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We study the properties of gene genealogies for large samples using a continuous approximation introduced by R. A.
Fisher. We show that the major effect of large sample size, relative to the effective size of the population, is to increase the
proportion of polymorphisms at which the mutant type is found in a single copy in the sample. We derive analytical
expressions for the expected number of these singleton polymorphisms and for the total number of polymorphic, or
segregating, sites that are valid even when the sample size is much greater than the effective size of the population. We use
simulations to assess the accuracy of these predictions and to investigate other aspects of large-sample genealogies. Lastly,
we apply our results to some data from Pacific oysters sampled from British Columbia. This illustrates that, when large
samples are available, it is possible to estimate the mutation rate and the effective population size separately, in contrast to
the case of small samples in which only the product of the mutation rate and the effective population size can be estimated.

Introduction

Although the history of population genetics dates back
more than one hundred years, the genealogical approach
that characterizes modern work emerged only during the
1970s (Ewens 1972; Karlin and McGregor 1972; Watterson
1975) in response to newly available genetic data (Harris
1966; Lewontin and Hubby 1966). It was soon formalized as
the coalescent by Kingman (19824, 1982b) and studied
extensively from a more biological standpoint by Hudson
(1983) and Tajima (1983). The coalescent is intuitively
appealing, has a relatively simple mathematical structure,
and is easily applied to data. Thus it has led to impressive
advances and now frames most work in population genetics.
A number of tests of the coalescent null model have been
proposed, among them Tajima’s (1989) D and the statistics
of Fuand Li (1993). Because of the overwhelming historical
importance of the neutral theory of molecular evolution
(Kimura 1983), these tests are often mistakenly viewed as
tests of selective neutrality only. However, the standard
coalescent model involves a long list of assumptions, and
when the model is rejected it is difficult to distinguish among
several possible explanations (Simonsen, Churchill, and
Aquadro 1995; Nielsen 2001).

In addition to natural selection, demographic factors
like population subdivision, population growth, and
population decline can cause the model to be rejected.
Accepting their lack of specificity, the fact that Tajima’s
(1989) D and the statistics of Fu and Li (1993) have power
to detect these deviations can be viewed as advantageous,
because subdivision and changes in size are important
biological properties of populations. Here we consider an
assumption of the coalescent that has mostly been
overlooked: the assumption that the sample size is much
smaller than the effective size of the population (n <€ N,).
We derive expressions for the expected number of
singleton polymorphisms and the expected total number
of polymorphisms in a sample that can be as large or larger
than the effective size of the population. Under the infinite
sites model of mutation (Kimura 1969; Watterson 1975),
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we find that the main effect of large sample size is to
increase the number of singletons in the sample relative
to coalescent predictions. The increase in the relative
number of singletons will give negative values of the
statistics mentioned above, and thus will be indistinguish-
able by these tests from other factors such as population
growth (Simonsen, Churchill, and Aquadro 1995). This
is clearly undesirable and suggests that the genealogical
approach to population genetics should be expanded
to include the possibilty that the sample size is not much
greater than the effective size of the population.

We use a continuous approximation for the sample
size divided by the effective size (x = n/N,) that was
previously employed by Fisher (1930) and Watterson
(1975). Fisher (1930) studied variability maintained in
a large population by the introduction of a single mutant
each generation. He used what is now known as the
infinite sites model of mutation with free recombination
between sites (Kimura 1969) and derived expected values
of the numbers of mutants at low frequency (singletons,
doublets, etc.), as well as the total number of poly-
morphisms maintained. In modern terms, Fisher’s solution
applies when the parameter 0 is equal to 2, because 0 is
defined to be the mutation rate per gene copy times twice
the number of gene copies in the population. Here we
assume a haploid population, so 8 = 2N, u, but the results
can be applied to diploid organisms if 6 = 4N, u. The fact
that Fisher assumed exactly one mutant entered the
population each generation is irrelevant in comparing
predictions about expected levels of polymorphism. He
simply assumed that there was no variability in the mutation
process, whereas today we model muations in the
population as a Poisson process with rate 6/2 per generation.
Another difference between Fisher’s approach and the
modern genealogical one concerns recombination. Under
neutrality, however, the expected values derived by Fisher
(1930) and Watterson (1975) and those reported by us below
do not depend on the recombination rate because the
marginal distribution of genealogies at every site is the same
regardless of recombination. Predictions about the variances
of these quantities would depend on the recombination rate.

Table 1 shows Fisher’s (1930) predictions for the
expected numbers of mutants in one through five copies in
the entire population. Fisher used what is now known as



Table 1

Coalescent and x = 1 Predictions for the Expected
Number of Mutant Factors Maintained in Low Count
in the Population when 0 = 2

Mutant Count Coalescent x=1 Excess

1 1.000000 1.120458 0.120458
2 0.500000 0.476888 —0.023112
3 0.333333 0.335932 0.002599
4 0.250000 0.250548 0.000548
5 0.200000 0.199881 —0.000119

Note:—This is adapted from the table on page 215 in Fisher (1930).

the Wright-Fisher model, in which the effective size of the
population is identical to the census size. Thus, table 1
predicts the pattern of variability in a sample whose size is
the same as the effective size of the population. The values
in the table are scaled in terms of 6. That is, they hold for
6 = 1, and predictions for other values are obtained simply
by multiplying these values by 6. The column marked
“Coalescent” shows what is now clear are the predictions
of the standard coalescent model: that 6 singletons are
expected, 0/2 doublets, 6/3 triplets, and so on (Tajima
1989; Fu 1995). The coalescent predictions are surprisingly
close to the actual values, even when the entire population
is sampled. They are off by a little more than 12% for
singletons, 4.6% for doublets, and by less than 1% for
all other classes of mutations. This is surprising because
a fundamental property of the coalescent—that at most one
common ancestor event can occur in a single generation—
does not hold for large samples. We show below, however,
that these differences between coalescent predictions and
reality can be quite large when the sample size is greater
than the effective size of the population.

It is generally accepted that in many cases the effective
size of a population will be less than the its actual size (Hartl
and Clark 1997; Hedrick 2000), although one exception to
this is when the population is subdivided (Wright 1943).
This raises the possibility that the sample size in empirical
population genetics studies might exceed the effective size
of the population. This is likely already the case for
hypervariable region 1 of human mitochondrial DNA
(mtDNA), for which there are n = 9388 sequences available
(as of June 2002; see http://db.eva.mpg.de/hvrbase/) and
N, may only be about 5000 (Takahata 1995; Hawks et al.
2000). The work we present here shows that the main effect
of this will be to increase the proportion of singleton
polymorphisms in the sample. Beckenbach (1994) proposed
that sample sizes larger than the effective population size
could explain such seemingly odd patterns of genetic
variation in samples of mtDNA data from Pacific oysters,
Crassostrea gigas, from British Columbia. We reanalyze
their data below and show that they are in fact consistent
with small N,. However, the mutation rate needed to
reconcile the dichotomy between abundant polymorhisms
and small N, indicates that n > N, is not the only explanation
for the observed pattern.

Theory

Let x = n/N, be the scaled sample size from
a population of effective size N,. To allow that x could be
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greater than 1, we assume a population of constant size N in
which only N, individuals (N = N,) reproduce and the other
N — N, die without reproducing. Generations are assumed
to be discrete; each generation all adults die and are replaced
by offspring. We assume that the types of these N offspring
are obtained by random sampling with replacement among
the N, individuals that do reproduce. Although we assume
a haploid organism, another way to think of this is that N,
individuals each produce a very large number of “gametes”
and the next generation (of N individuals) is a random
sample from this gamete pool. If N = N,, then this model is
identical to the usual Wright-Fisher model. We assume that
mutations occur at rate u per gene copy per generation, and
we use the scaled mutation rate 6 = 2N,u, because any
mutations that happen in the germ lines of the N — N,
indiviuals that do not reproduce are lost.

We seek expressions for the expected number of
singleton polymorphisms E[n;] and the expected total
number of polymorphic or segregating sites E[S]. Because
of the Poisson nature of the mutation process, we have

E[n,] = b1(x) (1)

E[S] = 0t(x) (2)

where 1, and 1 are the expected lengths of all the external
branches in the genealogy of the sample and the expected
total length of the genealogy of the sample, respectively,
measured in units of 2N, generations. Under the standard
coalescent model (in which x — 0), we have t; = 1 and
T= Z,";ll 1/i, and these results can be obtained in a number
of different ways (Watterson 1975; Tajima 1989; Fu and
Li 1993; Fu 1995). Here, we take a backwards-looking
“balls in boxes” approach. That is, the genealogy of the
sample is generated by throwing n balls into N, boxes,
allowing for coalescent events, and repeating this pro-
cedure each generation with the remaining ancestral
lineages until the most recent common ancestor of the
sample is reached. This is a standard method under the
coalescent, but when # is large, multiple coalescent events
can occur in the same generation.

To obtain t(x) and t(x) here we follow Fisher (1930)
and Watterson (1975) and consider a continuous approx-
imation of the scaled sample size as N, goes to infinity for
a given x = n/N,. In this case, we can use the fact that the
scaled number of ancestors of the sample of size x
converges in probability to its asymptotic mean 1 — e " as
N, goes to infinity; see page 267 in Watterson (1975).
Therefore, in the case of t(x) we have the following
recursion over a single generation,

(%) =§+ (1 —e™), (3)

in which the time parameter is suppressed because we
assume that the population is at equilibrium. In words,
equation (3) says that the expected total branch length of
the genealogy of a sample of size # in this limit is equal to
the lengths of branches between now and the previous
generation, 1n/(2N,) = x/2, when time is measured in units
of 2N, generations, plus the expected total branch length
of the genealogy of the N, (1 — ™) lineages remaining
one generation in the past.



210 Wakeley and Takahashi

Fisher (1930) and Watterson (1975) found solutions
for t(x) using series approximations near x = (. These
solutions do not hold when x is large but are quite good for
x < 2 (see Simulations, below). Here we use the fact that
1 — e " is less than 1 for all x, together with Watterson’s
(1975) results and equation (3) to make predictions for any
value of x. In the present notation, Watterson’s (1975)
equation 1.4b gives

v (x) = log(n) + 7+ 581 (4)
in which g(x) is given by Watterson’s (1975) equation
2.24, and where v = 0.57721566. .. is Euler’s constant.
Thus, we use equation (3), but replace the second term
on the right with 1#(1 — ¢™*) to make 1(x) accurate for
all x.

Watterson (1975) did not consider mutant allele
frequencies, and Fisher (1930) derived the expectations
only for mutants in low copy number and assuming x = 1
(table 1). However, a solution for t;(x) can be obtained,
again via a recursive equation over a single generation. In
this case it is necessary to weight the contributions of
ancestral lineages by the probability that they have just one
descendent in the sample. We obtain

T(l—e™). (9)

X xe "

) :E—i—l—e—x

The first term on the right represents the increment to t; in
the first generation looking back. It is the same as the first
term on the right in equation (3) because all these first-
generation branches have just one descendent in the
sample. Some proportion of the ancestors of the sample
will have one descendent in the sample, but others will
have two, three, four, etc. The number of ancestors that
have a single descendent in the sample is the same as the
number of boxes that contain exactly one ball when #n balls
are thrown into N, boxes. Like the case of the total scaled
number of ancestors (1 — ¢ ) above, the scaled number of
ancestors that have one descendent in the sample of size x
converges in probability to its asymptotic mean xe ™ as N,
goes to infinity; see Feller (1968, p. 59). Thus, the term
multiplying t;(1 — ¢ ) on the right side of equation (5) is
equal to the proportion of ancestral lineages that have just
one descendent in this limit.

By successively taking derivatives with respect to x
on both sides of equation (5), we can obtain a series
approximation to the function t;(x) near x = 0. This is the
method Watterson (1975) used to obtain his equation
(2.24) for g(x). Here we obtain

‘t*(x)—l—l—ix—l— ! X+ 37 ¥
L 127 18%2! 720%3!
N 4 865
1080 4! 18144X5!
1891 67543
— X — X
5670X6! 155520%7!
601633
6
116640% 8! ’ (6)

and this number of terms is sufficient to give Tj(1) =
1.120439 which is close to the value obtained by Fisher

(1930) shown in table 1. Of course, we cannot expect
a series approximation near x = 0 to be accurate for larger
x, so we use equation (5), but put tj(1 — ¢~ *) on the right
in place of 1,(1 — ¢™™). This gives 1,(1) = 1.120458
which matches Fisher’s (1930) result to six decimal places
and makes T,(x) accurate for any x.

Because t(x) and 71,(x) can be computed, we can use
a simple moment method to jointly estimate 6 and x.
Namely, we equate the observed values of n; and S with
their expectations (1) and (2), and solve numerically for 6
and x. Because x = n/N, and n is always known,
estimating 6 and x is equivalent to estimating N, and u. It
is also possible, using the simulations described in the next
section, to estimate the likelihood surface for the observed
S and m; or a posterior distribution of 6 and x by Monte
Carlo integration over genealogies. We apply both these
methods to some mtDNA data from Pacific oysters
(Beckenbach 1994; Boom, Boulding, and Beckenbach
1994) under Application to Oyster Data, below.

Simulations

We performed simulations to assess the accuracy of
these analytical approximations over a range of values of
N, and to investigate other properties of these large-sample
genealogies. The simulations built sample genealogies
under the discrete-generations model by randomly choos-
ing the parents of all ancestral lineages each generation. If
there are k lineages, this is equivalent to throwing k balls
into N, boxes. The number of balls in each occupied box
determines the number of common ancestor or coalescent
events, and the full genealogy of the sample was recorded.
While k& is not small relative to N,, there can be many
coalescent events per generation. The program is written in
the C programming language and is available at http://
www.oeb.harvard.edu/faculty/wakeley/.

Figure 1 compares simulation results with the pre-
dictions from equations (3) and (5) using expressions (4)
and (6) on the right-hand sides as described above. The
results (4) and (6) using series the approximations near
x = 0 are also shown. In the case of t(x), the predictions
of the standard (n < N,) coalescent are shown as
well. The coalescent prediction for t,(x) is equal to 1 for
all x. The simulations presented in figure 1 were performed
with N, = 1000 over a range of n from 500 to 10,000 (x =
0.5 to x = 10). As expected, equations (4) and (6) do not
perform well when x is large. In addition, the predictions
of the standard coalescent are good only for small x. The
predictions using equations (3) and (5) together with
equations (4) and (6) are accurate for all x.

Whereas the theory of the previous section focused
on singleton polymorphisms, and this is certainly the
major effect, figure 2 shows that other components of the
site-frequency distribution can also differ markedly from
the predictions of the standard coalescent. Looking at
equation (5), we can see that, when x is large, nearly all the
singleton polymorphisms will be the result of mutations
that occurred in the immediately previous generation. Prior
to that, few lineages will have only one descendent in
the sample. In fact, so many coalescent events will oc-
cur in that first generation that doublet, triplet, etc.,
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Fi6. 1.—Comparison of simulations to analytical results for (A) the
total length of external branches and (B) the total length of the genealogy.
Dots are the average values among ten thousand simulation replicates,
and solid curves plot the theoretical expectations derived in the text. The
dashed curve below in (B) is the expectation from the coalescent, and the
other dashed lines are series approximation for the expectations around
x = 0 (see text for details).

polymorphisms will be underrepresented relative to the
standard coalescent. This is evident in table 1, which
displays Fisher’s (1930) results for x = 1. In general, there
will be a mode in the site-frequency distribution at mutant
counts close to x(1 — e *)—approximately x when x is
large—which is the expected number of balls per box
when n balls are thrown into N, boxes or, equivalently,
the expected number of descendents per lineage. Figure 2
shows this effect when x = 10.

We also used simulations to examine the accuracy of
the theoretical predictions when N, is not large. It might
have been expected that our results using a continuous
approximation for x = n/N, would not be accurate for
smaller » and n and N,. Surprisingly, our results give
accurate predictions over a very broad range of N,. We do
not display these results, but note that the worst case we
examined was n = N, = 2. The correct result here is E[S]
= E[n;] = 0, whereas our results predict that E[S] =
1.370 and E[n,] = 1.126.

Application to Oyster Data

It is typical to seek an explanation whenever data
show an excess of singleton polymorphisms relative to the
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FiG. 2.—The expected proportion of segregating sites at which the
mutant base is present in counts ranging from 2 to 20 in a sample of n =
10000. Black bars are averages of ten thousand simulation replicates with
N, = 1000 (x = 10), and grey bars are the analytical prediction of the
coalescent (Fu 1995). This is just the far left edge of the distribution;
mutant counts can be as large 9999. The values for singleton mutants are
not shown; they are 0.397 for the simulated data and 0.102 for the
coalescent prediction.

predictions of the coalescent, for instance whenever
Tajima’s (1989) D is negative. The results presented
under Theory, above, show that a sample size close to or
larger than the effective size of the population can explain
an excess of singletons. Thus, if such a pattern is observed,
for instance if Tajima’s (1989) D is significantly negative,
it may be appropriate to fit the model we considered here
to the data. Note that if the excess of singletons is greater
than about 12% (table 1, fig. 1), the model will estimate N,
to be less than the sample size n. Thus, the present model
should probably not be applied if n is small.

Boom, Boulding, and Beckenbach (1994) sampled
n = 141 Pacific oysters, C. gigas, from British Columbia
and performed restriction enzyme digests of their mtDNA.
Subsequently, Beckenbach (1994) analyzed the pattern of
these restriction fragment length polymorphism (RFLP) in
the context of the infinite alleles mutation model (Ewens
1972). He proposed that samples sizes larger than the
effective population size could explain the overabundance
of low-frequency haplotypes (i.e., ones found in a single
copy, or a few copies, in the sample of n = 141) in British
Columbian C. gigas. Beckenbach (1994) used simulations
to show that large sample size can explain such a pattern,
with most single-copy haplotypes resulting from mutations
in the immediately previous generation and the few middle
frequency haplotypes resulting from mutations that
occurred earlier in the history.

To illustrate the application of our results, we
reanalyzed the data of Boom, Boulding, and Beckenbach
(1994), but from the perspective of the infinite sites
mutation model we have assumed. The RFLP haplotype
frequency data in table 1 of Boom, Boulding, and
Beckenbach (1994) and the lists of fragment sizes in their
table 2 were used to estimate that the data are the result
of § = 50 mutations and that for n; = 31 of these the
mutant type is found in only a single copy in the sample.
Equating these to their expectations (1) and (2) and solving
numerically, we obtain point estimates of 6 = 5.8 and x =
10.8, and thus N, = n/x = 13. We also used our simulation
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program to estimate the likelihood surface for these data
using Monte Carlo integration (over genealogies). A grid
of paired (N,,0) values was examined, and for each of
these we computed the log-likelihood of the data by
averaging its value over 50,000 replicate genealogies. The
likelihood for each simulated genealogy is easily com-
puted by recording its values of t and t; and using the
fact that, given these values, S — 1n; and n; are indepen-
dent Poisson random variables with parameters 0(t — t;)
and O, respectively. Figure 3 shows the result. Note that
figure 3, resealed, could be interpreted as a posterior
distribution of N, and 6 under a Bayesian approach.

Discussion

The genealogies of large samples, where 7 is on the
order of or even greater than the effective size of the
population, differ from those of smaller samples because
multiple coalescent events occur in single generations.
Most of these occur in the first few generations looking
back. Multiple coalescent events are, in fact, the sole cause
of the differences between the patterns we have described
and the predictions of the coalescent. The two main effects
of large sample size, when only single-site patterns are
considered, are that singleton polymorphisms are relatively
more abundant in large samples and that there is a mode in
the site-frequency distribution for mutant counts around n/
N.. These effects become quite pronounced when n > N,,
and are surprisingly mild when n < N,. Mutations which
have occurred in the immediately previous generation are
the source of the excess singletons, and the expected
number of these is 0x/2, or nu. In the standard coalescent,
this number is negligible in comparison to the expected
number of singletons (0) and the expected number of
segregating sites (0 Z;:ll 1/7), but for large samples these
recent mutations can account for the bulk of poly-
morphisms in the sample.

The mode in the site-frequency distribution is similar
to the pattern recently described for samples from a single
local population in a metapopulation subject to local
extinction and recolonization (Wakeley and Aliacar 2001).
In both cases, this is the result of multiple coalescent events
in a single generation. The mutant count at this mode is
equal to the expected number of descendents per ancestral
lineage when ancestors are chosen by randomly throwing n
balls into N, boxes (in the metapopulation case, the
propagule size k replaces N,). This highlights a potential
problem with the coalescent approach to studying pop-
ulation bottlenecks, in which it is assumed that the
bottleneck merely rescales coalescent times. More gener-
ally, this could be a problem whenever populations change
in size over time. When the sample size or the number of
ancestral lineages at the time of the bottleneck is not
smaller than the effective size of the bottleneck population
it will be important to allow for simulaneous coalescent
events. A rigorous but abstract theory of coalescents with
such multiple mergers is being developed (Pitman 1999;
Sagitov 1999; Schweisnberg 2000), as well as general
theory of such processes both forward and backward in time
(Donnelly and Kurtz 1999), but so far without attention to
making predictions about measures of genetic variation.

2 4 6 8 10 12 14

FiG. 3.—Contour plot of the likelihood surface for the data (n = 141,
S =50, n; = 31) of Boom, Boulding, and Beckenbach (1994). Contours
are draw every three log-likelihood units from the maximum which is
marked with an x.

The application of our model and results to the Pacific
oyster mtDNA data of Boom, Boulding, and Beckenbach
(1994) shows that an excess of singleton polymorphisms
can lead to estimates of the effective size of the population
that are smaller than the sample size. An interesting aspect
of the present work is that, given appropriate data (i.e.,
where n > N,), it will be possible to estimate N, and u
separately, in contrast to the case of small samples, in
which only the composite parameter 6 can be estimated.
However, in this case, the parameter estimates themselves
indicate that n > N, is not the (only) explanation for the
observed pattern. Namely, we estimate u to be equal to 6/
(2N,) = 5.8/26 = 0.2 per generation. Although it is
difficult to say how many sites in the mtDNA were
effectively surveyed in the restriction digests of Boom,
Boulding, and Beckenbach (1994), this value of u is
unrealistically large. Some other phenomenon, such as
recent population growth or natural selection, must be the
source of (at least some of) the excess singletons in this
sample.

We did not present an analysis of the obvious data for
this: the 9388 sequences of hypervariable region 1 of
human mitochondrial DNA mentioned in the Introduction.
A preliminary analysis of these data revealed that, in
contrast to the oyster data, they showed a deficiency of
singletons rather than an excess. Still, it seems likely that
n > N, for these human mtDNA data. Assuming this is so,
one possible explanation for the absence of the predicted
pattern is that hypervariable region 1 of human mitochon-
drial DNA does not conform to the infinite sites model
(Wakeley 1993). If the nu mutations expected in the
immediately previous generation were to occur mostly at
some small number of hypermutable sites, then those sites
would have mutant counts greater than 1.

As molecular technologies develop even further to



allow easy measurement of genetic variation, it will
become even more important to model large-sample
genealogies and to develop efficient methods of analysis.
Although the simplicity of the standard coalescent will be
lost, the work presented here shows that a continuous
approximation for x = n/N,, first used by Fisher (1930)
then later by Watterson (1975), can give useful analytical
results.
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