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a b s t r a c t

Using a heuristic separation-of-time-scales argument, we describe the behavior of the conditional
ancestral selection graph with very strong balancing selection between a pair of alleles. In the limit
as the strength of selection tends to infinity, we find that the ancestral process converges to a neutral
structured coalescent, with two subpopulations representing the two alleles and mutation playing the
role of migration. This agrees with a previous result of Kaplan et al., obtained using a different approach.
We present the results of computer simulations to support our heuristic mathematical results. We also
present a more rigorous demonstration that the neutral conditional ancestral process converges to the
Kingman coalescent in the limit as the mutation rate tends to infinity.
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1. Introduction

Balancing selection is a phenomenon that fitness differences
among individuals in a population tend to preserve genetic
variation. It is a special case of frequency dependent selection in
which, roughly speaking, rare alleles are favored over common
ones. Theoretical studies of balancing selection date back to the
beginning of population genetics (Fisher, 1930; Wright, 1931;
Haldane, 1932; Wright, 1939) and more recently have focused
on explaining the unusual patterns of variation observed at
some genetic loci (Hudson and Kaplan, 1988; Takahata, 1990;
Vekemans and Slatkin, 1994). These patterns include high levels
of polymorphism and allelic variation shared between species; for
an example from plants see Charlesworth et al. (2006).
It seems clear from recent genome-wide studies in humans

(Asthana et al., 2005; Bubb et al., 2006) that long-term balancing
selection is not as ubiquitous as purifying selection or even positive
selection. Strong evidence has been found at only a handful of
loci in humans, including the well known cases of the major
histocompatibility loci (HLA) and the locus determining ABO blood
type (Bubb et al., 2006). Loci have also been identified in other
species. In the plant family Brassicaceae, the genes involved in self-
incompatibility systems are under very strong balancing selection
(Richman et al., 1996; Kamau et al., 2007). In the case of the
alcohol dehydrogenase locus in Drosophila melanogaster, Hudson
and Kaplan (1988) were able to explain variation near a codon
under balancing selection by assuming that the frequencies of the
two amino acids at that site were held constant over long periods
of time.
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Although balancing selection may be rare compared to other
forms of selection, good examples do exist and these apparently
exhibit strong selection. Thus, it is of interest to understand the
properties of models of balancing selection, in particular when
selection is strong. In this paper, we present a heuristic analysis of
strong balancing selection in the simple case of two allelic types.
In particular, we consider a model of symmetric heterozygote
advantage in the context of the conditional ancestral selection
graph (Krone and Neuhauser, 1997; Neuhauser and Krone, 1997;
Stephens and Donnelly, 2003) and make a connection between
this model and the model of Hudson and Kaplan (1988) in which
the strength of selection is assumed to be infinite. We support our
mathematical results using computer simulations.

2. Methods and results

We will focus on the special case of symmetric heterozygote
advantage between two alleles, but we begin with the general
diploid selection model described in Stephens and Donnelly
(2003). Our notation differs slightly from theirs.
There are K possible alleles (A1, A2, . . . , AK ) at a single locus

without recombination. Forward in time, the scaled rate of
mutation from any allele to allele Ai is θαi/2, where

∑K
i=1 αi = 1.

This ‘parent-independent’ mutationmodel can be used to describe
any two-allele mutation model, but only some models with K ≥ 3
alleles. There are K(K − 1)/2 scaled selection parameters, one for
each unique diploid combination of alleles, or genotype, and these
are represented by σ(Ai, Aj). Thus, σ(Ai, Aj) = σ(Aj, Ai). Without
loss of generality (Donnelly and Kurtz, 1999), we may assume that

0 ≤ σ(Ai, Aj) ≤ σmax for all i and j.

These parameters – θ , αi, and σ(Ai, Aj), for i, j = 1, . . . , K
– are those of a continuous-time, continuous-allele-frequency
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diffusion limit which holds for a broad class of discrete-
time, finite-population-size models, including the Wright–Fisher
model (Fisher, 1930; Wright, 1931) and the Moran model (Moran,
1958, 1962), the limit being as the population size tends to infinity
with time rescaled appropriately; see Ewens (2004).
This is the most commonly used diffusion approximation in

population genetics and is based on the assumption that the
per-generation probability of mutation and the absolute fitness
differences among individuals are on the order of the inverse of
the population size, so that the rescaled parameters θ and σ(Ai, Aj)
are finite. Karlin and McGregor (1964) and Norman (1975) have
described other diffusion approximations that are appropriate
when the per-generation probability of mutation and the absolute
fitness differences among individuals are much greater than the
inverse of the population size, so that the rescaled parameters
would tend to infinity as the population size tends to infinity. We
will return to these other, ‘‘Gaussian’’ diffusion models below.
The frequency of allele Ai in the population is denoted xi, and

the state space of the forward-time diffusion process is the K − 1-
dimensional unit simplex

∆K = {(x1, x2, . . . , xK ) : xi ≥ 0, i = 1, 2, . . . , K ,
x1 + x2 + · · · + xK = 1}.

The stationary distribution of this diffusion process, with general
diploid selection and parent-independent mutation, is known up
to a normalizing constant (Wright, 1949, 1969), and is given by

φσ ,θ (x1, . . . , xK ) = Cx
θα1−1
1 · · · xθαK−1K eσ

∗(x1,...,xK )/2, (1)

in which

σ ∗(x1, . . . , xK ) =
K∑
i=1

K∑
j=1

σ(Ai, Aj)xixj

is the scaled mean fitness of the population. In considering the
ancestry of a sample from the population, we are interested in the
sampling distribution

pσ ,θ (n1, . . . , nK ) =
∫
∆K

xn11 · · · x
nK
K φσ ,θ (x1, . . . , xK )dx1 · · · dxK , (2)

which is the probability that an ordered sample of size n contains
ni copies of allele Ai, for i = 1, . . . , K . There are

n!
n1!n2! · · · nK !

such ordered samples and each one has the same probability,
given by (2). The subscripts θ and σ denote the dependence of the
sampling probability on these parameters, while the dependence
on α1, . . . , αK is implicit. Below, we consider the limits θ → ∞
(with σ = 0) and σ → ∞ (with θ constant). The parameters
α1, . . . , αK are treated as constants throughout.
Using the above model, Stephens and Donnelly (2003) de-

scribed a general version of the ancestral selection graph (ASG)
of Krone andNeuhauser (1997). The ASGmodels the joint sampling
distribution of allelic types and gene genealogies when selective
differences exists among alleles. A gene genealogy is the genetic
ancestry of a sample back to its most recent common ancestor.
Under neutrality (i.e., without selection), ancestral processes de-
scribing gene genealogies are relatively simple because all genetic
lineages are exchangeable (Kingman, 1982a,b,c). In the simplest
model, each pair of lineages coalesces (reaches its common
ancestor) independently with rate equal to 1, and the gene geneal-
ogy is a random-joining tree with associated coalescence times.
Neutral models have been extended to include a range of biolog-
ically relevant complications. Notably for our purposes, the struc-
tured coalescent (Takahata, 1988; Notohara, 1990; Herbots, 1997)
describes the movement of lineages between, and their coales-
cence within, subpopulations of constant size.
The ASG is one solution to the problem of non-exchangeability:

that the rates of coalescence between genetic lineages depend on
their allelic states when selection operates. Krone and Neuhauser
solved this problem by constructing a two-layer model in which
allelic types are initially unspecified and all lineages reproduce
with the maximum fitness. Later, after the allelic states are
specified, some reproduction events in which the parents have
less than the maximum fitness are removed. Correspondingly, the
ancestry of a sample whose allelic states are unknown initially
includes some number of virtual lineages which proliferate in a
large ancestral graph. Virtual lineages arise via branching events in
which lineages split as they are followed back in time. Branching
events correspond to the reproduction events in the population
that may or may not be realized, depending on the allelic states
of the parents.
In the ASG, the process of branching and coalescing is followed

back to the first time there is only one lineage, the ‘ultimate’
ancestor of all the lineages. The ultimate ancestor is assigned
an allelic type from the equilibrium distribution, allowing virtual
lineages to be identified and removed from the graph. This leaves
the gene genealogy of the real lineages together with the allelic
types of the sample. For a basic introduction to the ancestral
selection graph, see Section 7.1 in Wakeley (2008b). For a very
general, mathematically rigorous treatment, see Donnelly and
Kurtz (1999).
A second solution to the coalescent with selection is to

explicitlymodel allele-frequency trajectories and gene genealogies
backward in time (Barton et al., 2004; Barton and Etheridge, 2004).
This was the method used by Kaplan et al. (1988), Hudson and
Kaplan (1988) and Kaplan et al. (1989), who additionally assumed
that the strength of selection was essentially infinite. When the
strength of selection is very strong, allele frequencies over timewill
closely follow their predicted deterministic trajectories, with small
Gaussian deviations whose magnitude becomes smaller if the
population size and the rescaled parameters become larger (Karlin
and McGregor, 1964; Norman, 1975). When balancing selection is
exceedingly strong, the allele frequencies can be considered to be
fixed, and the ancestral process has the same formas the structured
coalescent mentioned above, with subpopulations represented by
allelic states (Hudson and Kaplan, 1988).
The conditional ASG is an extension by Slade (2000a,b) to the

case in which the allelic states of the sample are known. When
this is true, the allelic states of all lineages, both virtual and real,
are known during the entire ancestry of the sample. Then it is only
necessary to follow the ancestry back to the most recent common
ancestor of the real lineages (Slade, 2000a) rather than back to the
ultimate ancestor of all the lineages. In addition, some number of
virtual lineages may be ignored (Slade, 2000a; Fearnhead, 2002;
Baake andBialowons, 2008), greatly reducing the number of virtual
branches that appear during the ancestry of the sample. Thismakes
both analysis and simulation more practical. By following the
minimumpossible number of virtual lineages, the limitingσ →∞
ancestral process for directional, or genic, selection and mutation
between two alleles was described in Wakeley (2008a), where it
was also shown that simulations appear feasible for any value of
σ .
Here we study the conditional ancestral selection graph in the

case of strong balancing selection, in particular, symmetric het-
erozygote advantage between two alleles. Under genic selection,
the simplifications of Slade (2000a) and Fearnhead (2002) lead
to the annihilation of all virtual lineages in the limit σ → ∞

(Wakeley, 2008a). Under balancing selection, however, virtual
lineages still proliferate in the graph. Therefore, we approach
the problem without using the simplifications of Slade (2000a)
and Fearnhead (2002), and instead allow virtual lineages to grow
in number, potentially without bound.
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Using a heuristic analysis, we characterize the limiting (σ →
∞) process back to the first coalescent event or mutation event
among the real lineages in the sample.We treat the proliferation of
virtual lineages using a ‘‘separation-of-time-scales’’ method based
on that of Möhle (1998). The limiting process turns out to be
identical to the structured coalescent (Takahata, 1988; Notohara,
1990; Herbots, 1997) process for strong balancing selection
between apair of alleleswith constant allele frequencies, described
previously by Kaplan et al. (1988) using a different approach.
We support our analytical results with computer simulations.
As an illustration of the separation-of-time-scales approach, we
also present a more rigorous treatment of strong mutation under
neutrality.

2.1. The conditional ASG for two alleles and symmetric balancing
selection

Our starting point is the continuous-time conditional ancestral
process given by equations 5 through 8 in Stephens and Donnelly
(2003). We consider balancing selection in the form of symmetric
heterozygote advantage, so that

σ(Ai, Ai) = 0
σ(Ai, Aj) = σ i 6= j
σmax = σ ,

andwe restrict ourselves to the case of K = 2 alleles. The process is
Markovian and the state space in Stephens and Donnelly (2003) is
the set of all possible ordered sets of ancestral lineages with allelic
types specified. We follow Slade (2000a,b) in decomposing the
ancestral lines into real lineages (those we know are ancestral to
the sample) and virtual lineages (those we know are not ancestral
to the sample) and in using r1, r2, v1, and v2 to denote the numbers
of real and virtual lineages of type A1 and A2.
A set of ancestral lines in state (r1, r2, v1, v2)makes transitions

to

(r1 − 1, r2, v1, v2) with rate
( r1
2

) pσ ,θ (r1 − 1, r2, v1, v2)
pσ ,θ (r1, r2, v1, v2)

(r1, r2 − 1, v1, v2) with rate
( r2
2

) pσ ,θ (r1, r2 − 1, v1, v2)
pσ ,θ (r1, r2, v1, v2)

(r1 − 1, r2 + 1, v1, v2) with rate

r1
θα1

2
pσ ,θ (r1 − 1, r2 + 1, v1, v2)
pσ ,θ (r1, r2, v1, v2)

(r1 + 1, r2 − 1, v1, v2) with rate

r2
θα2

2
pσ ,θ (r1 + 1, r2 − 1, v1, v2)
pσ ,θ (r1, r2, v1, v2)

(r1, r2, v1, v2) with rate r1
θα1

2
+ r2

θα2

2
(r1, r2, v1 − 1, v2) with rate(
r1v1 +

(v1
2

)) pσ ,θ (r1, r2, v1 − 1, v2)
pσ ,θ (r1, r2, v1, v2)

(r1, r2, v1, v2 − 1) with rate(
r2v2 +

(v2
2

)) pσ ,θ (r1, r2, v1, v2 − 1)
pσ ,θ (r1, r2, v1, v2)

(3)

(r1, r2, v1 − 1, v2 + 1) with rate

v1
θα1

2
pσ ,θ (r1, r2, v1 − 1, v2 + 1)
pσ ,θ (r1, r2, v1, v2)

(r1, r2, v1 + 1, v2 − 1) with rate

v2
θα2

2
pσ ,θ (r1, r2, v1 + 1, v2 − 1)
pσ ,θ (r1, r2, v1, v2)
(r1, r2, v1, v2) with rate v1
θα1

2
+ v2

θα2

2
(r1, r2, v1 + 2, v2) with rate

(r1 + v1 + 2r2 + 2v2)
σ

2
pσ ,θ (r1, r2, v1 + 2, v2)
pσ ,θ (r1, r2, v1, v2)

(r1, r2, v1 + 1, v2 + 1) with rate

(r1 + v1 + r2 + v2)
σ

2
pσ ,θ (r1, r2, v1 + 1, v2 + 1)
pσ ,θ (r1, r2, v1, v2)

(r1, r2, v1, v2 + 2) with rate

(2r1 + 2v1 + r2 + v2)
σ

2
pσ ,θ (r1, r2, v1, v2 + 2)
pσ ,θ (r1, r2, v1, v2)

.

The transitions in lines 1, 2, 6, and 7 above are coalescent
events, while transitions 11, 12, and 13 are branching events.
The remaining six transitions are mutation events, including the
‘‘empty’’ mutation events (Baake and Bialowons, 2008) which do
not change the allelic type (lines 5 and 10). These follow from
the assumption of parent-independent mutation (Stephens and
Donnelly, 2003), which is not really necessary here, but is needed
for tractability when K > 2. We could filter these empty events
out, and thereby reduce the total rate of events to those that
actually affect the state of the lineages.
The total rate of events – the sum of the rates in (3) – is equal to(
r1 + v1 + r2 + v2

2

)
+ (r1 + v1 + r2 + v2)

θ

2

+ (r1 + v1 + r2 + v2)
σ

2
. (4)

This can be verified by substituting the probability of an ordered
sample of r1 + v1 A1 alleles and r2 + v2 A2 alleles into (3). Under
symmetric heterozygote advantage between K = 2 alleles, the
distribution of the frequency, x, of allele A1 is given by a special
case of (1), namely

φσ ,θ (x) = Cxθα1−1(1− x)θα2−1e−σ(x
2
+(1−x)2)/2,

where C is defined so that
∫ 1
0 φσ ,θ (x)dx = 1. Then, the sampling

probability (2) becomes
pσ ,θ (r1, r2, v1, v2)

= C
∫ 1

0
xθα1+r1+v1−1(1− x)θα2+r2+v2−1e−σ(x

2
+(1−x)2)/2dx, (5)

with C the same as in φσ ,θ (x).
The rates in (3) are the rates of events in the ancestral graph,

conditional on the states of the lineages at any given time.
These conditional rates are derived using Bayes’ rule (Stephens
andDonnelly, 2003) and thus have the form (unconditional rate of
Event) × P{Data|Event}/P{Data}, in which ‘‘Data’’ refers to an
ordered sample. Note that, in contrast to the case of genic
selectionwhere each branching event produces one virtual lineage,
under heterozygote advantage or general diploid selection, each
branching event produces two virtual lineages. When the fitness
depends on the diploid genotype, each reproduction event in
the population involves three genetic lineages: the single allele
removed from the population by a death event, and two others.We
must keep all three as we follow the ancestry through a branching
event.
While Stephens and Donnelly (2003) distinguish events de-

pending on which particular lineages are involved, we have fol-
lowed the fairly commonpractice of grouping events based on how
they change the numbers of real and virtual lineages of each allelic
type.We can use (3) to study times to events, but in order to specify
the entire structure of the ancestry of a sample we would need the
additional rule that every lineage is equally likely to be involved in
every event. For example, if an event of the first type abovewere to
occur, we would then need to choose a random pair of A1 lineages
to be the pair that coalesces.
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2.2. Separation of time scales: Strong neutral mutation

Here we consider the limit θ → ∞ for σ = 0 in order to
illustrate the separation-of-time-scales approach of Möhle (1998)
that we will later apply heuristically to the case σ → ∞. Since
σ = 0, v1 = 0, and v2 = 0, we omit them in this section. For this
well studied neutral case, the constant in φσ ,θ (x) can be evaluated,
and we have

φθ (x) =
Γ (θ)

Γ (θα1)Γ (θα2)
xθα1−1(1− x)θα2−1

and

pθ (r1, r2) =
Γ (θ)Γ (θα1 + r1)Γ (θα2 + r2)
Γ (θα1)Γ (θα2)Γ (θ + r1 + r2)

.

To gain some intuition about what follows, consider the behavior
of φθ (x) and pθ (r1, r2) when θ is large. The limit of the sampling
probability is straightforward to obtain, and is

lim
θ→∞

pθ (r1, r2) = α
r1
1 α

r2
2 . (6)

Thus, as θ grows, each sample independently has probability α1
of being type A1 and probability α2 = 1 − α1 of being type A2.
We infer that the dependence of the allelic states of the samples
on the underlying gene genealogy, which is captured in pθ (r1, r2),
disappears in the limit.
Correspondingly, the distribution φθ (x) of the random variable

X , which is the equilibrium frequency of allele A1 under neutrality,
becomes concentrated at X = α1 as θ grows. The shape of this
distribution when θ is large may be obtained by the direct study
of φθ (x) above or by appealing to the general work of Karlin and
McGregor (1964) and Norman (1975). These authors developed
diffusion approximations for large populations in which the scaled
strengths of evolutionary forces (here θ for mutation or σ for
selection) are also large. In the case of strong mutation, X should
exhibit Gaussian deviations around its deterministic equilibrium
point, X = α1, with a smaller and smaller variance as θ grows.
From φθ (x), we obtain

E[X] = α1
and

Var[X] = α1α2/(θ + 1).

These are originally due to Wright (1931) – see page 123 – who
also noted the approach of φθ (x) to a normal density for large
population sizes. Fig. 1 shows how the shape of φθ (x) changes
as θ increases for α1 = 2/3, and also illustrates the excellent
agreementwhen θ = 100 of an approximating normal distribution
with the same mean and variance, given by the equations above.
As θ increases to infinity, all of the probability mass does become
concentrated at X = α1, and hence the sampling probability
converges to (6).
The ancestral process under neutrality (σ = 0, v1 = 0, and

v2 = 0) is greatly simplified compared to (3). Using the expression
for pθ (r1, r2) above, a set of ancestral lines in state (r1, r2) moves
to state

(r1 − 1, r2) with rate
( r1
2

) θ + r − 1
θα1 + r1 − 1

,

(r1, r2 − 1) with rate
( r2
2

) θ + r − 1
θα2 + r2 − 1

,

(r1 − 1, r2 + 1) with rate r1
θα1

2
θα2 + r2

θα1 + r1 − 1
,

(r1 + 1, r2 − 1) with rate r2
θα2

2
θα1 + r1

θα2 + r2 − 1
,

(r1, r2) with rate r1
θα1

2
+ r2

θα2

2
,

(7)
Fig. 1. Plots of the equilibrium distribution of x, the frequency of allele A1 , for three
different strengths of mutation under neutrality. A normal distribution with mean
E[X] = 2/3 and variance Var[X] = 2/909, obtained using the equations in the text,
is shown for comparison.

in which we use r = r1 + r2. Here, we show that the time to a
coalescent event does not depend on the allelic states of the sample
when θ → ∞, and is exponential with rate r(r − 1)/2, as in
Kingman’s (unconditional) coalescent.
In studying the limit θ → ∞, let Qθ be the transition rate

matrix of the ancestral process back to the first coalescent event.
As above, we do not need to distinguish which particular lineages
are involved in each event. We consider a process with a total of
r + 3 states, so that Qθ is an (r + 3) × (r + 3) matrix. The first
r + 1 states contain ordered samples that all have the same total
number of lineages, r = r1 + r2, but which differ in the values of
r1 and r2. Here we will index the states by 1 plus the number of A1
lineages, so that state 1 represents (r1, r2) = (0, r) and state r + 1
represents (r1, r2) = (r, 0). States r + 2 and r + 3 are absorbing
states and contain the corresponding ordered samples with one
fewerA1 lineage and one fewerA2 lineage, respectively. Transitions
among states 1 through r + 1 are mutation events and transitions
to states r + 2 and r + 3 are coalescent events, between lineages
of type A1 and A2, respectively.
With the ancestral process defined so, and using the rates (7),

we have

Qθ = θA+ B+ O(1/θ),

where

A = lim
θ→∞

Qθ/θ

and

B = lim
θ→∞

(Qθ − θA)

exist and have entries of order 1. The entries of A are

r1α2/2 for transitions (r1, r2) −→ (r1 − 1, r2 + 1),
−(r1α2 + r2α1)/2 for transitions (r1, r2) −→ (r1, r2),
r2α1/2 for transitions (r1, r2) −→ (r1 + 1, r2 − 1),

with every other entry equal to zero. The entries of B are

r1(α2 − r1α2 + r2α1)/2α1 for transitions
(r1, r2) −→ (r1 − 1, r2 + 1),
−r(r − 1)/2 for transitions (r1, r2) −→ (r1, r2),
r2(α1 + r1α2 − r2α1)/2α2 for transitions
(r1, r2) −→ (r1 + 1, r2 − 1),

r1(r1 − 1)/2α1 for transitions (r1, r2) −→ (r1 − 1, r2),
r2(r2 − 1)/2α2 for transitions (r1, r2) −→ (r1, r2 − 1),

againwith every other entry equal to zero. Because states r+2 and
r + 3 are absorbing states, all entries in rows r + 2 and r + 3 of
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both A and B are equal to zero (as are the entries in columns r + 2
and r + 3 of A).
To explain, consider the mutation event (r1, r2) −→ (r1 −

1, r2 + 1) in the first lines of these equations for A and B. The
rates of this event in A and B are the coefficients of θ and 1 in a
series expansion of the corresponding, third line of (7) for large θ . In
contrast, the largest term in the expansion of (7) for the coalescent
event (r1, r2) −→ (r1− 1, r2) is of order 1. This appears in column
r+2 of B, and the corresponding entry in A is zero. Thus, to leading
order in θ , thematrix θA contains the rates of transitions involving
only mutation events, while the rates of all coalescent events are
confined to B. Thematrix B also contains the O(1) parts of the rates
of mutation events. When θ is large, the time scale for mutation is
θ times faster than the time scale for coalescence.
We are interested in the t-step transition probability matrix

exp(tQθ ) in the limit θ → ∞. Since Qθ = θA + B + O(1/θ), we
have

exp
{
tQθ

}
= exp

{
tθQθ/θ

}
= exp

{
tθ
(
A+

B
θ
+ O

(
1
θ2

))}
.

Following a similar application by Lessard and Wakeley (2004)–
see Section 3 of that paper – we have

exp
{
A+

B
θ
+ O

(
1
θ2

)}
=

∑
i≥0

(
A+ B

θ
+ O

(
1
θ2

))i
i!

= exp {A} +
C
θ
+ O

(
1
θ2

)
where

C =
∑
i≥1


i−1∑
k=0

AkBAi−k−1

i!

 .
Then, Lemma 1 of Möhle (1998) guarantees that the t-step
transition probability matrix exp(tQθ ) converges to
lim
θ→∞

exp
{
tQθ

}
= P exp {tG}

in which
P = lim

r→∞
exp {rA}

is the stationary distribution of the fast process (here mutation),
and the infinitesimal generator is given by
G = PCP = PBP.
The last equality holds because PA = AP = 0, which follows from
the definition of P above. Namely, P = limr→∞ P(r), where P(r)
is the unique solution to both the forward equation dP(r)/dr =
P(r)A and the backward equation dP(r)/dr = AP(r), with P(0) =
I; for example, see Theorem 2.1.1 in Norris (1997). At stationarity,
dP/dt = PA = AP = 0.
The matrix A describes a continuous-timeMarkov process with

three non-communicating sets of states. Two of these are the two
absorbing states, which are entered upon coalescence between a
pair of A1 alleles or between a pair of A2 alleles. The entries in the
upper left (r + 1)× (r + 1) block of A are the transition rates of an
ergodicMarkov process among the r+1 states inwhich there are r
uncoalesced lineages. Therefore, this process of mutation between
A1 and A2 among the r ancestral lineages has a unique stationary
distribution, contained in the upper left (r + 1)× (r + 1) block of
P. Thus, P has the form

P =


p0 · · · pr 0 0
...

...
...

...
p0 · · · pr 0 0
0 · · · 0 1 0
0 · · · 0 0 1


in which pr1 is the probability that r1 of the r lineages have type A1
and the other r − r1 = r2 have type A2. Since A is a tri-diagonal
matrix, we can solve for the equilibrium by solving

pr1 r1α2/2 = pr1−1(r2 + 1)α1/2

for 1 ≤ r1 ≤ r , subject to the constraint
∑r
r1=0
pr1 = 1. We have

pr1 =
(
r
r1

)
α
r1
1 α

r2
2 ,

which is what we expect given (6) and the fact that there are
(
r
r1

)
ordered samples that have r1 lineages of type A1 and the r−r1 = r2
of type A2. Using this formula for pr1 , we can also verify thatPA = 0
as required for the equilibrium solution of the backward equation
mentioned above.
Fromanalyses of small samples (not shown),wededuce that the

first r + 1 rows of the limiting t-step transition probability matrix,
P exp {tG}, are identical, with

exp{−tr(r − 1)/2}
(
r
r1

)
α
r1
1 α

r2
2

in column r1 + 1 (0 ≤ r1 ≤ r),

(1− exp{−tr(r − 1)/2}) α1

in column r + 2, and

(1− exp{−tr(r − 1)/2}) α2

in column r + 3. The last two rows of P exp {tG} have ones on
the diagonal and zeros everywhere else. Thus, in the limiting
θ → ∞ process, any sample of size r instantaneously assumes
the stationary distribution of allelic states, pr1 , which then decays
steadily at rate r(r − 1)/2 as a result of coalescence. A fraction α1
of coalescent events are between alleles of type A1 and a fraction
α2 are between alleles of type A2.
We can also understand this by looking directly at the

infinitesimal generator G = PBP. Because (P)i,r+2 = (P)i,r+3 = 0
for 1 ≤ i ≤ r + 1 and (P)r+2,r+2 = (P)r+3,r+3 = 1, the rates of
coalescence are simple averages over the stationary distribution of
allelic states, pr1 . The rate of coalescence between A1 alleles, from
any uncoalesced state 1 ≤ i ≤ r + 1, is given by

(G)i,r+2 =
r+3∑
j=1

(P)i,j(B)j,r+2(P)r+2,r+2

=

r∑
r1=0

pr1(B)r1+1,r+2

=

r∑
r1=0

(
r
r1

)
α
r1
1 α

r2
2 r1(r1 − 1)/2α1

= α1r(r − 1)/2. (8)

Similarly, the rate of coalescence between A2 alleles is equal to
α2r(r − 1)/2. The total rate of coalescence is the sum of these
and is equal to r(r − 1)/2. Subsequent to a coalescent event, the
same logic applies to the r − 1 lineages that remain, which shows
that the entire ancestral process converges to the standard neutral
coalescent process, in which lineages are exchangeable (Kingman,
1982a,b,c) in the limit θ →∞.

2.3. Convergence of conditional ancestral processes with strong
selection

We now turn to the limit σ → ∞ for constant θ , α1, and
α2 = 1 − α1. In contrast to the case of σ = 0, there are
no simple expressions for the sampling probabilities that appear
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Fig. 2. Plots of the equilibrium distribution of x, the frequency of allele A1 , for three
different strengths of selection, with θ = 1 and α1 = 2/3. A normal distribution
with mean E[X] = 1/2 and variance Var[X] = 1/200 is shown for comparison to
the curve for σ = 100.

Fig. 3. The number of virtual lineages of type A1 through time, starting from the
sample (2, 0, 0, 0) andwith σ = 1000, θ = 1, and α1 = 2/3. The process described
by (3) was simulated, but using the approximations for the ratios of sampling
probabilities given in the Appendix. Only every 500th value of v1 is shown.

in ratios in (3). Instead, we have the integral representation of
pσ ,θ (r1, r2, v1, v2) given in (5). As in Wakeley (2008a), we use the
behavior of the ratios of sampling probabilities when σ is large to
derive the limiting (σ →∞) ancestral process for (3).
Our approach here is heuristic, but the idea is the same as in the

previous section. We separate events based on their time scales.
The fast events are branching, coalescence, and mutation among
virtual lineages. The slow events are coalescence and mutation
among real lineages. Simulations, presented in Section 2.4, support
our approach and results; for example, the conclusion that v1 and
v2 approach stationarity quickly when σ is large (see Fig. 3). The
direct application of Lemma 1 inMöhle (1998), which is for a finite
Markov chain, is not justified because the state space of (v1, v2)
is infinite. In addition, we do not know the stationary distribution
of (v1, v2). Still, we invoke the kind of averaging we did in (8) to
obtain the rates of the limiting process.
To develop some intuition about the sampling probability

pσ ,θ (r1, r2, v1, v2) and hence about the limiting process, consider
the equilibrium frequency φσ ,θ (x) as σ grows. Due to the factor
exp(−σ(x2+(1−x)2)/2) inφσ ,θ (x), the density is centered around
x = 1/2 when σ is large. Further, it is very well approximated by a
normal distribution with mean equal to 1/2 and variance equal to
1/(2σ), consistent with the Gaussian diffusion results of Norman
(1975). Fig. 2 plots φσ ,θ (x) for σ = 1, 10, and 100, with θ = 1 and
α1 = 2/3. The normal distribution fits quite well when σ = 100.
As σ grows, the density becomes more and more concentrated on
x = 1/2.
Then, recalling (6), we can guess that the sampling probability

pσ ,θ (r1, r2, v1, v2) will be very close to (1/2)r1+r2+v1+v2 when σ
is large. From the way in which each event affects the lineages,
we can see that the ratios of sampling probabilities in (3) should
assume values close to 2 for coalescent events, 1 for mutation
events, and 1/4 for branching events. Analysis of (5) bears this out,
but is complicated by the fact that in general we must allow v1
and v2 to take on any values. In the Appendix, we present series
expansions for the ratios of sampling probabilities for large σ , and
for three different cases of v1 and v2. The three cases are (i) v1 and
v2 finite, meaning O(1) as σ →∞, (ii) v1 and v2 both O(

√
σ), and

(iii) v1 and v2 both O(σ ) but with deviations of order
√
σ . In all

three cases, we find

pσ ,θ (r ′1, r
′

2, v
′

1, v
′

2)

pσ ,θ (r1, r2, v1, v2)
=

(
1
2

)r ′1+r ′2+v′1+v′2−r1−r2−v1−v2
(1+ o(1)), (9)

in agreement with the intuitive argument just given based on the
behavior of φσ ,θ (x) as σ grows. In case (i), the o(1) term in (9)
is O(1/σ) and in cases (ii) and (iii) it is O(1/

√
σ). However, we

emphasize that (9) holds for given v1 and v2 in each of these three
cases, while in fact v1 and v2 will vary randomly.
Substituting (9) into (3), we can see how the events fall into

two groups. The rates of events affecting the virtual lineages, given
in lines 6–13 of (3), depend either directly on σ or indirectly on
σ through v1 and v2 (we expect v1 and v2 to grow large when σ
is large, as in Fig. 3). For the sake of illustration, let us ignore the
o(1) parts of the ratios of sampling probabilities (9). Then, the fast
process of branching, coalescence, and mutation affecting virtual
lineages has transitions from (r1, r2, v1, v2) to

(r1, r2, v1 − 1, v2) with rate 2r1v1 + v1(v1 − 1)
(r1, r2, v1, v2 − 1) with rate 2r2v2 + v2(v2 − 1)
(r1, r2, v1 − 1, v2 + 1) with rate v1θα1/2
(r1, r2, v1 + 1, v2 − 1) with rate v2θα2/2
(r1, r2, v1, v2) with rate v1θα1/2+ v2θα2/2
(r1, r2, v1 + 2, v2) with rate (r1 + v1 + 2r2 + 2v2)σ/8
(r1, r2, v1 + 1, v2 + 1) with rate (r1 + v1 + r2 + v2)σ/8
(r1, r2, v1, v2 + 2) with rate (2r1 + 2v1 + r2 + v2)σ/8

(10)

and it is this process that we expect to approach stationarity
rapidly when σ is large. In contrast, the rates of events among
the real lineages, given in lines 1–5 of (3), appear to depend only
weakly on σ , v1, and v2, through the o(1) terms in (9) which are
detailed in the Appendix. Then, among the real lineages we have
slow transitions from (r1, r2, v1, v2) to

(r1 − 1, r2, v1, v2) with rate r1(r1 − 1)
(r1, r2 − 1, v1, v2) with rate r2(r2 − 1)
(r1 − 1, r2 + 1, v1, v2) with rate r1θα1/2
(r1 + 1, r2 − 1, v1, v2) with rate r2θα2/2
(r1, r2, v1, v2) with rate r1θα1/2+ r2θα2/2

(11)

and it is these rates (but including the o(1) parts from the
Appendix) which we should average over the stationary distribu-
tion of v1 and v2 if we are to follow the separation-of-time-scales
approach given in (8).
Looking at (10) we can see that branching will dominate the

very recent ancestral process when σ is large and that the time
between these events will be very short due to (4). This will cause
(v1, v2), to grow quickly from the initial sample value of (0, 0),
leading to a rapid increase in the rates ofmutation and coalescence
affecting virtual lineages. A balance will be achieved in which
(v1, v2) ∼ (σ , σ ). To see this, let v′1 and v

′

2 be the numbers
of virtual lines when the next event occurs in the ancestry.
Considering only the largest rates (of coalescence and branching)
in the fast process, we have
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E[(v′1, v
′

2)|(v1, v2)] ≈ (v1, v2)+ (−1, 0)v
2
1/λv1,v2

+ (0,−1)v22/λv1,v2 + (2, 0)(v1 + 2v2)σ/8λv1,v2
+ (1, 1)(v1 + v2)σ/8λv1,v2 + (0, 2)(2v1 + v2)σ/8λv1,v2

where λv1,v2 = v21 + v22 + (v1 + v2)σ/2. Thus we have
E[(v′1, v

′

2)|(σ , σ )] ≈ (σ , σ ). This is consistent with the
result from the unconditional ASG, that the number of virtual
lineages will at equilibrium follow a ‘‘zero-truncated’’ Poisson(σ )
distribution (Mano, 2009), which has mean equal to σ − 1 + σ/
(eσ − 1). Again, the simulations presented in Section 2.4 support
these ideas (see Fig. 3).
Of the three cases for which we have obtained approximations

to the ratio of sampling probabilities in the Appendix, probably the
most important is case (iii), in which we have assumed that v1 and
v2 are both O(σ ), because this approximation should be valid once
v1 and v2 have reached their equilibrium. Specifically, in case (iii)
we have assumed that v1 = σ + c1

√
σ and v2 = σ + c2

√
σ ,

so the resulting series expansions for the ratios are given in terms
of the rescaled virtual parameters, c1 = (v1 − σ)/

√
σ and c2 =

(v2−σ)/
√
σ . Then, analogously to (8), we should average the rates

of events among the real lineages over the equilibrium distribution
of c1 and c2 (or v1 and v2).
For example, averaging the rate of a coalescent event between

two real A1 lineages over the equilibrium distribution of c1 and c2,
denoted p(c1, c2) below, we have, approximately, r1(r1 − 1) times∑
c1,c2

p(c1, c2)
(
1−

2(c1 − c2)
5
√
σ

+
2(4c21 − 4c1c2 + 5(1− r1 + r2 − (α1 − α2)θ))

25σ

)
.

Taking the sum inside the parentheses, we have

1−
2(E[c1] − E[c2])

5
√
σ

+
2(4Var[c1] − 4Cov[c1, c2] + 5(1− r1 + r2 − (α1 − α2)θ))

25σ
, (12)

and as long as thesemoments of c1 and c2 are bounded as σ →∞,
we obtain simply r1(r1 − 1) as the limiting rate of type-1
coalescence. This is identical to the first line of (11). Similar terms
arise in the analysis of the rates of the other possible events
among the real lineages. Averaging each of these and taking the
limit gives exactly the rates in (11). Therefore, we predict that the
limiting ancestral process among the real lineages is the structured
coalescent described by those rates.
We note that this is identical to the result that Kaplan et al.

(1988) obtained by invoking the Gaussian diffusion of Norman
(1975) to validate their assumption that the frequencies of the
two alleles are given by the deterministic prediction. For example,
compare the rates in (11) to those comprising hij(x) on page 823
of Kaplan et al. (1988), together with the following equivalence
between our notation and theirs: i = r1, j = r2, β2 = θα1/2,
β1 = θα2/2, and x = 1/2.

2.4. Comparing simulations to limiting results forσ = 0 andσ →∞

We used two different simulation approaches to investigate
the convergence of the conditional ancestral process, given by (3),
to the predictions of the limiting model obtained in the previous
section, and to characterize the fast process described above. The
first program was written in Mathematica (Wolfram, 1999) and
simulated the exact process with the rate in (3) using numerical
integration to compute the sampling probabilities. This was only
feasible for σ up to about 100, aided by the fact thatwe stopped the
simulation once the first event occurred among the real lineages.
The second program was written in the C programming language,
andused the expressions in theAppendix to approximate the ratios
of sampling probabilities. This allowed somewhat larger values of
σ to be investigated, but also becomes exceedingly slowwhen σ is
very large due to the huge numbers of fast events that occur before
the first event among the real lineages is observed. Both programs
are available from the authors upon request.
We used these programs to ask whether the requirements of

the separation-of-time-scales method used above appear correct,
andwhether the predictions of the limiting ancestral process given
by (11) are approached for finite, large σ . In order to illustrate
the second points, we assumed a sample with visibly different
predictions under σ = 0 and σ →∞. Specifically, we assumed a
sample of just two A1 alleles, (2, 0, 0, 0), and with θ = 1 and α1 =
2/3. In this case, the expected time back to the first event among
the real lineages (excluding empty mutation events) is equal to
0.75 under neutrality and 0.375 in the strong-selection limit. These
values are simply ones over the sums of the rates of all relevant
events, using (7) and (11) respectively.
Fig. 3 shows the rapid growth of v1 and subsequent variation

around its expected value σ , over one run of the process starting
from the sample (2, 0, 0, 0) and for σ = 1000, plotted back
to the expected time to an event among the real lineages. The
same kind of behavior is, of course, observed for v2. Over many
simulation runs for several large values of σ , we observed that
E[v1] = E[v2] ∼ σ , Var[v1] = Var[v2] ∼ 3σ and Cov[v1, v2] ∼
−2σ . In the absence of direct knowledge about the equilibrium
distribution of (v1, v2), we take this together with Fig. 3 as support
that the separation-of-time-scales argument above is reasonable
in this case.
To translate this into the rescaled parameters c1 = (v1−σ)/

√
σ

and c2 = (v2−σ)/
√
σ , in the present case, with σ = 1000, θ = 1,

α = 2/3, and sample (2, 0, 0, 0), over one million samples of v1
and v2we found c1 = −0.09, c2 = 0.06, c21 = 3.1, c

2
2 = 3.2, c1c2 =

−1.6. This lends support to our conclusion that (12) converges to
1 as σ tends to infinity.
Fig. 4 shows the average time back to an event involving the

real lineages in the sample as a function of σ . We consider only
events that change the state of the sample, so we ignore the empty
mutation events. For the sample (2, 0, 0, 0) and with θ = 1 and
α1 = 2/3, then from (11) the limiting rate of coalescence is equal
to 2 and the limiting rate of non-empty mutation is 2/3, so the
expected time back to one of these events is 3/8 = 0.375. Fig. 4
shows a relatively rapid shift of the average time from the neutral
expectation of 0.75 to this limiting σ → ∞ prediction, which
occurs between about σ = 0.1 and σ = 100. In addition, there is
good agreement between the result of the two different methods
of computing the ratios of sampling probabilities in the areawhere
the simulations overlapped.
Fig. 5 shows the fraction of simulation replicates in which the

first event involving the real lineages was a coalescent event. The
probabilities of this under neutrality and in the σ → ∞ limit are
0.9 and 0.75, respectively. Again, the conditional ASG mimics the
neutral model when σ = 0.1, and is very close to the σ → ∞
prediction when σ = 100, with a rapid shift in between. Both here
and in Fig. 4 the results of the ‘‘exact’’ program (circles) and the
approximate program (crosses) agree well in the rangewhere they
overlap.
Fig. 6 compares the cumulative distribution function (CDF)

of the time to an event among the real lineages in simulations
to the CDF of the exponential distribution. Because the rates in
(11) are constant, we expect the time to an event to follow an
exponential distribution with mean equal to the sum of the rates
(again ignoring empty mutation events). As above, we simulated
the ancestry of sample (2, 0, 0, 0), with θ = 1 and α1 = 2/3,
and in this case only four different values of σ . First, we computed
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Fig. 4. The average over 10000 replicates of the time back to the first (non-empty)
event among the real lineages, starting from the sample (2, 0, 0, 0) and with θ = 1
and α1 = 2/3, for a range from small to large σ . Neutral and structured-coalescent
predictions are given by long-dashed and short-dashed lines, respectively. Circles
display the results of the exact simulation, using numerical integration in (3), and
crosses display the results of the approximate simulations, using the expressions in
the Appendix.

Fig. 5. The fraction of times, out of 10000 replicates, that the first (non-empty)
event among the real lineages was a coalescent event, starting from the sample
(2, 0, 0, 0) and with θ = 1 and α1 = 2/3, over a range from small to large σ .
Neutral and structured-coalescent predictions are given by long-dashed and short-
dashed lines, respectively. Circles display the results of the exact simulation, using
numerical integration in (3), and crosses display the results of the approximate
simulations, using the expressions in the Appendix.

Fig. 6. Comparison of the cumulative distribution functions (CDFs) of the time to
an event among the real lines observed in simulations to the CDF of the exponential
distribution. The ancestry of a sample (2, 0, 0, 0), with θ = 1 and α1 = 2/3,
was simulated 10000 times each for four different strengths of selection: σ ≈ 56,
σ ≈ 18, σ ≈ 5.6, σ ≈ 1.8 (from the diagonal out). A dashed line is shown on the
diagonal to indicate a perfect fit to the exponential distribution. For larger σ than
56 it would also be expected that the fit would be good.
cutoffs for the exponential (mean 1) distribution, to create 100
bins of equal probability. Then, for each simulation replicate, we
divided the observed time back to an event by the expected
time (0.375), compared this to the cutoffs, and added 1 to the
number of observations in the appropriate bin. Fig. 6 plots the
cumulative probability for the exponential versus that observed
in simulations. When σ = 101.75 ≈ 56, the CDFs match very
closely (along the diagonal), while when σ = 100.25 ≈ 1.8,
the simulated distribution of times is quite different (has a longer
tail) than the exponential distribution. These simulations used the
‘‘exact’’ program, integrating numerically to compute sampling
probabilities.

3. Discussion

The results we have presented here suggest that, via a
separation of time scales between events affecting virtual lineages
and events affecting real lineages, the conditional ancestral
selection graph with symmetric balancing selection converges
to a structured coalescent process in the limit as the selection
parameter σ tends to infinity. The form of the structured
coalescent is such that the two allelic types comprise two
subpopulations, each with one half the size of the total population.
Hence, the rates of coalescence in (11) are twice the rates of the
Kingman coalescent. In addition, mutation between alleles plays
the role of migration between the two subpopulations.
The form of the limiting rates in (11) is identical to those

in Kaplan et al. (1988) and Hudson and Kaplan (1988), who
derived their results by assuming that the allele frequency is
held constant at its equilibrium expected value, with justification
provided by Norman (1975). Thus, our results are those we
anticipated. What we have shown, both in a heuristic analysis
and in simulations, is that this limiting model arises from within
the complicated dynamics of the conditional ancestral selection
process. This happens despite the confounding fact that the
numbers of virtual lineages become enormous when σ is large.
The programs used here allow the rate of convergence to the

structured coalescent model of Kaplan et al. (1988) to be studied
as σ grows. At least on a log scale, convergence looks rapid,
appearing to contradict the statement in Barton and Etheridge
(2004) that ‘‘balancing selection must be extremely strong for the
deterministic limit to be accurate’’ (see their Figure 10). However,
the results plotted in Figs. 4–6 imply that σ = 100 may be
sufficient to be very close the deterministic limit. Although we
might legitimately say that σ = 100 represents extremely strong
balancing selection, it is useful to know that convergence appears
to be achieved at this point rather than only for truly huge values
of σ .
Together with other recent results (Wakeley, 2008a), our

findings suggest that other strong-selection limits may exist, for
example in themore generalmodels, such as in Donnelly and Kurtz
(1999), and that these may be equivalent to some neutral models
that have already been described.

Acknowledgments

We thank Tom Kurtz and Anja Sturm for helpful discussions.

Appendix

Here present three different approximations of the ratios of
sampling probabilities in (3). As in the main text, we represent the
ratio generally as

pσ ,θ (r ′1, r
′

2, v
′

1, v
′

2)

pσ ,θ (r1, r2, v1, v2)
,
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and recall that the only possible values for the differences r ′1 − r1,
r ′2 − r2, v

′

1 − v1, and v
′

2 − v2 are −1, 0, 1, and 2. We also use
the notation k1 = v′1 − v1 and k2 = v′2 − v2. We obtained all
of the approximations below under the assumption that r1, r2, θ ,
and α1 (and of course α2 = 1 − α1) are constant. Our analysis
of the ratios of sampling probabilities utilizes a change of variable
x = 1/2+ z/

√
σ in the sampling-probability integral∫ 1

0
xθα1+r1+v1−1(1− x)θα2+r2+v2−1e−σ(x

2
+(1−x)2)/2dx

to give(
1
2

)r1+r2+v1+v2 ∫ √σ/2
−
√
σ/2

(
1+

2z
√
σ

)θα1+r1+v1−1
×

(
1−

2z
√
σ

)θα2+r2+v2−1
e−z

2
dz (13)

where we have factored out and ignored the term

e−σ/4

2θ−2
√
σ
,

which does not depend on r1, r2, v1, and v2, and which like the
constant C in (5) will appear in both the numerator and the
denominator of every ratio of sampling probabilities.
Our methodwas to obtain series expansions of the terms inside

the integral for large σ , and under different assumptions about the
magnitudes of v1 and v2, then evaluate the integral. Substituting
the resulting expressions into the numerator and denominator of
the ratio of two sampling probabilities then gave large-σ series
expansions for the ratios. We considered three cases: (i) v1 and v2
both finite, (ii)

v1 = c1
√
σ

v2 = c2
√
σ

v′1 = c1
√
σ + k1

v′2 = c2
√
σ + k2,

and (iii)

v1 = σ + c1
√
σ

v2 = σ + c2
√
σ

v′1 = σ + c1
√
σ + k1

v′2 = σ + c2
√
σ + k2,

the derivations of which are lengthy, and were done with the aid
of the program Mathematica (Wolfram, 1999). Briefly, for each of
the three cases above, we substituted the assumed values of v1
and v2 or v′1 and v

′

2 inside the integral in (13), expanded in terms
of σ up to order 1/σ , then evaluated the integral, ignoring terms
that approach zero faster than 1/σ . We then took the ratio of two
sampling probabilities, pσ ,θ (r ′1, r

′

2, v
′

1, v
′

2) and pσ ,θ (r1, r2, v1, v2),
again expanding in terms of σ up to order 1/σ . The Mathematica
notebooks containing these derivations are available from the
authors upon request.
In case (i), where v1 and v2 are both finite, we have

pσ ,θ (r ′1, r
′

2, v
′

1, v
′

2)

pσ ,θ (r1, r2, v1, v2)
= 2r1+r2−r

′
1−r
′
2−k1−k2

× (1+ σ−1((θα1 + r ′1 + v
′

1 − 1)(θα1 + r
′

1 + v
′

1 − 2)
− (θα1 + r1 + v1 − 1)(θα1 + r1 + v1 − 2)
+ 2(θα1 + r1 + v1 − 1)(θα2 + r2 + v2 − 1)
− 2(θα1 + r ′1 + v

′

1 − 1)(θα2 + r
′

2 + v
′

2 − 1)
+ (θα2 + r ′2 + v

′

2 − 1)(θα2 + r
′

2 + v
′

2 − 2)
− (θα2 + r2 + v2 − 1)(θα2 + r2 + v2 − 2))).
In case (ii), where v1 and v2 are both of order
√
σ , we have

pσ ,θ (r ′1, r
′

2, v
′

1, v
′

2)

pσ ,θ (r1, r2, v1, v2)

= 2r1+r2−r
′
1−r
′
2−k1−k2

(
1+W1/

√
σ +W2/σ

)
where

W1 = 2(c1 − c2)(k1 − k2 − r1 + r ′1 + r2 − r
′

2)

and

W2 = 2θ(α1 − α2)(k1 − k2 − r1 + r ′1 + r2 − r
′

2)

+ (k1 − k2 + r ′1 − r
′

2)
2
− (r1 − r2)2 + r1 + r2 − k1 − k2

− r ′1 − r
′

2 + 2(c1 − c2)
2(k21 − k2 + r1 − r

′

1 + r2 − r
′

2

+ (k2 + r1 − r ′1 − r2 + r
′

2)
2)

− 2(c1 − c2)2k1(1+ 2k2 + 2r1 − 2r ′1 − 2r2 + 2r
′

2)

+ 4(c1 − c2)(c1 + c2)(k2 − k1 + r1 − r ′1 − r2 + r
′

2)

and c1 = v1/
√
σ and c2 = v2/

√
σ .

In case (iii), where v1 and v2 are both of order σ with deviations
of order

√
σ , we have

pσ ,θ (r ′1, r
′

2, v
′

1, v
′

2)

pσ ,θ (r1, r2, v1, v2)

= 2r1+r2−r
′
1−r
′
2−k1−k2

(
1+

2
5
(W1/
√
σ +W2/σ)

)
where

W1 = (c1 − c2)(k1 − k2 − r1 + r ′1 + r2 − r
′

2)

and

W2 = θ(α1 − α2)(k1 − k2 − r1 + r ′1 + r2 − r
′

2)

+ (k1 − k2)(r ′1 − r
′

2)− k1k2 − r
′

1r
′

2 + r1r2 + k1(k1 − 1)/2
+ k2(k2 − 1)/2+ r ′1(r

′

1 − 1)/2+ r
′

2(r
′

2 − 1)/2

− r1(r1 − 1)/2− r2(r2 − 1)/2+ (c1 − c2)2(k1 − k2 − r1
+ r ′1 + r2 − r

′

2)(k1 − k2 − r1 + r
′

1 + r2 − r
′

2)

+ (c1 − c2)c1(k2 + r ′2 − r2 + 3(r1 − k1 − r
′

1))

− (c1 − c2)c2(k1 + r ′1 − r1 + 3(r2 − k2 − r
′

2))

and c1 = (v1 − σ)/
√
σ and c2 = (v2 − σ)/

√
σ .

By assumption, in both cases (ii) and (iii) above c1 and c2 are
finite constants. In fact, during the ancestry of the sample, these
rescaled numbers of virtual lineage will vary randomly, and we
have to account for this in describing the limiting σ → ∞

ancestral process. For now, we can say that, given c1 and c2, in all
three cases we have
pσ ,θ (r ′1, r

′

2, v
′

1, v
′

2)

pσ ,θ (r1, r2, v1, v2)
= 2r1+r2−r

′
1−r
′
2−k1−k2(1+ o(1))

where k1 = v′1 − v1 and k2 = v
′

2 − v2. In case (i) the o(1) term is
O(1/σ), while in cases (ii) and (iii) it is O(1/

√
σ).

References

Asthana, S., Schmidt, S., Sunyaev, S., 2005. A limited role for balancing selection.
Trends Genet. 21, 30–32.

Baake, E., Bialowons, R., 2008. Ancestral processes with selection: Branching and
Moranmodels. In: Miekisz, J. (Ed.), Banach Center Publications, vol. 80. Institute
of Mathematics. Polish Academy of Sciences, Warsaw, pp. 33–52.

Barton, N.H., Etheridge, A.M., 2004. The effect of selection on gene genealogies.
Genetics 166, 1115–1131.

Barton, N.H., Etheridge, A.M., Sturm, A.K., 2004. Coalescence in a random
background. Ann. Appl. Prob. 14, 754–785.

Bubb, K.L., Bovee, D., Buckley, D., Haugen, E., Kibukawa, M., Paddock, M., Palmieri,
A., Subramanian, S., Zhou, Y., Kaul, R., Green, P., Olsen, M.V., 2006. Scan of the
human genome reveals no new loci under ancient balancing selection. Genetics
173, 2165–2177.

Charlesworth, D., Kamau, E., Hagenblad, J., Tang, C., 2006. Trans-specificity at loci
near the self-incompatibility locus in Arabidopsis. Genetics 172, 2699–2704.



364 J. Wakeley, O. Sargsyan / Theoretical Population Biology 75 (2009) 355–364
Donnelly, P., Kurtz, T.G., 1999. Genealogical models for Fleming–Viot models with
selection and recombination. Ann. Appl. Probab. 9, 1091–1148.

Ewens, W.J., 2004. Mathematical Population Genetics, Volume I: Theoretical
Foundations. Springer-Verlag, Berlin.

Fearnhead, P., 2002. The common ancestor at a nonneutral locus. J. Appl. Probab. 39,
38–54.

Fisher, R.A., 1930. The Genetical Theory of Natural Selection. Clarendon, Oxford.
Haldane, J.B.S., 1932. TheCauses ofNatural Selection. LongmansGreen&Co, London.
Herbots, H.M., 1997. The structured coalescent. In: Progress in Population Genetics
and Human Evolution. In: Donnelly, P., Tavaré, S. (Eds.), IMA Volumes
in Mathematics and its Applications, vol. 87. Springer-Verlag, New York,
pp. 231–255.

Hudson, R.R., Kaplan, N.L., 1988. The coalescent process in models with selection
and recombination. Genetics 120, 831–840.

Kamau, E., Charlesworth, B., Charlesworth, D., 2007. Linkage disequilibirum and
recombination rate estimates in the self-incompatibility region of Arabidopsis
lyrata. Genetics 176, 2357–2369.

Kaplan, N.L., Darden, T., Hudson, R.R., 1988. Coalescent process in models with
selection. Genetics 120, 819–829.

Kaplan, N.L., Hudson, R.R., Langley, C.H., 1989. The hitchhiking effect revisited.
Genetics 123, 887–899.

Karlin, S., McGregor, J., 1964. On some stochastic models in genetics. In: Gurland, J.
(Ed.), Stochastic Models in Medicine and Biology. The University of Wisconsin
Press, Madison, pp. 245–271.

Kingman, J.F.C., 1982a. The coalescent. Stochastic Process. Appl. 13, 235–248.
Kingman, J.F.C., 1982b. On the genealogy of large populations. J. Appl. Prob. 19A,
27–43.

Kingman, J.F.C., 1982c. Exchangeability and the evolution of large populations.
In: Koch, G., Spizzichino, F. (Eds.), Exchangeability in Probability and Statistics.
North-Holland, Amsterdam, pp. 97–112.

Krone, S.M., Neuhauser, C., 1997. Ancestral processes with selection. Theoret. Pop.
Biol. 51, 210–237.

Lessard, S., Wakeley, J., 2004. The two-locus ancestral graph in a subdivided
population: Convergence as the number of demes grows in the island model.
J. Math. Biol. 48, 275–292.

Mano, S., 2009. Duality, ancestral and diffusion processes in models with selection.
Theoret. Pop. Biol. doi:10.1016/j.tpb.2009.01.007.

Möhle, M., 1998. A convergence theorem for Markov chains arising in population
genetics and the coalescent with partial selfing. Adv. Appl. Prob. 30, 493–512.
Moran, P.A.P., 1958. Random processes in genetics. Proc. Camb. Phil. Soc. 54, 60–71.
Moran, P.A.P., 1962. Statistical Processes of Evolutionary Theory. Clarendon Press,
Oxford.

Neuhauser, C., Krone, S.M., 1997. The genealogy of samples inmodelswith selection.
Genetics 145, 519–534.

Norman, M.F., 1975. Approximation of stochastic processes by Gaussian diffusions,
and applications to Wright–Fisher genetic models. SIAM J. Appl. Math. 29,
225–242.

Norris, J.R., 1997. Markov Chains. Cambridge University Press, Cambridge.
Notohara, M., 1990. The coalescent and the genealogical process in geographically
structured population. J. Math. Biol. 29, 59–75.

Richman, A.D., Uyenoyama, M.K., Kohn, J.R., 1996. Allelic diversity and gene
genealogy at the self-incompatibility locus in Solanaceae. Science 273,
1212–1216.

Slade, P.F., 2000a. Simulation of selected genealogies. Theoret. Pop. Biol. 57,
35–49.

Slade, P.F., 2000b. Most recent common ancestor distributions in genealogies under
selection. Theoret. Pop. Biol. 58, 291–305.

Stephens, M., Donnelly, P., 2003. Ancestral inference in population genetics models
with selection. Aust. N. Z. J. Stat. 45, 395–430.

Takahata, N., 1988. The coalescent in two partially isolated diffusion populations.
Genet. Res., Camb. 53, 213–222.

Takahata, N., 1990. A simple genealogical structure of strongly balanced allelic lines
and trans-species polymorphism. Proc. Natl. Acad. Sci, USA 87, 2419–2423.

Vekemans, X., Slatkin, M., 1994. Gene and allelic genealogies at a gametophytic self-
incompatibility locus. Genetics 137, 1157–1165.

Wakeley, J., 2008a. Conditional gene genealogies under strong purifying selection.
Mol. Bol. Evol. 25, 2615–2626.

Wakeley, J., 2008b. Coalescent Theory: An Introduction. Roberts & Company
Publishers, Greenwood Village, Colorado.

Wolfram, S., 1999. The Mathematica Book, 4th edition. Wolfram Media/Cambridge
University Press, Cambridge, UK.

Wright, S., 1931. Evolution in Mendelian populations. Genetics 16, 97–159.
Wright, S., 1939. The distribution of self-sterility alleles in populations. Genetics 24,
538–552.

Wright, S., 1949. Adaptation and selection. In: Jepson, G.L., Simpson, G.G., Mayr, E.
(Eds.), Genetics, Paleontology and Evolution. Princeton Univ. Press, Princeton.

Wright, S., 1969. Evolution and the genetics of populations. In: Vol. 2: The Theory
of Gene Frequencies. University of Chicago Press, Chicago.

http://dx.doi.org/doi:10.1016/j.tpb.2009.01.007

	The conditional ancestral selection graph with strong balancing selection
	Introduction
	Methods and results
	The conditional ASG for two alleles and symmetric balancing selection
	Separation of time scales: Strong neutral mutation
	Convergence of conditional ancestral processes with strong selection
	Comparing simulations to limiting results for  σ = 0  and  σ rightarrow infty

	Discussion
	Acknowledgments
	Appendix
	References


