. 32. 
 
Hudson, R. R. 1983a. Testing the constant-rate neutral allele model with protein sequence 
data. Evolution 37: 203-217.  
 
Hudson, R. R. 1983b. Properties of a neutral allele model with intragenic recombination. 
Theoret. Pop. Biol. 23: 183-201.  
 
Hudson, R. R. 1990. Gene genealogies and the coalescent process. In D. J. Futuyma and 
J. Antonovics (eds.), Oxford Surveys in Evolutionary Biology, Volume 7, pp. 1-44.  
Oxford University Press, Oxford.  
 
Hudson, R. R. 2002. Generating samples under a Wright-Fisher neutral model of genetic 
variation. Bioinformatics 18: 337-338.  
 
Hudson, R. R., and N. L. Kaplan. 1986. On the divergence of alleles in nested 
subsamples from finite populations. Genetics 113: 1057-1076. 
 
Hudson, R. R., and N. L. Kaplan. 1988. The coalescent process in models with selection 
and recombination. Genetics 120: 831-840. 
 
Huxley, J. S. 1942. Evolution: The Modern Synthesis. Allen and Unwin, London. 
 
Jensen, J. D. 2009. On reconciling single and recurrent hitchhiking models. Genome Biol. 
Evol. 1: 320-324. 
 
Kaplan, N. L.,  T. Darden, and R. R. Hudson. 1988. The coalescent process in models 
with selection. Genetics 120: 819-829. 
 
Kaplan, N.L., R. R. Hudson, and C. H. Langley. 1989. The ‘‘hitchhiking effect’’ 
revisited. Genetics 123: 887-899. 
 
Karlin, S., and J. McGregor. 1972. Addendum to a paper of W. Ewens. Theoret. Pop. 
Biol. 3: 113-116. 
 
Kim, Y. 2006. Allele frequency distribution under recurrent selective sweeps. Genetics 
172: 1967-1978.  
 
Kim, Y., and R. Nielsen. 2004. Linkage disequilibrium as a signature of selective sweeps. 
Genetics 167: 1513-1524.  
 
Kim, Y., and W. Stephan. 2002. Detecting a local signature of genetic hitchhiking along a 
recombining chromosome. Genetics 160: 765-777. 
 



 25 

Kim, Y., and T. Wiehe. 2009. Simulation of DNA sequence evolution under models of 
recent directional selection. Briefings in Bioinformatics 10: 84-96. 
 
Kimura, M. 1955a. Solution of a process of random genetic drift with a continuous 
model. Proc. Natl. Acad. Sci., USA 41: 144-150.  
 
Kimura, M. 1955b. Stochastic processes and the distribution of gene frequencies under 
natural selection. Cold Spring Harbor Symposia on Quantitative Biology 20: 33-53.  
 
Kimura, M. 1968. Evoutionary rate at the molecular level. Nature 217:624-626.  
 
Kimura, M. 1983. The Neutral Theory of Molecular Evolution. Cambridge University 
Press, Cambridge.   
 
Kimura, M., and T. Ohta. 1969. The average number of generations until fixation of a 
mutant gene in a finite population. Genetics 61: 763-771. 
 
Kimura, M., and T. Ohta. 1971. Protein polymorphism as a phase of molecular evolution. 
Nature 229: 467-469.  
 
King, J. L. and T. H. Jukes. 1969. Non-Darwinian evolution. Science 164: 788-798.  
 
Kingman, J. F. C. 1982a. On the genealogy of large populations. J. Appl. Prob. 19A: 27-
43.  
 
Kingman, J. F. C. 1982b. The coalescent. Stochastic Process. Appl. 13: 235-248.  
 
Kreitman, M. 1983. Nucleotide polymorphism at the alcohol dehydrogenase locus of 
Drosophila melanogaster. Nature 304: 412-417. 
 
Krone, S. M., and C. Neuhauser. 1997. Ancestral processes with selection. Theoret. 
Popul. Biol. 51: 210-237.  
 
Lewontin, R. C.  1974. The Genetic Basis of Evolutionary Change. Columbia University 
Press, New York. 
 
Lewontin, R. C.  and J. L. Hubby. 1966. A molecular aproach to the study of genic 
diversity in natural populations II. Amount of variation and degree of heterozygosity in 
natural populations of Drosophila pseudoobscura. Genetics 54: 595-609. 
 
Linnen, C.R., E.P. Kingsley, J.D. Jensen and H.E. Hoekstra. 2009. On the origin and 
spread of an adaptive allele in deer mice. Science 325: 1095-1098. 
 
Lynch, M.  2007. The Origins of Genome Architecture. Sinauer Associates, Inc. 
Publishers, Sunderland, Massachusetts. 
 



 26 

Malécot, G. 1941. La consaguinité dans une population limitée. C. R. Acad. Sci., Paris 
222: 841-843. 
 
Malécot, G. 1948.  Les Mathématiques de l'Hérédité. Masson, Paris. Extended 
translation: The Mathematics of Heredity. W. H. Freeman, San Francisco (1969). 
 
Marjoram, P., and S. Tavaré. 2006. Modern computational approaches for analyzing 
molecular genetic variation data. Nature Reviews Genetics 7: 759-770.  
 
Maynard Smith, J. M., and J. Haigh. 1974 The hitch-hiking effect of a favourable gene. 
Genet. Res., Camb. 23: 23-35.  
 
Mayr, E. 1963. Animal Species and Evolution. Belknap Press, Cambridge, Massachusetts.  
 
Meiklejohn, C. D., K. L. Montooth, and D. M. Rand. 2007. Positive and negative 
selection on the mitochondrial genome. Trends in Genetics 23: 259-263. 
 
Möhle, M. 1999. The concept of duality and applications to Markov processes arising in 
neutral population genetics models. Bernoulli 5: 761-777.  
 
Möhle, M. and S. Sagitov. 2001. A classification of coalescent processes for haploid 
exchangeable population models. Ann. Appl. Probab. 29: 1547-1562.  
 
Moran, P. A. P. 1962. Statistical Processes of Evolutionary Theory. Clarendon Press, 
Oxford.  
 
Moran, P. A. P. 1975. Wandering distributions and the electrophoretic profile. Theoret. 
Pop. Biol. 8: 318-330. 
 
Nagylaki, T. 1989. Gustave Malécot and the transition from classical to modern 
population genetics. Genetics 122: 253-268.  
 
Neuhauser, C., and S. M. Krone. 1997. The genealogy of samples in models with 
selection. Genetics 145: 519-534 
 
Nielsen, R. 2005. Molecular signatures of natural selection. Annu. Rev. Genet. 39: 197-
218. 
 
Norman, M. F. 1975. Approximation of stochastic processes by Gaussian diffusions, and 
applications to Wright–Fisher genetic models. SIAM J. Appl. Math. 29: 225-242. 
 
Ohta, T. 1973. Slightly deleterious mutant substitutions in evolution. Nature 246: 96-98. 
 
Ohta, T. 1992. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 
23: 263-286. 
 



 27 

Ohta, T., and M.  Kimura. 1973. A model of mutation appropriate to estimate the number 
of electrophoretically detectable alleles in a finite population. Genet. Res., Camb. 22: 
201-204.  
 
Otto, S. P., and N. H. Barton. 1997. The evolution of recombination: removing the limits 
to natural selection. Genetics 147: 879-906. 
 
Pennings, P. S., and J. Hermisson. 2006. Soft sweeps III: The signature of positive 
selection from recurrent mutation. PLoS Genet. 2(12): e186 
 
Pfaffelhuber, P., B. Haubold, and A. Wakolbinger. 2006. Approximate genealogies under 
genetic hitchhiking. Genetics 174: 1995-2008. 
 
Pitman, J. 1999. Coalescents with multiple collisions. Ann. Probab. 27: 1870-1902.  
 
Provine, W. B. 1971. The Origins of Theoretical Population Genetics, University of 
Chicago Press, Chicago.  
 
Przeworski, M. 2002. The signature of positive selection at randomly chosen loci. 
Genetics 160: 1179-1189.  
 
Przeworski, M., 2003. Estimating the time since the fixation of a beneficial allele. 
Genetics 164: 1667-1676. 
 
Sabeti, P.C., P. Varilly, B. Fry, J. Lohmueller, E. Hostetter, C. Cotsapas, X. Xie, E. H. 
Byrne, S. A. McCarroll, R. Gaudet, S. F. Schaffner, E. S. Lander and the International 
HapMap Consortium. 2007. Genome-wide detection and characterization of positive 
selection in human populations. Nature 449: 913-918. 
 
Sagitov, S. 1999. The general coalescent with asynchronous mergers of ancestral lines. J. 
Appl. Probab. 36: 1116-1125. 
 
Sargsyan, O. and J. Wakeley. 2008. A coalescent process with simultaneous multiple 
mergers for approximating the gene genealogies of many marine organisms. Theoret. 
Pop. Biol. 74: 104-114. 
 
Sawyer, S. A., and D. L. Hartl 1992. Population genetics of polymorphism and 
divergence. Genetics 132: 1161-1176. 
 
Sawyer, S. A., R. J. Kulathinal, C. D. Bustamante, and D. L. Hartl. 2003. Bayesian 
analysis suggests that most amino acid replacements in Drosophila are driven by positive 
selection. J. Mol. Evol. 57 Suppl 1: S154-164.  
 
Simonsen, K. L., G. A. Churchill, and C. F. Aquadro. 1995. Properties of statistical tests 
of neutrality for DNA polymorphism data.  Genetics 141: 413-429. 
 



 28 

Slatkin, M. 2001. Simulating genealogies of selected alleles in a population of variable 
size. Genet. Res., Camb. 78: 49-57. 
 
Slatkin, M., and M. Veuille.  2002. Modern Developments in Theoretical Population 
Genetics: The legacy of Gustave Malécot. Oxford University Press, Oxford. 
 
Sjödin, P., I. Kaj, S. Krone, M. Lascoux, and M. Nordborg. 2005. On the meaning and 
existence of an effective population size. Genetics 169: 1061-1070. 
 
Smith, N. G., and A. Eyre-Walker. 2002. Adaptive protein evolution in Drosophila. 
Nature 415: 1022-1024.  
 
Stephens, M. and P. Donnelly. 2000. Inference in molecular population genetics. J. R. 
Stat. Soc. Ser. B 62: 605-655.  
 
Schweinsberg, J., and R. Durrett. 2005. Random partitions approximating the the 
coalescence of lineages during a selective sweep. The Annals of Applied Probability 15: 
1591-1651. 
 
Tajima, F. 1983. Evolutionary relationship of DNA sequences in finite populations. 
Genetics 105: 437-460.  
 
Thornton, K. R., J. D. Jensen, C. Becquet, and P. Andolfatto. 2007. Progress and 
prospects in mapping recent selection in the genome. Heredity 98: 340-348.  
 
Wakeley, J., and O. Sargsyan. 2009. Extensions of the coalescent effective population 
size. Genetics 181: 341-345. 
 
Wakeley, J. and O. Sargsyan. 2009. The conditional ancestral selection graph with strong 
balancing selection. Theoret. Pop. Biol. 75: 355-364. 
 
Wiehe, T. H., and W. Stephan. 1993. Analysis of a genetic hitchhiking model, and its 
application to DNA polymorphism data from Drosophila melanogaster. Mol. Biol. Evol. 
10: 842-854.  
 
Wright, S. 1931. Evolution in Mendelian populations. Genetics 16: 97-159. 
 
Zuckerkandl, E. and L. Pauling 1965. Evolutionary divergence and convergence in 
proteins. In V. Bryson and H. J. Vogel (eds.), Evolving Genes and Proteins. Academic 
Press, New York. 



 29 

FIGURE 1—Example gene genealogy of a sample of size n = 6, with coalescence times 
(Ti on the right) drawn to match expectations from the standard neutral coalescent.  
 
FIGURE 2—Simulated allele-frequency trajectories of advantageous mutants at the 
hypothetical “human” and “Drosophila” loci described in the text.  Panels A and B show 
results for “humans” and panels C and D show results for “Drosophila.”  A & C show 
advantageous mutations that reached high frequencies.  B & D show advantageous 
mutations that went extinct.  Parameter values are described in the text.  
 
FIGURE 3—Example population ancestries, in which a selective sweep has just reached 
completion.  Panel A is from the simulations depicted in Figure 2A, and panel B is from 
the simulations depicted in Figure 2C.  
 
FIGURE 4—Hypothetical gene genelogies for a sample of size n = 6 at a neural locus 
linked to a selected locus, showing the three coalescent approaches to modeling natural 
selection described in the text.  Panel A depicts the structured coalescent approach, B 
depicts the Yule process approximation, and C depicts the mutliple-merges coalescent for 
recurrent selective sweeps.  Possible characteristic ranges of time (measured in units of 
2N generations) for each model are displayed on the veritical axes.  Black lines show the 
ancestry of the sample, while unobserved allele-frequency trajectories and genetic 
lineages not directly ancestral to the sample are shown in pink.  Blue boxes mark 
recombination events that allow linked neutral lineages to “escape” a sweep.  
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