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Abstract

A diffusion approximation is obtained for the frequency of a selected allele in a population comprised of many subpopulations or

demes. The form of the diffusion is equivalent to that for an unstructured population, except that it occurs on a longer time scale

when migration among demes is restricted. This many-demes diffusion limit relies on the collection of demes always being in

statistical equilibrium with respect to migration and drift for a given allele frequency in the total population. Selection is assumed to

be weak, in inverse proportion to the number of demes, and the results hold for any deme sizes and migration rates greater than

zero. The distribution of allele frequencies among demes is also described.

r 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The majority of work in population genetics is based
on models which do not include geographic structure.
However, some account must be made of structure
because the members of a species are always distributed
over space and in very few cases are individuals able to
easily traverse the entire species range. Thus, biological
populations are not well mixed, or panmictic, at least
not within a single generation. One of the most
surprising results of theoretical population genetics is
that it takes only a few migrant individuals per
generation between demes (subpopulations) to make a
subdivided population effectively indistinguishable from
a panmictic one (Wright, 1931; Moran, 1959). The
reason for this is that the time scale of change in the
population (e.g., of allele frequencies) is long, on the
order of the population size number of generations, and
over such long times a few migrants per generation is
enough to mix the population. Still, it is not difficult to
find evidence of geographic structure in samples of
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genetic data (Slatkin, 1985), and so it will often be
necessary to model population structure explicitly.

We consider a simple model of subdivision in which
there can be selective differences between two alleles at a
genetic locus. Our goal is to establish a diffusion
approximation for the allele frequency in the popula-
tion, in particular for the case where the population is
subdivided into many demes. This follows some recent
work on a similar model which assumed discrete
generations and Wright–Fisher (Fisher, 1930; Wright,
1931) reproduction within demes (Wakeley, 2003). Here
we assume instead that generations are overlapping and
that reproduction occurs according to a Moran (1958a)
model. One motivation for studying a Moran model is
that the demonstration of the limiting diffusion result is
much simpler than in the Wright–Fisher case. The other
motivation is to show that the result does not depend on
generations being discrete, so that the diffusion approx-
imation may be applied to organisms with a variety of
modes of reproduction.

We begin with a brief comparison of results for the
panmictic versions of the Moran and Wright–Fisher
models, as this is helpful in comparing our results to
those in Wakeley (2003). Under the Moran model it is
possible to obtain exact expressions for many quantities
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of evolutionary interest which can only be found
approximately under the Wright–Fisher model. Results
differ between the two models when the population size
N is not large, but the same form of a limiting diffusion
holds for both models as N tends to infinity. If there are
two alleles at some genetic locus, and the mutant allele
has a selective advantage s over the wild-type allele, then
the diffusion of the mutant allele frequency x depends
on the first two moments of the change in x over one
time step:

E½Xð1Þ � x� ¼ s

N
xð1 � xÞ þ Oðs2=NÞ; ð1Þ

E½ðXð1Þ � xÞ2� ¼ 2

N2
xð1 � xÞ þ Oðs=N2Þ; ð2Þ

for the Moran model, and

E½Xð1Þ � x� ¼ sxð1 � xÞ þ Oðs2Þ; ð3Þ

E½ðXð1Þ � xÞ2� ¼ 1

N
xð1 � xÞ þ Oðs=NÞ; ð4Þ

for the Wright–Fisher model, e.g., see Ewens (1979) and
Moran (1962).

Therefore, the natural diffusion time scale for the
Wright–Fisher model is in units of N generations,
whereas under the Moran model it is N2=2 time steps.
Each time step in the Moran model involves a single
birth–death event, and it is usual to make comparisons
by equating N time steps in the Moran model to a single
Wright–Fisher generation. Interestingly, this still leaves
a factor of two difference in the rates of genetic drift,
with drift being faster under the Moran model. This
difference is due to the different distributions of
offspring number per individual in the two models
(Moran and Watterson, 1959; Feldman, 1966). Measur-
ing time on the natural scale for each model, and letting
N go to infinity, the two models converge to the same
diffusion process if the scaled selection coefficient is
defined to be g ¼ Ns in the Wright–Fisher model and
g ¼ Ns=2 in the Moran model.

1.1. Diffusion limits for subdivided populations

The typical diffusion approximation in population
genetics is, as above, to consider the limiting process as
the population size tends to infinity. This has been
extended to subdivided populations by considering that
the sizes of demes tend to infinity while the number of
demes remains fixed. There have been three kinds of
diffusion results for such models, which differ in how
they treat the migration rates.

The first, due to Wright (1931), assumes that the
migration rate m for a deme, which is the fraction of the
deme that is replaced by migrants every generation,
scales inversely with the size of the deme. The result is
that the effect of migration is described by the product
Nm: For multiple demes, the diffusion approximation
would require as many dimensions as there are demes,
e.g., see Pollack (1968), and few results are available.
However, this limit underlies many standard results for
subdivided populations, even if they were not described
explicitly as results of a diffusion process. It is also the
basis of the backward-time genealogical model known
as the structured coalescent (Notohara, 1990; Herbots,
1994; Wilkinson-Herbots, 1998). For the case of a single
deme that receives migrants from a ‘‘continental’’ source
population, in which the allele frequency x is constant
for all time, Wright (1931) used this large-N; small-m
approximation to obtain a stable distribution for the
allele frequency within the deme as a balance between
immigration and genetic drift. The same result holds for
a single deme in Wright’s (1931) island model, which
assumes an infinite number of demes. In this case, the
source of migrants is the entire population which,
because it is infinite, can be assumed to have a constant
allele frequency.

The second kind of diffusion result assumes that the
migration rates between demes are constant while the
deme sizes approach infinity. This is the strong-
migration limit of Nagylaki (1980), and the result is
that the diffusion becomes identical to the panmictic
diffusion, but with an effective population size that
depends on the pattern of migration. In the case of
conservative migration, which means that the emmigra-
tion and immigration balance perfectly for every deme,
the effective size is equal to the total size of the
population, otherwise it is different. The strong-migra-
tion limit makes explicit the notion mentioned above
that large populations will become well mixed, even by
seemingly small amounts of migration. In the strong-
migration limit, a large population means N-N for a
finite number of demes. The strong-migration limit has
also been studied in genealogical, or coalescent, models
(Notohara, 1993), with the result of course being
convergence to Kingman’s (1982) coalescent, but with
a possibly different effective size.

The third kind of diffusion result is the low-migration
limit studied by Slatkin (1981). Slatkin (1981) assumed
that the deme sizes approach infinity and the migration
rates approach zero such that the product Nm also
approaches zero. The result is that the fixation or loss of
an allele within a deme occurs much more quickly than
changes in the total population which are mediated by
migration. Slatkin (1981) assumed Wright–Fisher re-
production within demes, but showed that dynamics in
the total population occurred by the fixation or loss of
alleles in one deme at a time, so that the demes become
like the individuals in a Moran model of reproduction.
Since this model was formulated for a finite number of
demes and changes in allele frequency occur in discrete
jumps (7 one deme), this is not a diffusion in the sense
of the two limits above. We note also that the general
form of Slatkin’s (1981) result should not depend on the
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sizes of demes being large. Genealogical versions of the
low-migration limit are due to Takahata (1991) and
Notohara (2001).

We study a fourth kind of diffusion limit for
a subdivided population, which was introduced in a
forward-time model by Wakeley (2003), and in a
genealogical context without selection by Wakeley
(1998). Specifically, we seek a diffusion approximation
for the allele frequency in the total population which
holds in the limit as the number of demes tends to
infinity, with time measured appropriately and with
proportionately weak selection. Our results are related
to the three diffusion approximations described above in
that they rely on a separation of time scales between
different processes. First, we apply the same theorem,
due to Ethier and Nagylaki (1980), that Nagylaki (1980)
used to prove the strong-migration limit. Our results are
also similar to Wright’s (1931) infinite-island model.
However, under the infinite-island model the allele
frequency among migrants or in the total population is
simply assumed to be constant, while we describe how it
changes by a diffusion process. This diffusion occurs on
a much longer time scale than changes within demes, so
our results are akin to those of Slatkin (1981) except that
the source of the difference in time scales is that there
are many demes rather than the migration rates being
small.

We show below that a many-demes diffusion exists
and that it does not depend on the allele frequencies
within particular demes, but rather on the equilibrium
properties of the ensemble of demes. The fast time scale
of migration and drift within demes guarantees that the
demes will always be close to statistical equilibrium for a
given allele frequency in the total population. The
diffusion for the allele frequency in the total population
is identical in form to the diffusion approximation for
the allele frequency in an unstructured population, the
only difference being that the time scale of the process is
increased by the type of subdivision considered here.

1.2. A model of subdivision with overlapping generations

We consider a population subdivided into D demes,
each of which contain N haploid individuals. We
assume here that time occurs in discrete steps, and later
show convergence to a continuous time process.
However, it should also be possible to begin with a
continuous time model, as in Moran (1958b), and obtain
similar results. In each time step, a single individual is
chosen to die and another, possibly the same individual,
is chosen to reproduce. We assume that two alleles are
segregating at a single locus, and that the fitness, or
viability, of individuals carrying the ‘‘mutant’’ allele
differs from that of the individuals carrying the ‘‘wild-
type’’ allele. Selection and drift occur within each deme,
and there is migration among demes.
The order of events in a single unit of time is as
follows. A deme is chosen at random, uniformly among
all D demes, then an individual within that deme is
chosen to die. Viability selection acts within the deme
such that individuals with the mutant allele have relative
death rate l2 and individuals with the wild-type have
relative death rate l1: We assume that l2 ¼ ð1 � sDÞl1;
so that the selective advantage or disadvantage of the
mutant compared to the wild-type is sD ¼ 1 � l2=l1:
Later, we will consider sD to be small, in proportion to
1=D; and this is the reason for the subscript. Once an
individual is chosen to die, an individual is chosen to
reproduce and the offspring of this individual replaces
the one who died. With probability 1 � m the individual
chosen to reproduce comes from the same deme as the
individual chosen to die. In this case, each of the N

individuals in the deme is equally likely to be the one
chosen to reproduce. With probability m the individual
chosen to reproduce is randomly sampled from the
entire population. In this case, each of the ND

individuals in the population is equally likely to be the
one chosen to reproduce. In both cases, it is possible
that the same individual is chosen to die and to
reproduce.

Selection has been implemented in two different ways
in studies of the Moran model: at death as we do above,
and at birth (Moran, 1962; Ewens, 1979). A model of
selection at birth can be constructed that would
correspond closely to our model of selection at death.
In it a deme would be chosen randomly, then an
individual within that deme would be chosen to
reproduce. Selection would act within the deme such
that individuals with the mutant allele would have
relative fertility l2 ¼ ð1 þ sDÞl1; compared to l1 for
individuals carrying the wild-type allele. With prob-
ability 1 � m the offspring of this individual would
replace an individual selected at random from within the
deme, and with probability m it would replace an
individual selected at random from the entire popula-
tion. Despite the apparent change in sign of sD from the
viability selection model, positive sD means a selective
advantage of the mutant allele in both models. A
notable similarity between these two models is that
selection acts only within demes. Models in which
selection acts across the entire population, i.e. among
demes as well as within demes, produce slightly different
results. We present detailed results only for the model of
selection at death described above, but we note some of
these differences below.
2. Theory

This section is organized as follows. After a brief
introduction of the state space and the major random
variables to be considered, Section 2.1 presents the result
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and introduces the theorem used to prove it in the
subsequent four sections. Section 2.2 contains the
description of the fundamental dynamics, which are
changes in the number of mutant alleles within a deme,
and the derivation of the equilibrium distribution of a
single deme among frequency classes assuming a constant
frequency of the mutant allele in the total population. In
Section 2.3, it is shown that the entire collection of demes
approaches a related equilibrium for a constant allele
frequency in the total population. Section 2.4 establishes
the (fast) time scale of the approach to equilibrium of
demes among frequency classes. Section 2.5 establishes the
(slow) time scale of changes in allele frequency in the total
population, and this completes the derivation. Section 2.6
considers the question of large deme size.

Following Wakeley (2003), we denote the state of the
population using a vector-valued random variable ZDð�Þ
which records the fraction of demes in each allele-
frequency class. Specifically, ZD

i ðtÞ represents the frac-
tion of demes that contain i copies of the mutant allele
at generation t: The superscript is in recognition that
the possible configurations of ZDð�Þ will depend on the
number of demes, and that we will be considering the
limiting process as D-N: We show below that ZD

i ðtÞ is
always sufficiently close to its equilibrium value niðtÞ
that the diffusion approximation for the allele frequency
in the total population depends on n rather than on Z:
The allele frequency in the total population is given by

X DðtÞ ¼ 1

N

XN

i¼0

iZD
i ðtÞ; ð5Þ

and the value of this random variable in a particular
generation is given by xðtÞ: Below we will also need

Y D
i ðtÞ ¼ ZD

i ðtÞ � niðtÞ; ð6Þ

which is the deviation of ZDðtÞ from its equilibrium
value. The equilibrium niðtÞ is a simple function of N; m;
and X DðtÞ: We will use y and z to denote particular
values of the random variables Y D and ZD:

2.1. The many-demes diffusion result

Ethier and Nagylaki (1980) proved a general limit
theorem for diffusion approximations for Markov
processes with two time scales which can be applied to
ZDðtÞ: The theorem applies here because, when D is
large and selection is weak, the rate at which allele
frequencies within demes approach statistical equili-
brium is much faster than the speed of allele-frequency
changes in the total population. We have the parameter

g ¼ N

2
lim

D-N

DsD; ð7Þ

which is the selection coefficient scaled by the total
population size, but including the extra factor of two
discussed in Section 1.
Adapting Ethier and Nagylaki’s (1980) theorem to the
present case, we show that over one generation
(suppressing t),

e�1
D Ez½X Dð1Þ � x� ¼ bðx; yÞ þ oð1Þ; ð8Þ

e�1
D Ez½ðX Dð1Þ � xÞ2� ¼ aðx; yÞ þ oð1Þ; ð9Þ

e�1
D Ez½ðX Dð1Þ � xÞ4� ¼ oð1Þ; ð10Þ

d�1
D Ez½Y D

i ð1Þ � yi� ¼ ciðx; yÞ þ oð1Þ; ð11Þ

d�1
D Varz½Y D

i ð1Þ� ¼ oð1Þ; ð12Þ
in which

e�1
D ¼ ðNDÞ2

2
1 þ 1 � m

Nm

� �
; ð13Þ

d�1
D ¼ D ð14Þ

and

aðx; yÞ ¼ xð1 � xÞ þ
XN

i¼0

aiyi; ð15Þ

bðx; yÞ ¼ g
N � 1

N
xð1 � xÞ þ

XN

i¼0

biyi; ð16Þ

ciðx; yÞ ¼
XN

j¼0

yjP
	
ji � yi: ð17Þ

In Eqs. (8)–(12) and below, Ez½�� denotes an expectation
over ZDðt þ 1Þ for a given zðtÞ: The terms ai; bi; and P	

ji

are functions of N; m; and x; and are detailed below.
The first two of these are inconsequential because y-0
in the limiting diffusion. One further technical require-
ment, in this case where dN ¼ 0; is that the zero
solution, cðx; 0Þ ¼ 0 of the (deterministic) differential
equation

d

dt
Yðt; x; yÞ ¼ cðx;Y ðt; x; yÞÞ; Yð0; x; yÞ ¼ y ð18Þ

is globally asymptotically stable for xAð0; 1Þ:
Then by Theorem 3.3 of Ethier and Nagylaki (1980),

as D tends to infinity the above system reduces to a
diffusion xð�Þ with generator

L ¼ 1

2
aðx; 0Þ d2

dx2
þ bðx; 0Þ d

dx
: ð19Þ

This is our main result, and is shown to be true in the
next four sections. From (15) and (16) it is clear that the
form of this diffusion is identical to that for an
unstructured population (Ewens, 1979), only with a
different time scale and the usual factor of two
difference between the Moran model and the Wright–
Fisher model. The time scale depends on ðNDÞ2=2; as in
the unstructured case (see Eq. (2)), but is lengthened by
the factor 1 þ ð1 � mÞ=ðNmÞ which is greater than one if
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mo1 and is equal to one if m ¼ 1: There is an additional
factor ðN � 1Þ=N which decreases the strength of
selection, and reflects the fact that there is no within-
deme variation for selection to act upon when N ¼ 1:
Note that populations in which selection acts across the
entire populations do not have this property, and
instead become identical in all respects to an unstruc-
tured population when N ¼ 1 and m ¼ 1:

2.2. Allele frequencies within a deme

Wright (1931) studied the equilibrium distribution
of allele frequencies in a single deme that receives
migrants from a continent of infinite size or from the
other demes in an infinite island model. What is
important in either case, and what allows the frequencies
within the deme to reach an equilibrium, is that the
allele frequencies among migrants are constant. Many
others since have studied distributions of this sort, which
are essentially the same as equilibrium distributions
under bi-directional mutation. Rannala (1996), for
example, recently studied the within-deme equilibrium
distribution of allele frequencies in a Moran type
model of reproduction with multiple alleles. Our
results are closely related to these, in particular those
of Moran (1962, pp. 129–132), except that the allele
frequencies among migrants are allowed to change
according to the diffusion (19) above. However, the
time scale of these changes is so much longer than the
time scale of migration and drift within demes that it can
be treated as constant in establishing the equilibrium
distribution.

Consider what happens in the model described above
when an individual is chosen to die within a deme that
contains i copies of the mutant allele and N � i copies of
the wild-type allele. The probability that a mutant
individual is the one chosen to die is equal to

l2i

l2i þ l1ðN � iÞ ¼
ð1 � sDÞi
N � sDi

ð20Þ

¼ i

N
� sD

iðN � iÞ
N2

þ Oðs2DÞ; ð21Þ

and the probability that a wild-type individual is chosen
to die is one minus this. The individual is replaced by a
mutant or by a wild-type individual with a probability
that depends on the migration rate and the frequency of
mutant individuals in the entire population, as well as
on i: Overall, the single-step probabilities of transition
for a deme which contains i mutants now and in which
an individual is chosen to die are given by

Pi;iþ1 ¼
N � i

N
þ sD

iðN � iÞ
N2

� �


 ð1 � mÞ i

N
þ mx

� �
þ Oðs2DÞ; ð22Þ
Pi;i�1 ¼
i

N
� sD

iðN � iÞ
N2

� �


 ð1 � mÞ N � i

N
þ mð1 � xÞ

� �
þ Oðs2DÞ; ð23Þ

Pi;i ¼ 1 � Pi;iþ1 � Pi;i�1; ð24Þ

Pi;j ¼ 0 if ji � jj41: ð25Þ

Thus, for a constant x; the allele-frequency changes
within a deme form a Markov process with transition
matrix P; which has entries (22)–(25).

Of course, x will change from time step to time step,
but in a moment we will see that these changes are slow
in comparison to the allele-frequency changes within a
deme. For a constant x; the equilibrium allele-frequency
distribution n within a deme is the solution to

n ¼ nP; ð26Þ

subject to the condition

XN

i¼0

ni ¼ 1: ð27Þ

These equations have a unique solution, which is given
by Moran (1962, p. 132) after making the substitutions
a1 ¼ mð1 � xÞ and a2 ¼ mx for Moran’s mutation
parameters. Note that in the limit of large N and small
m; with M ¼ limN-N Nm and for a constant y ¼ i=N;
the solution converges on a continuous distribution of
allele frequencies within the deme (Moran, 1962) which
is identical to the corresponding limit result for Wright–
Fisher reproduction within the deme (Wright, 1931).

Here we will be considering the limit as D tends to
infinity and sD tends to zero, in which case the effect of
selection on the within-deme equilibrium distribution is
small. Thus, we are concerned with the matrix P	 ¼
limsD-0 P; and we have P ¼ P	 þ OðsDÞ: Because P	;
like P; is a continuant, the solution to n ¼ nP	 can be
obtained exactly as

nk ¼ n0
P	

0;1P	
1;2?P	

k�1;k

P	
1;0P	

2;1?P	
k;k�1

ð28Þ

with n0 determined by constraint (27); see Ewens (1979,
pp. 73–74). Then,

nk ¼
N

k

� �
Gð Nm

1�m
ÞGðNmx

1�m
þ kÞGðNmð1�xÞ

1�m
þ N � kÞ

Gð Nm
1�m

þ NÞGðNmx
1�m

ÞGðNmð1�xÞ
1�m

Þ
; ð29Þ

which differs only by OðsDÞ from the solution to
Eqs. (26) and (27). Note that distribution (29) can also
be expressed as a type of hypergeometric distribution,
specifically a Polya distribution; see Eq. (40.13) in
Johnson et al. (1997). A Polya distribution was
proposed in Wakeley (2003) as an approximation for n
in the case of Wright–Fisher reproduction within the
deme. Distribution (29) converges to a beta distribution
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as N tends to infinity for y ¼ i=N constant and with
M ¼ limN-N Nm (Moran, 1962).

The mean and the variance of the number of mutant
individuals in a deme can be obtained using (26) and
(27) or by using the relation n ¼ nP	 to solve for the
moments recursively. They are

En½K� ¼ Nx; ð30Þ

Varn½K � ¼ N2xð1 � xÞ
Nm þ 1 � m

; ð31Þ

and these are required in computing the moments of
X DðtÞ below. Again these differ only by OðsDÞ from the
mean and variance that would be obtained using n ¼ nP:

2.3. Allele frequencies among demes

If D demes received migrants from a common source
in which the allele frequencies were constant, they
would independently approach the equilibrium n;
and the distribution of the number of demes containing
i ¼ 0; 1;y;N copies of the mutant would be multi-
nomial with parameters D and n0;y; nN : Let ri ¼ Dzi;
so that ðr0;y; rNÞ is a configuration of the demes
among frequency classes. Then, in a single generation
either a deme moves up a single frequency class, a deme
moves down a single frequency class, or no change
occurs in the population. We have

Pfðy; ri; riþ1;yÞ-ðy; ri � 1; riþ1 þ 1;yÞg ¼ ri

D
P	

i;iþ1;

ð32Þ

Pfðy; ri�1; ri;yÞ-ðy; ri�1 þ 1; ri � 1;yÞg ¼ ri

D
P	

i;i�1;

ð33Þ

Pfðr0;y; rNÞ-ðr0;y; rNÞg ¼
XN

i¼0

ri

D
P	

i;i: ð34Þ

Eqs. (32)–(34) define an ergodic Markov chain with a
finite number of states, which will approach a unique
steady state.

Let ptðr0;y; rNÞ be the probability of configuration
ðr0;y; rNÞ at time t: The steady state distribution
satisfies

pNðr0;y; rNÞ

¼
XN

i¼0

pNðy; ri�1 þ 1; ri � 1;yÞ ri�1 þ 1

D
P	

i�1;i

þ
XN

i¼0

pNðy; ri � 1; riþ1 þ 1;yÞ riþ1 þ 1

D
P	

iþ1;i

þ pNðr0;y; rNÞ
XN

i¼0

ri

D
ð1 � P	

i;i�1 � P	
i;iþ1Þ: ð35Þ
The solution to (35) is the multinomial distribution

pNðr0;y; rNÞ ¼
D!

r0!?rN !
nr0
0 ?nrN

N ð36Þ

which is justified because

XN

i¼0

ri

D
ðP	

i;i�1 þ P	
i;iþ1Þ ¼

XN

i¼0

ri

D

ni�1

ni

P	
i�1;i þ

niþ1

ni

P	
iþ1;i

� �
:

ð37Þ

Eq. (37) is shown to be true using the general form of the
solution for nk given in Eq. (28). The methods proposed
by Siegert (1949), in the context of theory of gases, can
be used to prove convergence to equilibrium (36). Note
that Eq. (36) holds for any subsample of K demes if D is
replaced with K ; and

PN
i¼0 ri ¼ K; so (36) might be

useful in estimating migration rates from samples from a
subdivided population.

The proof that the zero solution of (18) is globally
asymptotically stable does not require such a detailed
description of the distribution of demes among
frequency classes. Note that (18) is deterministic in that
x does not change, and further that the solution
cðx; 0Þ ¼ 0 is equivalent to z ¼ n: In a single time step,
ZD

i can either increase by 1=D; decrease by 1=D; or
remain unchanged:

ZD
i ð1Þ ¼

zi �
1

D
with probability zið1 � Pi;iÞ;

zi þ
1

D
with probability

zi�1Pi�1;i þ ziþ1Piþ1;i;

zi otherwise:

8>>>>>><
>>>>>>:

ð38Þ

Measuring time in units of D generations, with
dt ¼ 1=D; and letting D go to infinity, so that the
Oð1=DÞ parts of Pi;j become negligible, we have the
differential equation

dzi

dt
¼ zi�1P	

i�1;i þ ziþ1P	
iþ1;i � ziðP	

i;i�1 þ P	
i;iþ1Þ: ð39Þ

The solution of this equation for the vector z ¼
ðz1;y; zNÞ; with some initial condition zð0Þ; is given by

zðtÞ ¼ zð0ÞeðP	�IÞt; ð40Þ

in which I is the ðN þ 1Þ 
 ðN þ 1Þ identity matrix. The
rate matrix P	 � I has leading eigenvalue l0 ¼ 0; and all
other eigenvalues are less than zero:

li ¼ �im

N
� iði � 1Þð1 � mÞ

N2
ð41Þ

(Cannings, 1974); see also Ewens (1979, pp. 86–87).
Therefore, regardless of initial conditions, zðtÞ-n as
t-N where n is the solution to

0 ¼ nðP	 � IÞ; ð42Þ

and this is identical to solution (29) of n ¼ nP	:
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2.4. The time scale of drift and migration within demes

Here we establish (11), (12), and (17) which set the
(fast) time scale of drift and migration within demes. We
have

Ez½Y D
i ð1Þ � yi� ¼ Ez½ZD

i ð1Þ � zi� þ Ez½nið1Þ � ni�: ð43Þ

Using (38), the first term on the right above is given by

Ez½ZD
i ð1Þ � zi�

¼ 1

D
½zi�1Pi�1;i þ ziðPi;i � 1Þ þ ziþ1Piþ1;i� ð44Þ

¼ 1

D
½zi�1P	

i�1;i þ ziðP	
i;i � 1Þ þ ziþ1P	

iþ1;i� þ OðsD=DÞ

ð45Þ

since Pi;j � P	
i;j is OðsDÞ:

To compute the second term on the right in (43),
we note that the equilibrium n is determined by the
value of X D in each generation. Rewriting Eq. (29),
we have

nið1Þ ¼
N

i

� �
Gð Nm

1�m
Þ

Gð N
1�m

Þ
Yi�1

j¼0

NmX Dð1Þ
1 � m

þ j

� �



YN�i�1

k¼0

Nmð1 � X Dð1ÞÞ
1 � m

þ k

� �
: ð46Þ

Then, putting in X Dð1Þ ¼ x þ Dx and simplifying, the
two products on the right become

Yi�1

j¼0

YN�i�1

k¼0

Nmx

1 � m
þ j

� �
Nmð1 � xÞ

1 � m
þ k

� �
þ Dx

Nm

1 � m

�


 Nmð1 � 2xÞ
1 � m

þ k � j

� �
� ðDxÞ2 Nm

1 � m

� �2
#
: ð47Þ

Expanding this, it is clear that Eq. (46) can be written

nið1Þ ¼ ni þ
X2N

j¼1

Ci;j;N;m;xðDxÞj ð48Þ

and that the coefficients Ci;j;N;m;x are bounded, i.e. do
not depend on D:

The moments of Dx ¼ X Dð1Þ � x are the topic of the
next section, where it is shown that E½ðX Dð1Þ � xÞk� ¼
OðsD=DkÞ if k is odd, and E½ðX Dð1Þ � xÞk� ¼ Oð1=DkÞ if
k is even. From this and Eq. (48), we have E½nið1Þ� ¼
ni þ OðsD=DÞ; and we can write the second term on the
right in (43) becomes

Ez½nið1Þ � ni� ¼
1

D
½ni�1P	

i�1;i þ niðP	
i;i � 1Þ

þ niþ1P	
iþ1;i� þ OðsD=DÞ: ð49Þ
The quantity in brackets in (49) is equal to zero by
definition. Putting (45) and (49) into (43) gives

Ez½Y D
i ð1Þ � yi�

¼ 1

D

XN

j¼0

yjP
	
ji � yi

 !
þ OðsD=DÞ ð50Þ

as needed in Section 2.1.
Using relation (3.12) in Ethier and Nagylaki (1980),

and an argument similar to that above,

Varz½Y D
i ð1Þ� ¼ Varz½ZD

i ð1Þ � nið1Þ� ð51Þ

p2Varz½ZD
i ð1Þ� þ 2Varz½nið1Þ� ð52Þ

¼ 2Varz½ZD
i ð1Þ � zi� þ 2Varz½nið1Þ � ni� ð53Þ

p2Ez½ðZD
i ð1Þ � ziÞ2� þ 2Ez½ðnið1Þ � niÞ2�

ð54Þ

¼ Oð1=D2Þ þ OðsD=DÞ: ð55Þ

The first term on the right in (54) is Oð1=D2Þ directly
from (38). The second term on the right in (54) is
OðsD=DÞ since E½X Dð1Þ � x� is the leading term in
E½ðnið1Þ � niÞ2� and using the moments of X Dð1Þ � x

obtained in the next section.

2.5. Allele-frequency changes in the total population

Demonstrating that (8)–(10) are true is easier here
than in the case of Wright–Fisher reproduction (Wake-
ley, 2003). Here, in a single time step the frequency of
the mutant allele can either increase by 1=ðNDÞ;
decrease by 1=ðNDÞ; or remain unchanged:

X Dð1Þ ¼

x � 1

ND
with probability

PN
i¼0

ziPi;i�1;

x þ 1

ND
with probability

PN
i¼0

ziPi;iþ1;

x otherwise:

8>>>>><
>>>>>:

ð56Þ

The probabilities in (56) are simply the probabilities that
the individual chosen to die is in a deme containing i

copies of the mutant times the probability that i is either
decremented, incremented, or unchanged when that
individual is replaced by an offspring individual.
Therefore, the moments of the change in allele frequency
in the total population are given by

Ez½ðX Dð1Þ � xÞk�

¼

1

ðNDÞk

PN
i¼0

ziðPi;iþ1 � Pi;i�1Þ if k is odd;

1

ðNDÞk

PN
i¼0

ziðPi;iþ1 þ Pi;i�1Þ if k is even;

8>>><
>>>:

ð57Þ

which clearly satisfies the requirement of the diffusion
that the higher moments are vanishing.
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The time scale of the diffusion and the coefficients
aðx; yÞ and bðx; yÞ are obtained by putting (22) and (23)
in (57) and simplifying. We have

XN

i¼0

ziðPi;iþ1 � Pi;i�1Þ

¼
XN

i¼0

zi m x � i

N

� �
þ sD

iðN � iÞ
N2

þ Oðs2DÞ
� �

ð58Þ

¼
XN

i¼0

ðni þ yiÞ m x � i

N

� �
þ sD

iðN � iÞ
N2

� �
þ Oðs2DÞ

ð59Þ

¼ sDxð1 � xÞ ðN � 1Þm
Nm þ 1 � m

þ
XN

i¼0

biyi þ Oðs2DÞ ð60Þ

and

XN

i¼0

ziðPi;iþ1 þ Pi;i�1Þ

¼
XN

i¼0

zi m x � i

N

� �
1 � 2i

N

� �
þ 2iðN � iÞ

N2

� �
þ OðsDÞ

ð61Þ

¼ 2xð1 � xÞ Nm

Nm þ 1 � m
þ
XN

i¼0

aiyi þ OðsDÞ; ð62Þ

which makes use of moments (30) and (31) of the
distribution n: The terms bi and ai are defined to be
proportional to the bracketed terms in (59) and (60),
respectively. A little algebra gives aðx; yÞ; bðx; yÞ; and eD

presented in Section 2.1. This completes the application
of Ethier and Nagylaki’s (1980) theorem, and shows that
the diffusion operator (19) governs the change in allele
frequencies in the total population, while n of Eq. (28)
describes the distribution of demes among frequency
classes.

2.6. The limit of large deme size

The essential structure of the diffusion process
described above continues to hold in the limit as
N-N; with the migration equal to M ¼ limN-N Nm:
It is necessary also to define the selection parameter to
be equal to g ¼ limN-N limD-N NDsND=2: Note that
the diffusion time scale, in which time is measured in
units of e�1

D generations, already depends linearly on N;
so taking the limit N-N simply further lengthens the
time scale. The within-deme quantities Pi;j and n also
converge to continuous limits. This uniform conver-
gence in N was found recently in many-demes genealo-
gical, or coalescent, models (Lessard and Wakeley,
2004).
3. Discussion

We have shown that when the number of demes tends
to infinity, the diffusion approximation for an unstruc-
tured population applies to the allele frequency in a
subdivided population with island model migration
among demes. We have assumed a Moran model of
reproduction, so this work builds on that in Wakeley
(2003), where Wright–Fisher reproduction was assumed.
Under both models of reproduction, the diffusion has a
time scale, or an effective population size Ne ¼ e�1

D ;
which is equal that of the diffusion for an unstructured
population times a factor which depends on the
migration rate and the deme size. This many-demes
diffusion result holds for any deme size NX1 and for
any non-zero migration rate 0omp1; but it also holds
in the limit as the deme size tends to infinity, with the
usual migration parameter M ¼ limN-N Nm: Thus, all
the many well-known results of the standard unstruc-
tured diffusion model, for example in Chapter 5 of
Ewens (1979), should be valid in the case where the
population is subdivided into many demes.

It is not simply this change in Ne that distinguishes a
subdivided population with many demes from a
panmictic one. As the allele frequency in the total
population changes by drift and selection on this long
time scale, the collection of demes remains at the
equilibrium n through the action of migration and
within-deme drift. While the fast time scale of migration
and within-deme drift guarantees that the demes track
the shifting equilibrium n closely, it is important to keep
in mind that the within-deme process is discrete as long
as N is finite. More precisely, the series of mutant allele
counts within a single deme forms a time-inhomoge-
neous Markov chain with transition matrix PðtÞ at time
t: A single deme will spend much of its time fixed for one
or the other allele if m is small, but will have a mutant
allele frequency close to x much of the time if m is large.
The variance in mutant allele counts among demes at a
time when the frequency of the mutant allele in the total
population is equal to x is given by Eq. (31). Finally,
note that the number of time steps between potential
changes in allele count within a deme is geometrically
distributed with mean D because each deme has a
chance 1=D at each time step of being the one in which
an individual dies and is replaced.

Simulations, such as those of Cherry and Wakeley
(2003), support the use of this approximation over a
broad range of D; N; m; and sD: Similarly, several
authors have recently computed the first two moments
of the change in allele frequency—eDaðx; 0Þ and
eDbðx; 0Þ in the present notation—for a variety of
models of subdivision, and then used simulations to
assess the accuracy of the implied diffusion approxima-
tion. Cherry (2003a, b) studied the effect of dominance
or frequency dependence of selective differences and the
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effects of extinction and recolonization of demes on
fixation probabilities and fixation times. Whitlock
(2003) studied these quantities in similar models to
those of Cherry (2003a, b) and also showed that the
same approach makes useful predictions in the case of
the stepping-stone model of migration (Kimura and
Weiss, 1964). Roze and Rousset (2003) study partial
selfing in addition to the above processes, and present a
novel method of calculating eDaðx; 0Þ and eDbðx; 0Þ
based on the partial derivatives of a fitness function and
on probabilities of genetic identity. Roze and Rousset
(2003) recognize that the diffusion relies on a separation
of time scales and that it does not depend on the
deme size N tending to infinity. The simulations
presented in these works for a variety of different
population models suggest that the many-demes limit,
with its separation of two time scales, should hold in
many different situations.
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