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a b s t r a c t

We describe an iterated game between two players, in which the payoff is to survive a number of steps.
Expected payoffs are probabilities of survival. A key feature of the game is that individuals have to survive
on their own if their partner dies. We consider individuals with hardwired, unconditional behaviors
or strategies. When both players are present, each step is a symmetric two-player game. The overall
survival of the two individuals forms a Markov chain. As the number of iterations tends to infinity, all
probabilities of survival decrease to zero. We obtain general, analytical results for n-step payoffs and use
these to describe how the game changes as n increases. In order to predict changes in the frequency of
a cooperative strategy over time, we embed the survival game in three different models of a large, well-
mixed population. Two of these models are deterministic and one is stochastic. Offspring receive their
parent’s type without modification and fitnesses are determined by the game. Increasing the number
of iterations changes the prospects for cooperation. All models become neutral in the limit (n → ∞).
Further, if pairs of cooperative individuals survive together with high probability, specifically higher than
for any other pair and for either type when it is alone, then cooperation becomes favored if the number
of iterations is large enough. This holds regardless of the structure of pairwise interactions in a single
step. Even if the single-step interaction is a Prisoner’s Dilemma, the cooperative type becomes favored.
Enhanced survival is crucial in these iterated evolutionary games: if players in pairs start the game with
a fitness deficit relative to lone individuals, the prospects for cooperation can become even worse than in
the case of a single-step game.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

More than a century ago, Kropotkin (1902) argued that what
he called mutual aid should be ranked among the main factors of
evolution, an evenmore important driver of evolution thanwithin-
species competition. The idea ofmutual aid is similar to that ofmu-
tualism: partnerships may be beneficial to both partners and thus
unconditionally favored. Kropotkin had been deeply impressed
by the abilities of animals to endure harsh winters and perilous
migrations in northern Eurasia by living together and supporting
each other in situations where a lone animal had little chance
of surviving. Thus, he inferred a connection between cooperative
behaviors and survival under adverse conditions. But Kropotkin did
not spell out the ways in which adversity might favor cooperative
behaviors, nor did he consider that cooperative behaviors could be
disadvantageous. He took the very fact that animals seem to do
better in groups than alone as evidence for mutual aid, apparently
unaware that any interaction presents the opportunity, or at least
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the temptation, to be the one who comes out ahead even if it is at
the expense of other individuals.

Indeed, game theory and evolutionary theory have uncovered
numerous situations in which cooperative or otherwise helping
behaviors are detrimental to the individual or selectively disad-
vantageous (Hofbauer and Sigmund, 1998; Mesterton-Gibbons,
2000; Cressman, 2005; Schecter and Gintis, 2016). It has been
shown using a variety of models that such behaviors can be disfa-
vored even if there are obvious advantages to mutual cooperation.
For example, in the classic two-player game called the Prisoner’s
Dilemma (Tucker, 1950; Rapoport and Chammah, 1965; Axelrod,
1984), cooperation results in a ‘‘reward payoff’’ if one’s partner
also cooperates but a ‘‘sucker’s payoff’’ if one’s partner defects.
Defection yields a ‘‘temptation payoff’’ if one’s partner cooperates
but a ‘‘punishment payoff’’ if one’s partner also defects. The reward
is of course better than the punishment, but it is further assumed
that the temptation payoff is greater than the reward, and the
sucker’s payoff is even worse than the punishment. This leads to a
paradox: an individual who defects always receives a higher payoff
but it is clearly illogical for everyone to defect.

The Prisoner’s Dilemma, in which the payoff for defection is
higher than for cooperation regardless of one’s partner behavior,
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Table 1
The payoff, a(n), b(n), c(n) or d(n), that an individual receives in a symmetric
two-player game depends both on the individual and on the individual’s partner.
In a survival game, these payoffs are probabilities of survival. A and B denote
two possible strategies or types of individuals (e.g. Dove and Hawk). Payoffs are
simultaneously awarded to both players, i.e. each is considered the Individual (and
the other the Partner) and awarded a payoff according to the table.

Partner

A B

Individual A a(n) b(n)
B c(n) d(n)

represents one of four possible types of two-player games. It is
the polar opposite of what Kropotkin (1902) imagined for mutual
aid, that instead it would cooperation that would always yield
the higher payoff. Between these extremes lie two other kinds of
games. In the Stag Hunt (Skyrms, 2004) and related games, the
payoff to an individual is higher if itmatches the partner’s behavior
regardless of what that behavior is. Cooperators in the Stag Hunt
go for the big game, a stag, which two such individuals can catch
but one alone cannot. Non-cooperators opt out of the big-game
hunt and accept amiddling payoff, a hare, which a single individual
can catch. In this case, cooperation yields the higher payoff only
when one’s partner also cooperates. The Hawk–Dove game (May-
nard Smith and Price, 1973; Maynard Smith, 1978) represents the
fourth kind, inwhich having a different behavior than one’s partner
produces a higher payoff. Doves cooperate by sharing resources but
retreat when challenged. Hawks do not cooperate. They are ready
to fight to avoid leaving an interaction empty-handed. A Hawk gets
the entire resource when facing a Dove but suffers badly when fac-
ing another Hawk. Hawk and Dove, of course, refer to stereotypical
personalities not animals. In this last case, cooperation yields the
higher payoff only when one’s partner does not cooperate. Besides
Hawk–Dove, other well-studied games of this type are the game
of chicken and the snowdrift game (Doebeli and Hauert, 2005;
Nowak, 2006a).

We introduce a two-player survival game which can fall into
any of these four classes. It may also change, for example from a
Hawk–Dove game into a Prisoner’s Dilemma, depending on one
key feature, the length of the game. In this game, an initially
sampled pair of individuals confronts a hazardous situation which
is repeated n times. With reference to Kropotkin (1902), we might
imagine that each day of a long journey presents a similar set of
challenges which threaten survival. They might, for example, be
trying to survive a number of very cold nights or attempting to
defend themselves repeatedly against a predator. How they fare in
each step depends on their behavior and their partner’s behavior.
The payoff for an individual is all or nothing: either survive to
the end of the game or not. Crucially, an individual must face the
perilous situation alone for the remainder of the game if its partner
dies. Survival payoffs are thus meted out at each step, and this will
be important for determining total payoffs in the game. Denoting
survival as 1 and death as 0, the expected total payoff to an
individual in a given situation (i.e. with a specified partner initially)
is its probability of surviving to the end of the game. The n-step
survival game is a symmetric two-player game with total payoffs,
a(n), d(n), c(n) and d(n) as Table 1. Using Table 1 to represent an
n-step game that is a Prisoner’s Dilemma, with A for cooperation
and B for defection, the reward would be a(n), the sucker’s payoff
b(n), the temptation payoff c(n) and the punishment d(n).

More generally, depending on a(n), b(n), c(n) and d(n), any
n-step survival game falls into one of the four classes described
above. Ignoring the detail that some payoffs might be identical,
these are defined as follows. If a(n) < c(n) and b(n) < d(n), cooper-
ation has the lower payoff regardless of the partner. Then the game
falls into the class exemplified by the Prisoner’s Dilemma, which

wewill call PD for short. If a(n) > c(n) and b(n) < d(n), cooperation
has the higher payoff only when one’s partner cooperates. This is
the Stag-Hunt class of games, or SH for short. If a(n) < c(n) and
b(n) > d(n), cooperation has the higher payoff only when one’s
partner does not cooperate. This is the Hawk–Dove class, or HD for
short. Finally, if a(n) > c(n) and b(n) > d(n), cooperation has the
higher payoff regardless of the partner. We follow De Jaegher and
Hoyer (2016) and call this a Harmony Game, or HG for short.

We refer to the n-step survival game as a repeated or iterated
game because the payoff structure in each of the n steps is identical
and equivalent to the single-step version of the game. The notion
of repeated or iterated games is generally predicated on the idea
that individuals can act differently in different steps and can react
to their partner’s behavior. When this is true, the relatively sim-
ple conclusions about which strategy may be favorable based on
Table 1 do not necessarily hold. For example, if two individuals
play an iterated Prisoner’s Dilemma under these conditions, then
reactive strategies like Tit-for-Tat (Axelrod, 1984) or win-stay,
lose-shift (Nowak and Sigmund, 1993) can be favored over the
single-iteration strategy of always-defect. Such repeated games
allow for the phenomena of direct and indirect reciprocity (Trivers,
1971; Nowak and Sigmund, 1998) and trigger strategies which
punish non-cooperation (Osborne and Rubinstein, 1994). These
are examples of a general phenomenon of behavioral responsive-
ness (Van Cleve and Akçay, 2014) which is one of a small number
of mechanisms known to promote the evolution of costly cooper-
ation (reviewed in Nowak, 2006b; Van Cleve and Akçay, 2014).

We do not consider reactive strategies or behavioral respon-
siveness in this work. Individuals have one of two possible simple
strategies: A or B as in Table 1. When both individuals are present,
which is always the case initially, their survival probabilities in
each iteration are given by the single-step version of Table 1, i.e.
with a(1), b(1), c(1) and d(1). We will refer to these single-step
survival probabilities as a, b, c and d. The n-step survival proba-
bilities, a(n), b(n), c(n) and d(n), will depend on these as well as on
the probabilities of survival when an individual is alone. Although
the game always begins with two individuals, if one dies the other
must continue. In the remaining steps, a loner plays a game against
Nature. Specifically, a loner survives a single step with probability
a0 if it has strategy A and probability d0 if it has strategy B. We are
especially interested in cases in which the single-step, two-player
game defined by a, b, c and d is of a different type than the n-step
game defined by a(n), b(n), c(n) and d(n).

Several previous works have considered games in which the
random survival of individuals is an important factor and envi-
ronmental conditions may be harsh. Eshel and Weinshall (1988)
introduced a model in which payoffs are probabilities of survival.
Payoffs were drawn randomly from a distribution, and the game
was repeated with a fixed probability. As in the model we pro-
pose, Eshel and Weinshall (1988) allowed that the game may con-
tinue even if one individual dies. They considered optimal strategy
choice by individuals under the assumption that individuals have
perfect knowledge of the game’s structure, including the distribu-
tion of the payoffs. Eshel and Shaked (2001) described a similar sur-
vival game but included a general probability that both members
of a pair survive, thus allowing for arbitrary synergistic effects of
partnership (Hauert et al., 2006; Kun et al., 2006) within each step
of the game. Eshel andWeinshall (1988) had assumed that pairwise
survival probabilities were the products of two individual survival
probabilities.

Garay (2009) combined the idea of a survival game with the
‘‘selfish herd’’ theory of Hamilton (1971) to produce a model of
cooperation between pairs of individuals in defense against re-
peated attacks by a predator. Individuals were of two possible
types, characterized by a probability of helping their partner in
defense against attack. Garay (2009) derived the total survival
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probabilities of individuals in different kinds of partnerships given
a fixed number of attacks, and used these to describe evolutionarily
stable strategies (Maynard Smith and Price, 1973) in an infinite
population. Using the example contrast of one attack versus eight
attacks, this revealed cases in which helping could not invade a
completely selfish population given a one-attack game but could
invade if the number of attacks was larger (Garay, 2009).

Kropotkin’s notion that high levels of adversity could favor
cooperation has also been studied using simulations of structured
populations. Harms (2001) found that in a Prisoner’s Dilemma co-
operators could gain an advantage at the inhospitable margins of a
population by colonizing patches cleared by the local extinction of
defectors. More recent simulations of another model by Smaldino
et al. (2013) also found cases in which cooperation can be favored
despite the Prisoner’s Dilemma. Specifically, if there is a high cost
of living for all individuals which, if unchecked, would lead to the
extinction of the population and if occasional interactions with
cooperators are required for survival, then cooperation can be
favored. As in Harms (2001), the success of cooperators in this case
relied on their ability to form clusters (Smaldino et al., 2013).

De Jaegher and Hoyer (2016) considered two game-theoretic
models of the behavior and ecology of a pair of individuals, in
which higher levels of adversity can change the type of the game.
TheirModel 1 includes a degree of complementaritywhich rescales
payoffs for mixed-strategy pairs compared to same-strategy pairs,
and which could represent an environmental challenge for mixed
pairs. Their Model 2 includes a number of attacks by a predator
on individuals protecting a common resource. Cooperators are
immune to attacks while defectors can sustain at most one at-
tack before the common resource is lost. As in Garay (2009), the
number of attacks indicates the level of environmental challenge.
Cooperation may be disfavored when the number of attacks is
small and yet become favored when the number of attacks is large.
Depending on the other parameters in themodel, however, a range
of other switches between types of gamesmayoccur as the number
of attacks increases. De Jaegher (2017) extended these results to
multi-player games.

Our concerns here are similar to those of Garay (2009) and
De Jaegher and Hoyer (2016). We study how the structure of the
two-player iterated survival game changes as a function of its
parameters, in particular the number of steps n. We compare the
conclusions for single-step games with those for n-step games.
Because the payoffs which are probabilities of survival in this game
decrease as n increases, n is a measure of adversity. We present
general results for any level of adversity, then focus on the possible
structures of large-n games. We find conditions under which any
type of single-step game, be it a Prisoner’s Dilemma, a Stag Hunt or
a Hawk–Dove game, will become a Harmony Game as n increases.
We identify three other large-n results, one of which shows the
opposite: single-step advantages of cooperation may disappear
as n grows. To facilitate comparisons, we define A throughout as
the more cooperative type based on the single-step game, so that
a > d. Thus, AA pairs survive better than BB pairs. We consider
both infinite and finite populations but in neither case is there
spatial or any other kind of structure.We do not develop a detailed
biological, ecological or behavioral model. Akin to what is done in
models of diploid viability selection, we describe the game and its
results directly in terms of survival probabilities. Our results are
applicable to a wide range of specific scenarios in which payoffs
affect viability (as opposed to fertility or fecundity) and in which
partnerships may either enhance survival or detract from it.

1.1. Evolutionary dynamics

Comparing a(n) to c(n) and b(n) to d(n) in Table 1 indicates
whether the more cooperative strategy A yields the higher or the

lower payoff given partners of type A and B, respectively. In game
theory and much of evolutionary game theory which treats pop-
ulations, these two comparisons are relevant because individuals
choose or modify their strategies based on their knowledge of
the game and its outcomes (Sandholm, 2010). When individuals
cannot alter or choose their behaviors but payoffs affect fitness,
the same sorts of evolutionary models are used to predict changes
in the frequency of hardwired behaviors in a population. In this
section, we briefly summarize the evolutionary game dynamics of
infinite populations.

The replicator equation, in which general payoffs are inter-
preted as contributions to individual fitness (Taylor and Jonker,
1978; Hofbauer et al., 1979; Zeeman, 1980; Schuster and Sigmund,
1983; Hofbauer and Sigmund, 1988, 1998) provides an evolution-
ary setting for the classification of two-player games. In a survival
game payoffs are fitnesses, specifically viabilities. If x is the relative
frequency of A in an infinite population, the replicator equation
gives the instantaneous rate of change

ẋ = x(1 − x)
(
[a(n) − c(n)]x + [b(n) − d(n)](1 − x)

)
. (1)

Eq. (1) illustrates the evolutionary consequences of partner-
dependent payoffs when pairs are formed at random in proportion
to the frequencies ofA and B.When x ≈ 1, so thatA is very common
and nearly all partners are A, it is the sign of a(n) − c(n) that
determines whether A is favored in the population. On the other
hand, when x ≈ 0, so that nearly all partners are B, the sign of
b(n)− d(n) is what matters. Beyond this, Eq. (1) shows that for any
value of x, it is the sign of [a(n) − c(n)]x + [b(n) − d(n)](1 − x)
that determines whether A is favored. Thus, in a population and in
evolution the relativemagnitudes of both a(n)−c(n) and b(n)−d(n)
are important, such that one may dominate the other at a given
value of x. This is not something that can be gleaned directly from
Table 1.

Withoutmutation, the fates ofA and B in this infinite population
are entirely determined by Eq. (1). From any starting point, x will
move deterministically toward one of three possible equilibria
which are the solutions of ẋ = 0 and which may correspond to
the evolutionarily stable strategies mentioned in Section 1. Two
monomorphic equilibria always exist, x̂ = 0 and x̂ = 1. The
polymorphic equilibrium

x̂ =
b(n) − d(n)

b(n) − d(n) − a(n) + c(n)
(2)

might also exist, depending on the payoffs. It exists, which is to say
that Eq. (2) gives a biologically meaningful value, when a(n), b(n),
c(n) and d(n) are such that 0 < x̂ < 1.

Eq. (1) defines the same four types of symmetric two-player
games. In the PD case, a(n) − c(n) < 0 and b(n) − d(n) < 0,
and Eq. (1) shows that ẋ < 0 for all values of x ∈ (0, 1). Starting
at any value x < 1, the frequency of A will decrease to zero. The
polymorphic equilibrium given by Eq. (2) does not exist. In the SH
case, a(n)−c(n) > 0 and b(n)−d(n) < 0. Then A is disfavoredwhen
x is below the polymorphic equilibrium x̂ in Eq. (2) and favored
when x > x̂. The polymorphic equilibrium exists and is unstable.
In the HD case, a(n) − c(n) < 0 and b(n) − d(n) > 0. Then A is
favored when x < x̂, and disfavored when x > x̂. The polymorphic
equilibrium exists and is stable. In the HG case, a(n)−c(n) > 0 and
b(n) − d(n) > 0. Then ẋ > 0 and A is favored for all x ∈ (0, 1). The
polymorphic equilibriumdoes not exist. Fig. 1 shows examples of a
Prisoner’s Dilemma, a Stag Hunt and a Hawk–Dove survival game,
depicting payoffs in their contexts (upper panels) and associated
shapes of ẋ (lower panels). A Harmony Game is not shown but
would be another case of directional selection, like Fig. 1D butwith
ẋ > 0 for all x ∈ (0, 1).

These four types of games defined by the shape of ẋ over the
interval [0, 1] are identical to what is observed in classical models
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Fig. 1. A and D: Prisoner’s Dilemma with payoffs a = 0.97, b = 0.94, c = 0.99, d = 0.95 (a linear transformation of the classic R = 3, S = 0, T = 5, P = 1 of Axelrod
(1984), e.g. a = 0.94+ R/100). B and E: Stag Hunt, with a = 0.99, b = 0.94, c = d = 0.97 (corresponding to a stag value of 0.05 and a hare value of 0.03 added to a baseline
survival probability of 0.94). C and F: Hawk–Dove, with a = 0.97, b = 0.95, c = 0.99, d = 0.94 (corresponding to a cost of fighting of 0.03 and a resource value of 0.04,
with a baseline survival probability of 0.95). Line segments in A, B and C connect the survival probabilities for B (left) versus A (right) when each occurs with given type
of partner. The curves in D, E and F show ẋ from Eq. (1). In diploid population genetics, these three cases for ẋ are called directional selection (D), underdominance (E) and
overdominance (F).

of diploid viability selection (e.g. see section 4.2 in Nagylaki, 1992).
The difference is that, barring atypical phenomena such as meiotic
drive (Dunn, 1953; Sandler and Novitsky, 1957) or segregation-
distortion (Sandler and Hiraizumi, 1960; Hartl, 1974), standard
diploid models always have b(n) = c(n). It is by allowing b(n) ̸=

c(n) that two-player games introduce the paradox of the Prisoner’s
Dilemma, in which c(n) > a(n) and d(n) > b(n) but a(n) > d(n). In
order to have c(n) > a(n) and d(n) > b(n) in a standard diploid
model it would be necessary to have a(n) < d(n). Accordingly,
the Prisoner’s Dilemma is the most stringent form of a cooperative
dilemma (Doebeli and Hauert, 2005; Hauert et al., 2006; Nowak,
2012). A cooperative dilemma exists when (i) mutual cooperation
results in a higher payoff than mutual non-cooperation, so that
a(n) > d(n) when A represents cooperation, but (ii) there is incen-
tive to be non-cooperative in at least one of threeways: (iia) c(n) >

a(n), (iib) d(n) > b(n) or (iic) c(n) > b(n) (Nowak, 2012). The
Prisoner’s Dilemma includes all three of these incentives. Games
with fewer barriers to cooperation, such as the Stag Hunt and the
Hawk–Dove game, represent relaxed cooperative dilemmas. The
Harmony Game involves no cooperative dilemma and presents no
barrier to cooperation.

2. An n-step survival game between two players

Our survival game always includes n iterations and begins with
a pair of individuals. In each step, both might survive or one,
the other or both might die. These same outcomes hold for the
complete game, only the probabilities of surviving will be smaller.
We consider two unconditional strategies, A and B. When both
players are present, their individual survival probabilities are given
by the single-step version of Table 1 with a(1) ≡ a, b(1) ≡ b,
c(1) ≡ c and d(1) ≡ d. However, the next iteration must be
faced bywhoever has survived so far, until all n iterations are done.
Thus, an individual might have to play alone. Then the survival
probabilities become a0 forAwithout a partner and d0 forBwithout
a partner. In all of what follows, A will be the more cooperative
strategy, meaning that a > d.

The n-step survival game is a stochastic process with six possi-
ble states: the paired states AA, AB and BB, the loner states A and B,

and the state inwhich both individuals have diedwhichwe denote
Ø. It is convenient to represent a single iteration using the matrix

⎛⎜⎜⎜⎜⎜⎝

AA AB BB A B Ø
AA a2 0 0 2a(1 − a) 0 (1 − a)2
AB 0 bc 0 b(1 − c) c(1 − b) (1 − b)(1 − c)
BB 0 0 d2 0 2d(1 − d) (1 − d)2
A 0 0 0 a0 0 1 − a0
B 0 0 0 0 d0 1 − d0
Ø 0 0 0 0 0 1

⎞⎟⎟⎟⎟⎟⎠ (3)

with entries equal to the transition probabilities among the six
states. For example, the transition from state AB to state B means
that the B individual survives and the A individual dies. In a single
step, this occurs with probability c(1−b). Note that the transitions
in Eq. (3) include the fates of both individuals but the individuals
are not labeled Individual and Partner as they are in Table 1.

The process described by Eq. (3) is depicted in Fig. 2. State
Ø is an absorbing state. There is no possibility of transition be-
tween the paired states AA, AB, and BB. Instead each of these
feeds either straight into state Ø, from which there is no escape,
or into one of the loner states, A or B, and from there into Ø.
Therefore, transitions from any of the starting, paired states to
absorption in state Ø involve either one or two changes of state.
Further, all of the transitions that cannot occur in a single iteration
(the 0 entries in the matrix) cannot ever occur regardless of the
number of iterations. Because of this simple structure, the n-step
transition probabilities can be calculated directly by conditioning
on the times these transitions take place, i.e. on their positions
in the sequence of n iterations. It is also possible to compute the
n-step transition probabilities using standard techniques for
Markov chains, and this provides a useful framework for decom-
posing the process and describing its behavior when n is large.

Details of the matrix approach are given in the Appendix, but
two key features of it inform our presentation. The first is the fact
of the absorbing state (Ø) in which both individuals have died. It
will be reached eventually, meaning in the limit n → ∞. For large
n the game process will be just the approach to this state. Second,
when n is large, the rate of approach to state Ø will be given by the
largest non-unit eigenvalue of thematrix in Eq. (3). Because it is an
upper triangular matrix, the eigenvalues are simply the entries on
the diagonal. By convention, we call the largest of these λ1 = 1 and
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Fig. 2. Flow diagram of the stochastic process given by thematrix of Eq. (3). Arrows
show all possible transitions among the six states (AA, AB, BB, A, B,Ø). States AA, AB,
BB, A and B are transient. State Ø is absorbing. The process always begins in one of
the three states on the left, AA, AB or BB. After n iterations, it may be in any of the
six possible states.

note that this corresponds to the eventual absorption in state Ø. In
all, we have

λ =
{
1, a2, bc, d2, a0, d0

}
. (4)

Following the discussion of Table 1 and Eq. (1), we expect the
fates of A and B in this iterated game to depend on the relative
magnitudes of a versus c and b versus d. Eq. (4) suggests that
their fates will also depend on the relative magnitudes of the
pair survival probabilities, a2, bc and d2, and on the loner survival
probabilities, a0 and d0, and that this dependencemay be especially
strong when n is large.

We compute the n-step pair survival probabilities directly as

Prob(AA → AA) = a2n (5)
Prob(AB → AB) = (bc)n (6)
Prob(BB → BB) = d2n. (7)

Then, by considering the possibility that one of the individuals
might die in step 1 ≤ i ≤ n and the other individual survives to
the end of the game, we have

Prob(AA → A) =

n∑
i=1

(
a2

)i−1
2a(1 − a)an−i

0 (8)

=
(
a2n − an0

) 2a(1 − a)
a2 − a0

(9)

Prob(AB → A) =

n∑
i=1

(bc)i−1b(1 − c)an−i
0 (10)

=
(
(bc)n − an0

) b(1 − c)
bc − a0

(11)

Prob(AB → B) =

n∑
i=1

(bc)i−1c(1 − b)dn−i
0 (12)

=
(
(bc)n − dn0

) c(1 − b)
bc − d0

(13)

Prob(BB → B) =

n∑
i=1

(
d2

)i−1
2d(1 − d)dn−i

0 (14)

=
(
d2n − dn0

) 2d(1 − d)
d2 − d0

. (15)

The only other possibility is that neither individual survives, so we
also have

Prob(AA → Ø) = 1 − Prob(AA → AA) − Prob(AA → A) (16)
Prob(AB → Ø) = 1 − Prob(AB → AB) − Prob(AB → A)

− Prob(AB → B) (17)
Prob(BB → Ø) = 1 − Prob(BB → BB) − Prob(BB → B). (18)

In the Appendix we show how these probabilities are obtained
using techniques for Markov chains.

Eqs. (8) through (15) make it clear that this paired survival
process is one in which the fortunes of individuals may change,
perhaps drastically depending on the values of a0 and d0 relative
to a, b, c and d. Consider starting state AB. Eq. (12) shows how the
probability of being in state B at the end of n iterations is computed.
In words, both individuals survive for some time (i−1 steps), then
A dies, and B survives the rest of time (n − i steps). If A dies, B
trades its individual survival probability of c , which B enjoys in the
presence andA, for a loner survival probability of d0. It could be that
d0 < c , making B worse off after A dies. In fact, B’s fate is closely
tied with A’s because this switch could occur quickly if A’s survival
probability, b, is small. Of course, while there is a cost to B when
A dies (assuming d0 < c), the death of A in this partnership also
represents a rather direct disadvantage to A. In order to understand
whether A or B will prevail in evolution, it is necessary to account
for the full dynamics of reproduction in a population,with fitnesses
that are determined by this game.Wewill take this up in Section 3.

In the n-step game, the differences a(n) − c(n) and b(n) − d(n)
give the conditions under which A is favored. The n-step payoffs,
or survival probabilities, are computed by accounting for the two
ways an individual may survive the game. An individual survives
if both it and its partner survive or if it survives but its partner
dies. The total probabilities of individual survival in each kind of
partnership are

a(n) = Prob(AA → AA) + Prob(AA → A)/2

= a2n
a − a0
a2 − a0

+ an0
a(1 − a)
a0 − a2

(19)

b(n) = Prob(AB → AB) + Prob(AB → A)

= (bc)n
b − a0
bc − a0

+ an0
b(1 − c)
a0 − bc

(20)

c(n) = Prob(AB → AB) + Prob(AB → B)

= (bc)n
c − d0
bc − d0

+ dn0
c(1 − b)
d0 − bc

(21)

d(n) = Prob(BB → BB) + Prob(BB → B)/2

= d2n
d − d0
d2 − d0

+ dn0
d(1 − d)
d0 − d2

. (22)

The transitions AA → A and BB → B are adjusted by a factor
of 1/2 because they are equally likely to happen by the death
of the partner as by the death of the focal individual. Eqs. (19)
through (22) are our general results, namely the n-step survival
probabilities for individuals of types A and B given each kind of
initial partnership. They are exact for any values of a, b, c , d, a0
and d0 greater than zero and less than one, and for any number
of iterations n ≥ 1. As expected, when n = 1, they reduce to the
single-step survival probabilities a(1) = a, b(1) = b, c(1) = c and
d(1) = d.

The two key differences in payoff are then

a(n) − c(n) = a2n
a − a0
a2 − a0

+ an0
a(1 − a)
a0 − a2
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− (bc)n
c − d0
bc − d0

− dn0
c(1 − b)
d0 − bc

(23)

b(n) − d(n) = (bc)n
b − a0
bc − a0

+ an0
b(1 − c)
a0 − bc

− d2n
d − d0
d2 − d0

− dn0
d(1 − d)
d0 − d2

. (24)

Each term in Eqs. (23) and (24) includes a factor λn
i for one of the

non-unit eigenvalues (a2, bc, d2, a0, d0). These factors are positive.
The denominator of each term is the difference between two
eigenvalues. If we know the eigenvalues, we knowwhether the de-
nominators are positive or negative. In some cases the numerator
might be negative, but by the definition of a, b, c , d, a0 and d0 as
probabilities, the numerator will be positive if the denominator is
positive. Thus Eqs. (23) and (24) are written so that the sign of each
term indicates whether it favors A (+ ) or disfavors A (−) when
the denominator is positive. We do this to facilitate the analysis of
large n, in which case a(n) − c(n) and b(n) − d(n) will come to be
dominated by the terms involving the largest non-unit eigenvalue.

Another way to write Eqs. (23) and (24) is

a(n) − c(n) = (a − a0)
a2n − an0
a2 − a0

− (c − d0)
(bc)n − dn0
bc − d0

+ an0 − dn0 (25)

b(n) − d(n) = (b − a0)
(bc)n − an0
bc − a0

− (d − d0)
d2n − dn0
d2 − d0

+ an0 − dn0 (26)

which brings attention to the possible survival value of having a
partner and of being A versus Bwithout a partner. Thus, a− a0 and
c − d0 in Eq. (25) are the increments to the survival probabilities
of A and B when each has partner A compared to when they are
alone. Likewise, b− a0 and d− d0 in Eq. (26) are the corresponding
increments for A and B with partner B versus alone. Note that the
fractionsmultiplying these increments are always positive. All else
being equal, a(n)−c(n) increaseswith a−a0 > 0but decreaseswith
c−d0 > 0, and b(n)−d(n) increases with b−a0 > 0 but decreases
with d−d0 > 0. Negative increments have the opposite effects. For
example, if B suffers by having a B partner compared to being alone,
then d−d0 < 0,which in turn favorsA via the difference b(n)−d(n).
The last two terms of both Eqs. (25) and (26) quantify the n-step
effects of differences in the loner survival probabilities, a0 and d0.
If a0 > d0 the contribution to both a(n) − c(n) and b(n) − d(n) is
positive, and if a0 < d0 it is negative.

These five possible increments to individual survival, namely
a−a0, b−a0, c−d0, d−d0 and a0−d0, in Eqs. (25) and (26) are helpful
for understanding some of our results and the structure of survival
games generally. However, it is also clear from the additional
presence of the pair-state eigenvalues in Eqs. (25) and (26) as well
as in Eqs. (23) and (24), that these five increments do not entirely
determine the prospects for cooperation. The relative magnitudes
of the five eigenvalues will also be important. This may be seen in
the denominators in Eqs. (25), (26), (23) and (24), which contrast
the survival of pairs to the survival of loners: a2−a0, bc−a0, bc−d0,
d2−d0. The preceding expressions, Eqs. (23) and (24), are especially
useful for predicting the structure of the game when n is large.

3. Four types of prolonged survival games

Here, we present analytical results for large n and use our
exact results to illustrate how the prospects for A depend on n for
intermediate values. The analysis of large n allows us to answer
questions such as: Is there a number of iterations beyond which A
is unambiguously favored? More generally, we ask how the game
might change for A, for better or for worse, as the number of

iterations increases. We present results both for a(n) − c(n) and
b(n) − d(n) and in terms of the unified predictions of Eq. (1).

Eq. (1) is a standard replicator equation for a symmetric two-
player game. In the Appendix, we show how it may be derived
for the n-step survival game. This has two notable features: the
game works by removing individuals from the population instead
of affecting their rates of reproduction and the derivation follows
pairs of individuals rather than single individuals. Also in the
Appendix, we take a discrete-time, population-genetic approach
to show that the change in frequency of A over one generation is

∆x = x(1 − x)
(
[a(n) − c(n)]x + [b(n) − d(n)](1 − x)

)
/w̄, (27)

which is identical in form to ẋ in Eq. (1) but scaled by the average
fitness, w̄. Eq. (27) is directly comparable to classical results for
diploid viability selection. Importantly, w̄ > 0. Therefore, all of the
conclusions concerning the ultimate fate of the cooperative type
A in the population, based on the sign of the change in frequency,
will be the same whether one appeals to Eq. (1) or Eq. (27).

Each of the n-step payoffs a(n), b(n), c(n) and d(n) depends on
two of the non-unit eigenvalues, and each eigenvalue is raised to
the power n. Thus a(n), b(n), c(n) and d(n) all decrease to zero as n
tends to infinity. Surviving more steps is less likely than surviving
fewer steps. As a consequence, the two key fitness differences,
a(n) − c(n) and b(n) − d(n), and the instantaneous rate of change,
ẋ, also approach zero in the limit n → ∞. We study the approach
to this neutral limit in order to understand whether increasing n
fundamentally alters the prospects for cooperation. For example,
if ẋ < 0 when n = 1 but the neutral limit ẋ = 0 is approached
from above, then there exists a value of n beyond which ẋ > 0. In
this case, the single-step game favors the non-cooperative type B
but large-n games favor the cooperative type A.

In the following subsections, we describe four main categories
of large-n, or prolonged, survival games. These are characterized
both in the usual way by the relative values of a, b, c and d, that
is by the structure of the single-step game, and by the rank order
of non-unit eigenvalues a2, bc , d2, a0 and d0. We have defined the
cooperative strategy A throughout by a > d, which guarantees that
a2 > d2. Thus d2 will never be the largest non-unit eigenvalue. The
first two types of prolonged survival games we describe are those
for which a2 is the largest and those for which bc is the largest.
The third and fourth types of prolonged survival games are ones
in which lone individuals survive with high probability. Simplifi-
cations emerge when n is large because the n-step payoffs become
dominated by their largest terms. We present approximations for
large n, showing just the leading terms of a(n)−c(n) and b(n)−d(n),
and of ẋ.

3.1. Games in which cooperation will prevail

The first casewe consider is when having a partner significantly
enhances survival and it is the AA type not the AB type that survives
best. This is case in which a2 is the largest non-unit eigenvalue:
a2 > bc, a0, d0. Thus, the probability that both members of an
AA pair survive a single iteration is greater than the corresponding
probability for any other pair and for either type of lone individual.

The condition a2 > bc may be true of any kind of two-player
game, but the chance it is depends on the game. One way to
quantify this is to consider the total parameter space of two-player,
single-step survival games. Because a, b, c and d are probabilities
and here it is assumed that a > d, this space is equal to half of a
four-dimensional hypercube. Further, since a > d implies a2 > d2,
there are just three possible relations of the pair-state eigenvalues,
a2, bc and d2. Either bc > a2, a2 > bc > d2 or d2 > bc. The latter
two satisfy the condition a2 > bc. Table 2 lists the proportions
of the total parameter space satisfying the criteria for each type
of single-step game. In addition, Table 2 shows the percentages
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Table 2
Partitioning of the four-dimensional hypercube into fractions meeting the game conditions in the first
column. The types of single-step games are abbreviated PD, SH, HD and HG for Prisoner’s Dilemma,
Stag Hunt, Hawk–Dove game, and Harmony Game. Exact results were obtained by integration in
Mathematica (Wolfram Research, Inc., 2018). Percentages are rounded to the nearest 0.1%. Note that
in all cases a > d by definition, so it is always true that a2 > d2 .

Order of pair-state eigenvalues

Game type Proportion bc > a2 a2 > bc > d2 d2 > bc

PD : a < c , b < d 1/12 10% 40% 50%
with a > (b + c)/2 (3/4 of 1/12) 0% 40% 60%

with a > (b + c)/2, d < (b + c)/2 (1/2 of 1/12) 0% 60% 40%
SH : a > c , b < d 1/4 0% 11.1% 88.9%
HD : a < c , b > d 1/4 80% 20% 0%
HG : a > c , b > d 5/12 10% 66.7% 23.3%

of the game-specific parameter regions corresponding to each of
the three possible relations of the pair-state eigenvalues. So, for
example, 90% of PD-type games have a2 > bc , compared to 20% of
HD-type games.

When the single-step game is a canonical Prisoner’s Dilemma, it
is always true that a2 > bc. This is due to the assumption that the
reward payoff must be larger than the average of the temptation
payoff and the sucker’s payoff (see, e.g. Rapoport and Chammah,
1965; Axelrod, 1984), in which case we have

a2 >

(
b + c
2

)2

= bc +

(
b − c
2

)2

> bc. (28)

In what follows, it will be important to know which is the second-
largest non-unit eigenvalue, especially in the consideration of fi-
nite populations in Section 4. Thus, the two cases a2 > bc > d2
and d2 > bc are distinguished in Table 2. We find that canonical
Prisoner’s Dilemmas are 40% a2 > bc > d2 and 60% d2 > bc. If
we also require that the punishment payoff must be less than the
average of the temptation payoff and the sucker’s payoff (e.g. see
p. 219 of Cressman, 2005), this 40 : 60 split is reversed.

It would be possible to expand Table 2 by including a0 and d0
and integrating over the six-dimensional space of all parameters.
There would bemore than three relations among the five non-unit
eigenvalues. We do not pursue this here. For the prolonged games
considered in this section and in Section 3.2, it is taken for granted
that neither a0 nor d0 is the largest non-unit eigenvalue. In contrast,
in Sections 3.3 and 3.4 it is taken for granted that one of a0 or d0 is
the largest non-unit eigenvalue or they both are and they are equal.
If we were to include a0 and d0 in Table 2, we expect they would
often be larger than a2 and bc due to the fact that these pair-state
eigenvalues are products of probabilities.

There is just one term in Eqs. (19) through (22) which includes
the factor a2n, corresponding to what is assumed here to be the
largest non-unit eigenvalue, a2. It is in the expression for a(n). Thus,
we have

a(n) − c(n) ≈ a2n
a − a0
a2 − a0

> 0 (29)

when n is very large. Eq. (29) gives the approximate value of a(n)−
c(n) as it approaches zero in the limit n → ∞. This result shows
that whatever value or sign a(1) − c(1) = a − c might have in a
single iteration, there exists a value of n above which a(n) − c(n)
will be greater than zero.

The leading term in the other key difference, b(n) − d(n), will
depend on which of bc , d2, a0 or d0 is the next-largest eigenvalue.
Consider, for example, a game which strongly enhances survival,
such that a2, bc, d2 > a0, d0. If bc is the next largest eigenvalue
after a2, then from Eq. (24) we have

b(n) − d(n) ≈ (bc)n
b − a0
bc − a0

> 0. (30)

In this case, the large-n game becomes aHarmonyGame inwhich A
is unambiguously favored. On the other hand, if the second largest
eigenvalue is d2, then from Eq. (24) we have

b(n) − d(n) ≈ −d2n
d − d0
d2 − d0

< 0. (31)

In this case, the large-n game becomes or remains a Stag Hunt
game, so A does not become unambiguously favored. The chances
of being in either of these two sub-cases are given in Table 2.
Similar arguments can be applied when a0 or d0 is the second-
largest non-unit eigenvalue. Then Eq. (24) shows that for large n,
b(n) − d(n) > 0 if a0 is the second-largest, and b(n) − d(n) < 0 if
d0 is the second-largest.

Regardless of which is the second-largest non-unit eigenvalue,
if a2 is the largest then a(n) − c(n) will be much greater than
b(n) − d(n) when n is large. This may be expressed as

lim
n→∞

b(n) − d(n)
a(n) − c(n)

= 0. (32)

Thus, when n is very large, the advantage in survival that A has
over B when the partner is A will be much greater than whatever
difference there is in survival between A and Bwhen the partner is
B. Onemay argue from an evolutionary standpoint that the large-n
Stag Hunt game, with a(n) − c(n) in Eq. (29) and b(n) − d(n) in
Eq. (31), will be a very relaxed cooperative dilemma. Specifically,
owing to Eq. (32), a large-n Stag Hunt of this sort will have its
unstable polymorphic equilibrium x̂ in Eq. (2) close to zero, with
the result that Awill be favored over most of the range of x.

Finally, when n is very large the replicator equation, Eq. (1),
becomes

ẋ ≈ x2(1 − x)a2n
a − a0
a2 − a0

> 0 for all x ∈ (0, 1). (33)

We conclude that, if n is large enough in the case of this first type
of prolonged survival game, the more cooperative type A will be
uniformly favored in an infinite population. This result requires
only that a2 is the largest non-unit eigenvalue. It is robust to
differences in the loner survival probabilities a0 and d0. As long as
a2 is large enough, the non-cooperative type B cannot be rescued
by an advantage in loner survivability. Table 2 shows that a2 > bc
for the great majority of possible single-step survival games, the
exception being games of the Hawk–Dove type, of which only 20%
will have this property.

Fig. 3 illustrates how the two key differences in payoff, a(n) −

c(n) and b(n)− d(n), change as n increases for two examples based
on the Prisoner’s Dilemma. In Fig. 3A, the survival probabilities for
individuals with partners are a = 0.8, b = 0.6, c = 0.9, d = 0.7.
Thus, the cooperative type A incurs an 11% loss of fitness compared
to Bwhen the partner is A and a 14% loss when the partner is B. The
survival probabilities for loners are much smaller and identical:
a0 = d0 = 0.3. The eigenvalues are a2 = 0.64, bc = 0.54,
d2 = 0.49, a0 = 0.3 and d0 = 0.3. This game starts as a Prisoner’s
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Fig. 3. Values of the two key differences, a(n)−c(n) and b(n)−d(n), as a function of the number of iterations, for two different survival gameswhich are Prisoner’s Dilemmas
when n = 1. Panel A: a = 0.8, b = 0.6, c = 0.9, d = 0.7 and a0 = d0 = 0.3. Panel B: a = 0.9, b = 0.8, c = 0.95, d = 0.85 and a0 = d0 = 0.65.

Fig. 4. Values of a(n) − c(n) and b(n) − d(n) over n = 1 . . . 80 iterations for two games which begin as Prisoner’s Dilemmas at n = 1. In both cases, the loner survival
probabilities are a0 = d0 = 0.9. Panel A: a = 0.97, b = 0.94, c = 0.99, d = 0.95; these are the same as in Fig. 1A and D. Panel B: a = 0.9733, b = 0.94, c = 0.99, d = 0.9567;
this differs from panel A only in that a and d are spaced evenly between c and b.

Dilemma (PD)when n = 1. For intermediate numbers of iterations,
specifically n = 3 and n = 4, the game changes to one inwhich A is
disfavored when rare (b(n)−d(n) < 0) but favored when common
(a(n) − c(n) > 0), as in the Stag Hunt (SH). Then as n grows it
becomes a game inwhichA is uniformly favored, as in theHarmony
Game (HG).

Fig. 3B displays results for a very similar game, but one inwhich
the single-iteration probabilities of individual survival are shifted
closer to 1 by a factor of 1/2. That is, a = 0.9, b = 0.8, c = 0.95,
d = 0.85 and a0 = d0 = 0.65. Now the eigenvalues are a2 = 0.81,
bc = 0.76, d2 = 0.7225, a0 = 0.65 and d0 = 0.65. Overall, the
picture is similar to Fig. 3A, with the three phases PD then SH then
HG. But now in moving from n = 1 to n = 2, the selection against
A becomes stronger rather than weaker. This is more in line with
the usual notion of iterated games, in which payoffs are assumed
to accrue additively. In survival games, however, this decrease
cannot continue because all games becomeneutral as n approaches
infinity.

Fig. 3 may be compared to Fig. 4 (Model 2.A.III) of De Jaegher
and Hoyer (2016), with their number of attacks being analogous
to n. A point of contrast between our model based on multiplying
single-step survival probabilities and the behavioral and ecological
scenario, Model 2 of De Jaegher and Hoyer (2016) is that in our
model the payoff differences a(n) − c(n) and b(n) − d(n) may be
non-monotonic, as they are in Fig. 3, whereas these are always
monotonic in Model 2 of De Jaegher and Hoyer (2016). We will
return toModel 2 of De Jaegher andHoyer (2016) andmake further
comparisons in the Discussion.

Because survival probabilities decrease with each iteration, n is
a measure of the adversity faced by individuals, or the harshness
of the environment. Another way to measure adversity is directly
in terms of single-step survival probabilities. Adversity is greater
when a, b, c , d, a0 and d0 are smaller. Fig. 3 provides an example of

how an increase in this sort of environmental challenge affects the
outcome of the game. Single-step survival probabilities are smaller
in Fig. 3A, so we would say that the environment is harsher in
Fig. 3A than in Fig. 3B. Comparing the two shows that increasing
this kind of adversity causes the cooperative type A to become
unambiguously favored (HG) sooner, that is for smaller n.

Fig. 4 shows how a(n) − c(n) and b(n) − d(n) change as the
number of iterations increases for two Prisoner’s Dilemmas with
survival probabilities even closer to 1. In Fig. 4A, the game at n = 1
is identical to the example in Fig. 1A and 1D. Again, the payoffs in
this game follow the classical spacing (R = 3, S = 0, T = 5, P = 1)
of Axelrod (1984). For comparison, the game in Fig. 4B has the same
value of the temptation payoff (c = 0.99) and the sucker payoff
(b = 0.94) but has reward a and punishment d spaced evenly
between these, as was the case in Fig. 3. In both Fig. 4A and 4B,
the loner survival probabilities are a0 = d0 = 0.9. Both show
the phenomenon of a worsening dilemma (greater disadvantage
for A) at small n, then a switch to a relaxed dilemma and finally to
a Harmony Game. In Fig. 4B, the intermediate, relaxed dilemma is
a Stag Hunt game, as in Fig. 3. In Fig. 4A, the intermediate, relaxed
dilemma is instead a Hawk–Dove game. Eqs. (25) and (26) are
helpful in understanding the difference between Fig. 4A and Fig. 4B.
In moving from Fig. 4A to Fig. 4B, the increment a−a0 in Eq. (25) is
boosted by 0.0033 and the increment d − d0 in Eq. (26) is boosted
by 0.0067. This increases a(n) − c(n) and decreases b(n) − d(n).

Fig. 5 shows how a(n) − c(n) and b(n) − d(n) change as n
increases for examples of the Stag Hunt and the Hawk–Dove game.
Parameters are as in Fig. 1 with the addition of a0 = d0 = 0.9
for both models. As with the examples in Fig. 4, these are cases
in which a2 is the largest non-unit eigenvalue, so Eqs. (29), (30)
and (31) apply. In contrast to what is seen in Fig. 4, one or the
other of a(n) − c(n) and b(n) − d(n) is still negative in Fig. 5 even
at n = 100. From n = 1 to beyond n = 100, these remain a
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Fig. 5. Values of a(n) − c(n) and b(n) − d(n) over n = 1 . . . 100 iterations for two games which begin as a Stag Hunt and as a Hawk–Dove game at n = 1. In both cases, as
in Fig. 4, the loner survival probabilities are a0 = d0 = 0.9. Panel A: a = 0.99, b = 0.94, c = d = 0.97; these are the same as in Fig. 1B and E. Panel B: a = 0.97, b = 0.95,
c = 0.99, d = 0.94; these are the same as in Fig. 1C and F.

Fig. 6. Plots of ẋ for the models in Fig. 4, that is for two different Prisoner’s Dilemmas at n = 1. Panel A: a = 0.97, b = 0.94, c = 0.99, d = 0.95 and a0 = d0 = 0.9. Panel B:
a = 0.9733, b = 0.94, c = 0.99, d = 0.9567 and a0 = d0 = 0.9. In both panels, the thick contour line is drawn at ẋ = 0, which corresponds to the polymorphic equilibrium
x̂ of Eq. (2) for each value of n. For simplicity of presentation, we plot the surface as a smooth function of n, whereas in reality it is discrete.

Stag Hunt and a Hawk–Dove game. In the Stag Hunt of Fig. 5A, the
next-largest eigenvalue is d2, so b(n) − d(n) will remain negative.
However, as can already be seen in the figure, it will be much
smaller in magnitude than a(n) − c(n). In the Hawk–Dove game of
Fig. 5B, the next-largest eigenvalue is bc , so b(n)−d(n) will remain
positive. But since a2 is the largest non-unit eigenvalue, a(n)− c(n)
will become positive (when n = 615, fromnumerical solution) and
eventually will become much larger than b(n) − d(n).

Another way to view the results presented in Figs. 3–5 is in
terms of ẋ rather than a(n)− c(n) and b(n)− d(n). Fig. 6 shows this
for the examples of Fig. 4. Now the overall shape of ẋ can be seen
as it moves from n = 1, where it is a Prisoner’s Dilemma identical
to what is depicted in Fig. 1D, to n = 60, where it is a Harmony
Game. In both panels, the thick contour line traces ẋ = 0, showing
the polymorphic equilibrium in Eq. (2) when it exists. In Fig. 6A,
this equilibrium enters at x = 0 and exits at x = 1. In between,
the shape of ẋ is like that of Fig. 1F, namely similar to the Hawk–
Dove game in which A is favored when rare and disfavored when
common. In Fig. 6B, the equilibrium enters at x = 1 and exits at
x = 0. Here the shape of ẋ for intermediate n is like that of Fig. 1E,
namely similar to the Stag Hunt in which A is disfavored when
rare and favored when common. Note that although a(n) − c(n)
and b(n) − d(n) vary non-monotonically in these cases (Fig. 4), the
equilibrium x̂ is monotonic in n.

Fig. 7 shows how the shape of ẋ changes as the number of
iterations increases for the Stag Hunt and the Hawk–Dove game
depicted in Fig. 5. Note that to aid in visualizing these surfaces,
the viewpoints are different in the two panels and the ranges of
n are different than in Fig. 5. As with the Prisoner’s Dilemmas in
Figs. 3 and 6, these are both cases in which a2 is the largest non-
unit eigenvalue. Following the discussion of Fig. 5, although the
polymorphic equilibria traced by the thick contour lines are still

in the picture for the largest values of n in Fig. 7, in both cases A
will become favored if n is large enough. In the Stag Hunt of Fig. 7A
or 5A, x̂ → 0 as n → ∞. In the Hawk–Dove game of Fig. 7B or 5B, x̂
will exit the biologically relevant interval and become larger than
one when a(n) − c(n) first becomes positive, when n = 615.

3.2. Games which preserve non-cooperative behaviors

Here we consider the case that the game enhances survival
significantly and it is AB that fares best. Thus, bc is the largest non-
unit eigenvalue. Table 2 shows that this will occur most readily
when the single-step game is a Hawk–Dove game. It might also
occur for Prisoner’s-Dilemma type games, but only if the canonical
assumption a > (b + c)/2 is violated. It will not occur when the
single-step game is a StagHunt. Here, again,we assume that having
a partner significantly enhances survival, so bc > a0, d0.

There are two terms in Eqs. (19) through (22) which include the
factor (bc)n. They are in the expressions for b(n) and c(n). For very
large n we have

a(n) − c(n) ≈ −(bc)n
c − d0
bc − d0

< 0 (34)

b(n) − d(n) ≈ (bc)n
b − a0
bc − a0

> 0. (35)

Thus, survival games of this sort either stay or becomeHawk–Dove
games as n increases. In addition, a(n) − c(n) and b(n) − d(n) will
be of the same order of magnitude as n tends to infinity. In the
previous section, where AA survived best, increasing n converted
single-step Prisoner’s Dilemmas, Stag Hunts and some Hawk–
Dove games into progressivelymore relaxed cooperative dilemmas
until, eventually, A became favored. Here, Eqs. (34) and (35) show
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Fig. 7. Plots of ẋ for the models in Fig. 5. For the n = 1, Stag Hunt in panel A: a = 0.99, b = 0.94, c = d = 0.97 and a0 = d0 = 0.9. For the n = 1, Hawk–Dove game in panel
B: a = 0.97, b = 0.95, c = 0.99, d = 0.94 and a0 = d0 = 0.9. In both panels, the thick contour line is drawn at ẋ = 0, which corresponds to the polymorphic equilibrium x̂
of Eq. (2) for each value of n. Note that the viewpoints and the ranges of n for the two panels are different.

Fig. 8. Hawk–Dove type game in which bc is the largest eigenvalue: payoffs a = 0.95, b = 0.97, c = 0.99, d = 0.94 and a0 = d0 = 0.9. The thick contour line in B shows
ẋ = 0, which stabilizes to x̂BC = 0.5625 as n increases.

that single-iteration Hawk–Dove games in which AB survives best
are robust to such alteration. Eqs. (34) and (35) also show that if
a survival game is a non-canonical Prisoner’s Dilemma at n = 1,
such that bc rather than a2 is largest non-unit eigenvalue, the
n-step game will eventually become a Hawk–Dove game rather
than a Harmony Game.

When bc is the largest non-unit eigenvalue, the large-n approx-
imation for the change in frequency is

ẋ ≈ x(1 − x)(bc)n
(

−
c − d0
bc − d0

x +
b − a0
bc − a0

(1 − x)
)

. (36)

We deduce that, for large n, ẋ > 0 if x < x̂bc and ẋ < 0 if x > x̂bc ,
where

x̂bc =
(b − a0)/(bc − a0)

(b − a0)/(bc − a0) + (c − d0)/(bc − d0)
. (37)

This frequency cutoffmay be interpreted as the probability,when n
is large, that if AB plays the game and only one individual survives,
it is the A individual. For reference, if a0 and d0 are both very small,
then Eq. (37) reduces to b/(b + c). If the population frequency of
A is smaller than this probability in Eq. (37), then A is favored,
otherwise it is disfavored. This cutoff is of course equal to the
limiting (n → ∞) value of Eq. (2) when bc is the largest non-unit
eigenvalue, which is stable in this case.

Fig. 8 depicts both how a(n) − c(n) and b(n) − d(n) change and
how ẋ changes asn increases for aHawk–Dove example in this case.
It may be more easily seen in Fig. 8B that this example remains
a Hawk–Dove game with a stable polymorphic equilibrium (the

thick contour line) as n increases, even as the game first intensifies
for intermediate n then approaches neutrality for large n.

3.3. Games ruled by loner survivability

In both of the previous sections, it was assumed that having
a partner provided a substantial boost to survival. In this section
and the next, we consider cases in which having a partner does
not enhance survival. If either a lone A or a lone B has the highest
probability of surviving each iteration of the game, then either a0
or d0 is the largest non-unit eigenvalue. Two terms in Eqs. (19)
through (22) include the factor an0—they are in the expressions
for a(n) and b(n)—and two terms include the factor dn0—they are
in the expressions for c(n) and d(n). If a0 is the largest non-unit
eigenvalue, then for very large nwe have

a(n) − c(n) ≈ an0
a(1 − a)
a0 − a2

> 0 (38)

b(n) − d(n) ≈ an0
b(1 − c)
a0 − bc

> 0 (39)

and if d0 is the largest non-unit eigenvalue, we have

a(n) − c(n) ≈ −dn0
c(1 − b)
d0 − bc

< 0 (40)

b(n) − d(n) ≈ −dn0
d(1 − d)
d0 − d2

< 0. (41)

Thus, if single individuals of one type have a higher probability
of survival than single individuals of the other type and than any
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Fig. 9. Values of a(n) − c(n) and b(n) − d(n) as n increases for two games which begin as a Harmony Game and as a Hawk–Dove game at n = 1. Panel A: a = 0.8, b = 0.5,
c = 0.7, d = 0.4 and a0 = d0 = 0.9. Panel B: Hawk–Dove a = 0.93, b = 0.91, c = 0.95, d = 0.90 and a0 = d0 = 0.95.

pair of individuals, that typewill become favored in the population
as the number of iterations grows, regardless of the structure of
pairwise interactions in the single-step game. The corresponding
approximations for ẋ can be inferred from Eqs. (38) through (41).

3.4. Games with a pairwise survival deficit

A related but probably more interesting case is when single
individuals have higher survival probabilities than any pair of
individuals but the loner survival probabilities are identical. Then
having a partner does not enhance survival but the two-player
game may still provide an advantage to one strategy or the other.
In this case a0 = d0 is the largest non-unit eigenvalue. When n is
very large, using Eqs. (23) and (24) and substituting a0 for d0, we
have

a(n) − c(n) ≈ an0

[
a(1 − a)
a0 − a2

−
c(1 − b)
a0 − bc

]
(42)

b(n) − d(n) ≈ an0

[
b(1 − c)
a0 − bc

−
d(1 − d)
a0 − d2

]
. (43)

Whether these differences are greater or less than zerowill depend
on which of the two terms in the brackets is larger in absolute
value. This situation, in which the game is played starting in the
pair state with a survival deficit, is similar in spirit to the way the
Prisoner’s Dilemma was originally formulated, with two individu-
als in custody, each wanting to get out. Here, as in Section 3.3, we
do not show the corresponding result for ẋ, which can be inferred
from Eqs. (42) and (43).

Consider the case of a strong deficit, specifically with a0 = d0
not too small and all of a, b, c and d close to zero. Then, neglecting
terms of a2, bc and d2 whichwill be even smaller, Eqs. (42) and (43)
become

a(n) − c(n) ≈ an−1
0

(
a − c

)
(44)

b(n) − d(n) ≈ an−1
0

(
b − d

)
. (45)

Thus, with a strong deficit, the results for large nwill be of the same
type as the results for n = 1.

When the deficit is milder, no simple approximations for Eqs.
(42) and (43) are available, but numerical analysis shows that the
conclusions of Section 3.1 can be reversed. Fig. 9 shows two exam-
ples of how a(n) − c(n) and b(n) − d(n) may change as n increases,
converting a single-step Harmony Game and a single-step Hawk–
Dove game into Prisoner’s Dilemmas. In both examples, a0 = d0
is the largest non-unit eigenvalue. In Fig. 9A, the game becomes a
Stag Hunt for intermediate values of n. In Fig. 9B, the game changes
directly from a Hawk–Dove game into a Prisoner’s Dilemma as
n increases. Thus, when having a partner does not significantly

enhance survival but does cause payoff differences – and is the
only source of these differences – there is no expectation that the
prospects for cooperation will improve as the number of iterations
increases. These cooperative dilemmas may intensify rather than
becoming more relaxed.

4. Evolutionary dynamics in a finite population

All populations are finite, so changes in the frequency of A will
be stochastic rather than deterministic. Here we describe these
changes for a particular population model and check the validity
of our previous conclusions based on the deterministic predictions
for ẋ (or ∆x). In a finite population, x is discrete, not continuous. If
N is the population size and K is the number of A individuals, then
K ∈ (0, 1, . . . ,N − 1,N) and x ∈ (0, 1/N, . . . , (N − 1)/N, 1). We
study theprocess of jumps inK or xwhenbothdeath and reproduc-
tion are stochastic. We continue to assume that the survival game
is the only source of fitness differences and that the population is
well-mixed in the sense that partners are chosen at random.

Due to the relative simplicity of its transitions and the ease
with which the survival game may be embedded within it, we
base our model on the haploid population-genetic model of Moran
(1958). The standard version of theMoranmodel pairs single births
and deaths such that the population size remains constant. In the
absence of selection, each individual has probability 1/N of being
chosen to reproduce in a given time step, and a 1/N chance to
die. The individual chosen to reproduce makes an offspring which
replaces the individual chosen to die. When selection is included,
it usually acts bymodifying the probability an individual is chosen,
now based on its fitness, either to reproduce or to die.

We, instead, consider a model in which two randomly chosen
individuals play the survival game. Players are chosen without
replacement from the population. This precludes self-interaction,
which is appropriate because we wish to model two individuals
being sequestered from the rest of the population for a period
of time. When the n iterations of the game are finished, both
individuals may be alive, one may be alive or both may be dead.
This is the only source of death in the population and the only
place in the life cycle where selection acts. In each time step, these
0, 1 or 2 deaths are compensated by the same number of births.
All individuals have an equal chance to reproduce, including the
twowho play the game. Thus, parents are sampled at randomwith
replacement from the population. Finally, offspring inherit their
parent’s type without modification, i.e. there is no mutation.

Let K be the current number of A individuals. After one time
step, the number is K ′, which will differ from K by at most 2 and
is bounded by 0 and N . The numbers of A individuals in a series
of time steps forms a Markov chain with an (N + 1) × (N + 1),
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pentadiagonal transition probability matrix. Because there is no
mutation, the statesK = 0 andK = N are absorbing. The transition
probabilities are computed as products of three terms: one for the
sampling of a pair of individuals to play the game, one for the
outcome of the game and one for the sampling of parents. In all,
we have

PK ,K+2 =
N − K

N
N − K − 1

N − 1
Prob(BB → Ø)

K
N

K
N

(46)

PK ,K+1 =
N − K

N
N − K − 1

N − 1

×

[
Prob(BB → B)

K
N

+ Prob(BB → Ø)2
K
N

N − K
N

]
+ 2

K
N

N − K
N − 1

×

[
Prob(AB → A)

K
N

+ Prob(AB → Ø)
K
N

K
N

]
(47)

PK ,K−1 = 2
K
N

N − K
N − 1

×

[
Prob(AB → B)

N − K
N

+ Prob(AB → Ø)
N − K

N
N − K

N

]
+

K
N

K − 1
N − 1

×

[
Prob(AA → A)

N − K
N

+ Prob(AA → Ø)2
K
N

N − K
N

]
(48)

PK ,K−2 =
K
N

K − 1
N − 1

Prob(AA → Ø)
N − K

N
N − K

N
(49)

PK ,K = 1 − PK ,K+2 − PK ,K+1 − PK ,K−1 − PK ,K−2. (50)

Although this process is not as simple as the standard Moran
process, for which a number of exact results are available (Moran,
1962), as a pentadiagonal matrix it may still be amenable to study.
Following our previous analysis of ẋ, we focus on the change in the
number of cooperators, ∆K = K ′

−K , in particular on the sign and
magnitude of E[∆K ] which measures the direction and strength of
selection.

The expected value of ∆K is given by

E[∆K ] = 2PK ,K+2 + PK ,K+1 − PK ,K−1 − 2PK ,K−2. (51)

Using Eqs. (46) through (50) and simplifying yields

E[∆K ] = 2
K
N

N − K
N

×

(
a(n)

K − 1
N − 1

− c(n)
K

N − 1
+ b(n)

N − K
N − 1

− d(n)
N − K − 1

N − 1

)
(52)

with a(n), b(n), c(n), d(n) as before in Eqs. (19) through (22).
Because x = K/N , we also have E[∆x] = E[∆K ]/N . Aside from
the factor of 2, which arises because two individual are chosen to
play the game and possibly die, Eq. (52) shows nearly the same
dependence on a(n), b(n), c(n) and d(n) as the deterministic result
for ẋ in Eq. (1). We define the selection coefficient

s(n; K ) = a(n)
K − 1
N − 1

− c(n)
K

N − 1
+ b(n)

N − K
N − 1

− d(n)
N − K − 1

N − 1
, (53)

which captures the dependence of E[∆K ] on a(n), b(n), c(n) and
d(n) in its entirety. Of course, the sign of s(n; K ) determines the
sign of E[∆K ] and E[∆x].

Comparing s(n; K ) in Eq. (53) to its deterministic counterpart in
Eq. (1) reveals that when N is small or when K is small regardless

of N the deterministic prediction is incorrect. The error comes
from overestimating the importance of AA and BB pairings in the
infinite-population model by implicitly allowing self-interaction.
Our aim here is to reassess the conclusions of the previous section
in light of such differences and especially in light of the fact that
A can be fixed or lost from a finite population regardless of the
value of E[∆K ]. Criteria for A being favored in a finite population
are generally based on the probability it reaches fixation starting
at K = 1 versus the probability it is lost starting at K = N − 1
(Nowak et al., 2004; Lessard, 2005). If the probability of fixation of
A is greater than the neutral probability 1/N and the probability
of loss is less than 1/N , we might conclude that A is favored.
When selection is weak, a number of analytical results for fixation
probabilities and times in evolutionary games are available (Wu
et al., 2010). Alternatively, in models with mutation the decision
as to whether A is favored can bemade by comparing the expected
equilibrium frequency ofAunder neutrality versus selection (Rous-
set and Billiard, 2000). When the mutation rate is small, these two
approaches become identical.

In Section 3, we used ẋ > 0 for all x ∈ (0, 1) as a criterion for A
being unambiguously favored. The analogue here is E[∆x] > 0 for
all x ∈ (1/N, . . . , (N − 1)/N). We take this to be a more stringent
criterion than the one based on fixation probabilities. However,
from Eqs. (52) and (53), it is clear that even when AA survives best
and a2 is the largest non-unit eigenvalue, it will not necessarily be
true that E[∆x] > 0 for all x ∈ (1/N, . . . , (N − 1)/N). In particular,
for the two terminal frequencies, we have

s(n; K = 1) = b(n) − d(n) −
c(n) − d(n)

N − 1
(54)

and

s(n; K = N − 1) = a(n) − c(n) −
a(n) − b(n)

N − 1
. (55)

When there is only a single A individual, the possible benefit of the
AA pair is unrealized. At the other extreme, when there is only one
B individual, it is the BB pair that does not matter.

Therefore, even when a2 is the largest non-unit eigenvalue, it
will always be possible to find a population size small enough that
A remains disfavored even as n tends to infinity. In particular, if
the population consists of just two individuals, there is only one
polymorphic frequency, K = N − K = 1, and we have

s(n; K = 1) = b(n) − c(n) if N = 2. (56)

From Eqs. (20) and (21) we have

b(n) − c(n) =
b − a0
bc − a0

(bc)n +
b(1 − c)
a0 − bc

an0 −
c − d0
bc − d0

(bc)n

−
c(1 − b)
d0 − bc

dn0 (57)

whichwill not in general be favorable to A. To illustrate, if wemake
the simplifying assumption that the loner fitnesses are the same
(a0 = d0), then Eq. (57) reduces to

b(n) − c(n) = (b − c)
(bc)n − an0
bc − a0

if a0 = d0. (58)

When n = 1, this is simply b − c. Then as n becomes large,
regardless of which eigenvalue (bc or a0 = d0) is larger, the sign
of b(n) − c(n) will be the same as the sign of b − c. One of the
ways in which a game may be considered a cooperative dilemma
is that b < c (Nowak, 2012). Note that b < c in all of our numerical
examples. When N = 2, none of the conclusions about relaxed
cooperative dilemmas based on ẋ and increasing n will hold. Just
the opposite: A will be disfavored.
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While there is no expectation that conclusions from an infinite-
population model will be accurate for small populations, we ex-
pect their heuristic value to hold for moderately large N . In what
follows, we focus on N ≫ 1. We begin as before by noting that
our finite-population model collapses to a neutral Moran model
in the limit n → ∞, although it would be one in which pairs of
individuals rather than single individuals are chosen to die and to
reproduce. Again,we answer the question aboutA being favored by
studying the approach to this neutral limit. In our finite-population
model, this neutral limit is E[∆x] = 0. Then if, for example,
E[∆x] < 0 when n = 1 but the neutral limit E[∆x] = 0
is approached from above, then there exists a value of n above
which E[∆x] > 0. We briefly reconsider each type of prolonged
game.

Case I, reconsidered. This is the case in which a2 is the largest non-
unit eigenvalue and cooperation is expected to prevail. The finite-
population result corresponding to Eq. (33) is

s(n; K ) ≈ a2n
a − a0
a2 − a0

K − 1
N − 1

> 0 for K = 2, . . . ,N − 1. (59)

Thus, for n large enough, E[∆x] > 0 for every frequency x = K/N
except for one. We must investigate K = 1 because, for a given
large value of n, even though a(n) may dominate all other terms
when K = 2, . . . ,N − 1, it is only b(n), c(n) and d(n) that appear in
s(n; K = 1) in Eq. (54). When n is large the sign and magnitude
of s(n; K = 1) will be determined by the second largest non-
unit eigenvalue. We consider the same two possibilities as before,
namely when either bc or d2 is next-largest eigenvalue, and we
continue to assume that the loner survival probabilities, a0 and d0
are small by comparison.

If the next largest eigenvalue is bc , then for K = 1 we have

s(n; K = 1) ≈ (bc)n
(

b − a0
bc − a0

−
1

N − 1
c − d0
bc − d0

)
. (60)

For very small N it could be that Eq. (60) is negative, but it will
be positive for any moderate to large N , making E[∆x] > 0 for
x = 1/N . Combining thiswith Eq. (59), we conclude that here, with
a2 > bc > d2, a0, d0, if n is large enough, then E[∆x] > 0 for all
K = 1, . . . ,N − 1. Previous Figs. 3 and 4 are examples of this case
in which A becomes unambiguously favored.

If the second-largest non-unit eigenvalue is d2, we have

s(n; K = 1) ≈ −d2n
d − d0
d2 − d0

N − 2
N − 1

< 0, (61)

and E[∆x] < 0 when x = 1/N . But, again, for large n it will
also be true that d2n ≪ a2n, so the magnitude of the selection
coefficient against A when K = 1 will be small compared to
selection coefficients in favor of A for every other value of K . We
state without proof that in this case, if n is large enough, the
probability of fixation of A starting from a single copy should be
greater than the neutral probability 1/N , and the probability of
loss of A starting from N − 1 copies should be less than 1/N .
We conclude that A should be considered favored in this case as
well.

Situations in which one of the loner survival probabilities, a0 or
d0, is the second largest eigenvalue can be treated similarly. We
do not pursue this in detail, but in Case III below we consider the
possibility that one of these is the largest non-unit eigenvalue, and
from that we can infer that nothing beyond the two possibilities
above for s(n; K = 1) will arise. That is, as n grows, s(n; K = 1) will
be either positive or negative but will be very small compared to
s(n; K ) which is positive for K = 2, . . . ,N−1. Thus, the conclusion
that A becomes favored when a2 is the largest non-unit eigenvalue
still holds.

Case II, reconsidered. This is the case inwhich bc is the largest non-
unit eigenvalue and the game tends to preserve the less coopera-
tive strategy. The finite-population result corresponding to Eq. (36)
is

s(n; K ) ≈

(
−

c − d0
bc − d0

K
N − 1

+
b − a0
bc − a0

N − K
N − 1

)
(bc)n

for all K = 1, . . . ,N − 1. (62)

Thus, the terminal frequencies x = 1/N and x = 1 − 1/N
do not require a separate treatment as they did under Case I.
Here, just as in the infinite-population model, increasing nwill not
fundamentally alter the game. Selection pressure will tend to keep
both A and B in the population.

Case III, reconsidered. This is the case inwhich a0 or d0 is the largest
non-unit eigenvalue. For these games ruled by loner survivability,
we have

s(n; K ) ≈

(
a(1 − a)
a0 − a2

K − 1
N − 1

+
b(1 − c)
a0 − bc

N − K
N − 1

)
an0 > 0

for all K = 1, . . . ,N − 1 (63)

if a0 is the largest non-unit eigenvalue, and

s(n; K ) ≈ −

(
c(1 − b)
d0 − bc

K
N − 1

+
d(1 − d)
d0 − d2

N − K − 1
N − 1

)
dn0 < 0

for all K = 1, . . . ,N − 1 (64)

if d0 is the largest non-unit eigenvalue. The conclusions are un-
changed in the modified Moran model relative to the infinite-
population model. Whichever type survives best alone becomes
favored when n is large.

Case IV, reconsidered. This is the case in which a0 = d0 is the
largest non-unit eigenvalue. For these games with a pairwise sur-
vival deficit, we have

s(n; K ) ≈

(
a(1 − a)
a0 − a2

K − 1
N − 1

−
c(1 − b)
a0 − bc

K
N − 1

+
b(1 − c)
a0 − bc

N − K
N − 1

−
d(1 − d)
a0 − d2

N − K − 1
N − 1

)
an0 (65)

in general, and

s(n; K ) ≈

(
a
K − 1
N − 1

− c
K

N − 1
+ b

N − K
N − 1

− d
N − K − 1

N − 1

)
an−1
0

(66)

when the deficit is strong. If K = 1, the first terms in the paren-
theses in Eqs. (65) and (66) disappear, making A worse off when it
is very rare, because those terms are positive. When K = N − 1,
the last terms in the parentheses in Eqs. (65) and (66) disappear,
making A better off when B is very rare, because those terms are
negative. It is not expected that this will improve the already dim
prospects for the evolution of cooperative behaviors in this case in
which there is no survival advantage to having a partner.

5. Discussion

We have proposed a simple but general, biologically motivated
survival game. It is a repeated game which always starts with a
pair of individuals and includes a fixed number of iterations. Prob-
abilities of survival are its expected payoffs. We have assumed that
multi-step survival is a Markov process, which has consequences
such as that the game may change stochastically to a loner game
against Nature if one’s partner dies and that all payoffs tend to
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zero as the number of iterations tends to infinity. Results provid-
ing some insight into the evolution of cooperation are obtained
when the number of iterations is large, including the conversion
of cooperative dilemmas into situations in which cooperation is
unambiguously favored.

Survival is an appropriate, direct measure of payoff (or utility)
in evolution. Our analysis is similar to the analysis of diploid
population-genetic models in that we have described interactions
between individuals only in terms of fitness. What we have called
strategies correspond to the alleles in a diploid population-genetic
model. We have assumed that individuals’ strategies are fixed,
meaning the same in every step of the game. For this sort of
survival game, our results are general. They hold for any pattern
of payoffs in the single-step matrix in Eq. (3). They can be applied
to any biological, behavioral or ecological model for which the
assumption of Markov survival is reasonable. They need not be
pure strategies, for example. They could be mixed, as in Garay
(2009), so long as they are the same in every step.

OurMarkov assumption is twofold: (i) when an individual has a
partner, its single-step survival probability depends on its strategy
and on its partner’s strategy, and (ii) when an individual is alone,
its single-step survival probability depends on its strategy. An
individual’s multi-step survival probability is the product of its
single-step survival probabilities given its situation in each step.
Themodel of repeated predator attacks in Garay (2009) is precisely
such aMarkov survivalmodel. In constructing thematrix in Eq. (3),
we have further assumed (iii) that conditional on both of their
strategies, which determine their individual survival probabilities,
the two members of a pair survive each step independently of
one another. If synergistic effects of partnership (Hauert et al.,
2006; Kun et al., 2006) are defined as non-multiplicative, then
assumption (iii) precludes synergy within a single step in our
model. Any synergies in an n-step game result from the Markov
process of survival for a given set of parameters (a, b, c, d, a0, d0).

We began with the motivation of Kropotkin (1902), whose
work focused on vertebrates, but we note here that our model
is not designed with any particular species in mind. None of our
results rely on individuals possessing the intelligence or decision-
making capability of vertebrates. It could be argued that many
fundamental steps in the evolution of cooperation happened long
before, perhaps many hundreds of millions of years before this
kind of intelligence. The iterated survival game described in Sec-
tion 2 may be applied in a variety of settings, but the evolutionary
models of Sections 3 and 4 may be better suited to populations
of single-celled organisms than complicated metazoans, because
they assume haploid genetic transmission and individuals with
fixed strategies.

Kropotkin inferred a connection between cooperation and sur-
vival under adverse conditions, and our work draws a distinc-
tion between games in which partnerships enhance survival and
those in which having a partner is a liability. If there is a fitness
advantage of having a partner, then less-cooperative behaviors
which are advantageous in each single step of a gamemay become
disadvantageous as the number of iterations increases. This can be
true even if cooperative behaviors are strongly disfavored in the
single-step game, as in the Prisoner’s Dilemma (e.g. Fig. 3A). But
if partnerships do not significantly enhance survival, the opposite
may occur. In this case, even cooperative behaviors which are
favored in the single-step game can become disfavored as the
number of iterations increases (e.g. Fig. 9A).

We close with a discussion of two examples which illustrate
the effects of enhanced survival. We have identified two kinds
of enhanced survival: for individuals and for pairs of individuals.
These different boosts to survival are captured by the individual-
survival increments of Eqs. (25) and (26), and by the presence of
the pair-state eigenvalues of the Markov process in these same

Table 3
Two models in which individuals of type A and B have the same single-step
probability of survival given the type of their partner, but in which the survival
probability of any individual depends on the partner’s type. The format is as in
Table 1 but with an additional column for the case in which an individual no longer
has a partner. In the first model, having a partner of type A boosts the probability of
survival of both types of individuals by an amount ϵ above background (d0). In the
second model, having a partner of type B lowers the probability of survival of both
types of individuals by an amount ϵ.
Equal-payoff model with A-partner increment:

A B No partner

A a = d0 + ϵ b = d0 a0 = d0
B c = d0 + ϵ d = d0 d0

Equal-payoff model with B-partner decrement:

A B No partner

A a = d0 b = d0 − ϵ a0 = d0
B c = d0 d = d0 − ϵ d0

equations and their equivalents, Eqs. (23) and (24). Pairwise sur-
vival probabilities are crucial to understanding the structures of
prolonged (large-n) games, which depend strongly on the largest
non-unit eigenvalue of the Markov survival process.

In the first example, having a partner of one particular strategy
either increases or decreases the survival probability of the indi-
vidual, but by an amount which does not depend on the strategy of
the individual. We consider the two possibilities shown in Table 3,
that either having an A partner increases survival or having a B
partner decreases survival. In both cases, the change in survival
(+ϵ or−ϵ) is the same for A individuals and B individuals. All other
survival probabilities are equal to a baseline, d0. Thus a − c = 0
and b − d = 0. The single-step game is neutral. Fig. 10 shows how
a(n)−c(n) and b(n)−d(n) depend on nwhen d0 = 0.5 and ϵ = 0.1.
In this case, a0 = d0 is the largest non-unit eigenvalue. In Fig. 10A,
a(n)− c(n) > 0 for n ≥ 2while b(n)−d(n) = 0 for all n. In Fig. 10B,
a(n) − c(n) = 0 for all n while b(n) − d(n) < 0 for n ≥ 2. These
results may be understood with reference to Eqs. (25) and (26),
with a0 = d0. In the case of Fig. 10A, a−a0 = c−d0 = ϵ but, owing
to the eigenvalues, the positive increment a − a0 is weighed more
heavily than the negative increment c −d0 when n ≥ 2, so Eq. (25)
gives a(n) − c(n) > 0 for n ≥ 2. Eq. (26) gives b(n) − b(n) = 0
because b − a0 = d − d0 = 0. Analogous arguments explain
the case of Fig. 10B. In sum, the more-cooperative A is favored if it
unilaterally increases the survival of its partner (Fig. 10A) and the
less-cooperative B is favored if it unilaterally decreases the survival
of its partner (Fig. 10B).

For the second example, we design an iterated survival game
which expresses key ideas behindModel 2 of De Jaegher andHoyer
(2016) directly in terms of survival. Again, this is a model of a
number of attacks on a pair of individuals. The individuals are
identical in most respects. There is a public good which benefits all
individuals equally, if it is preserved against attack. Each individual
also has a private good which may impart a by-product benefit on
its partner, again if it is preserved against attack. The difference is
that cooperators (A) pay a cost and are immune to attacks whereas
defectors (B) pay no cost and are susceptible to attacks. Thus,
defectors may benefit when they are paired with cooperators.
This is not a survival game because individuals do not die in the
attacks. It is Markovian only in that each attack hits one member
of the pair randomlywith probability 1/2. Nonetheless, this behav-
ioral and ecological model has roughly similar outcomes to those
we have described here, when n corresponds to the number of
attacks.

Consider a survival game in which the probability an individual
survives each attack, or iteration, depends on its type and its
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Fig. 10. Values of the two key differences, a(n) − c(n) and b(n) − d(n), as a function of the number of iterations, for the two versions of the equal-payoff model depicted in
Table 3, with baseline survival probability d0 = 0.5 and increment/decrement ϵ = 0.1. Panel A: a = 0.6, b = 0.5, c = 0.6, d = 0.5. Panel B: a = 0.5, b = 0.4, c = 0.5,
d = 0.4. Both panels: a0 = d0 = 0.5.

partner’s type as follows.

Awith A: a = d0 + g − u + v (67)

Awith B: b = d0 + g − u (68)

Bwith A: c = d0 + g + v (69)

Bwith B: d = d0 + g (70)

A alone: a0 = d0 − u (71)

B alone: d0 (72)

Here u is the cost of being a cooperator, v is the benefit an in-
dividual receives when its partner is a cooperator and g is the
added benefit of simply having a partner. The parameters d0 and
g might represent the private and public goods in De Jaegher and
Hoyer (2016). The general versions of our model and Model 2
of De Jaegher and Hoyer (2016) each have seven free parameters,
whereas the model above has five.

For thismodel a−c = b−d = −u < 0, so the cooperative typeA
is disfavored in the single-step game. In addition, a0−d0 = −u < 0
which suggests that the cooperative type Amight be disfavored for
larger n. However, considering the terms in Eqs. (25) and (26) we
have a − a0 = c − d0 = g + v > 0 and b − a0 = d − d0 =

g > 0. If a2 is the largest non-unit eigenvalue then a(n) − c(n) will
eventually become positive, and if bc is the next-largest eigenvalue
then b(n) − d(n) will also eventually become positive.

A strong criterion for partnerships enhancing survival would be
that a2, bc and d2 are all greater than d0. A weak criterion would
be that only a2 > d0. If we adopt the strong criterion and further
assume that a2, bc > d2, then the game would enhance survival if
d2 > d0. This implies that

g >
√
d0 − d0. (73)

We have assumed throughout that a, b, c and d are all less than one,
so it must also be true that

g < 1 − d0 − v. (74)

For the sake of illustration, set g equal to the midpoint between
these two extremes, so that g = (1 +

√
d0 − v)/2 − d0. Assume

further that v > u, which means that the single-step game is a
Prisoner’s Dilemma. Using the particular values d0 = 0.8, u = 0.02
and v = 0.03 gives the survival game shown in Table 4.

One would not immediately guess that the more cooperative
type A would ever be favored in such a game. But as Fig. 11
illustrates, this does become true as the number of attacks in-
creases. For n ≥ 32 both a(n) − c(n) and b(n) − d(n) are greater
than zero, though clearly the prolonged game yields rather weak
selection in this particular example. Note that we have not granted
A any obvious advantage. As previously mentioned, cooperators

Fig. 11. Values of the two key differences, a(n)− c(n) and b(n)− d(n) as a function
of the number of iterations, for the game with payoffs shown in Table 4.

Table 4
Numerical example of the model defined in Eqs. (67) through (72), assuming that
d0 = 0.8, u = 0.02, v = 0.03 and with g = (1 +

√
d0 − v)/2 − d0 ≈ 0.13.

A B No partner

A a = 0.94 b = 0.91 a0 = 0.78
B c = 0.96 d = 0.93 d0 = 0.80

are immune to attack in Model 2 of De Jaegher and Hoyer (2016).
Here, instead, cooperation becomes favored as n increases due to
the subtle advantages themore cooperative type A accrues because
AA pairs survive best and AB second best among the three possible
pairings, despite the direct disadvantage of A compared to B in AB
pairs as well as in the loner state.

Rather than considering that individuals might change their
strategies between steps of the game in response to their part-
ners, we have focused on the evolution of hardwired, non-reactive
strategies within populations. Among other results, we find the
conditions under which cooperation will increase in frequency
over time in both finite and infinite populations despite being
disfavored in every step of the game. In the case of a finite pop-
ulation, this conclusion is based on a strong criterion for selective
advantage, that the expected change in frequency of cooperation
is positive over the entire range of possible frequencies.
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Appendix

Analysis of the Markov chain

Corresponding to the matrix in Eq. (3), we define the stochastic
matrix

M =

⎡⎢⎢⎢⎢⎢⎣
a2 0 0 2a(1 − a) 0 (1 − a)2
0 bc 0 a(1 − b) b(1 − a) (1 − a)(1 − b)
0 0 d2 0 2d(1 − d) (1 − d)2
0 0 0 a0 0 1 − a0
0 0 0 0 d0 1 − d0
0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎦ (75)

whose entries are the transition probabilities between the six
possible states (AA, AB, BB, A, B,Ø). Thus, M describes a Markov
process with a single absorbing state (Ø). When this is iterated n
times, the probabilities of each of the six possible outcomes will be
the entries of the n-step transition probability matrixMn. Because
M is a triangular matrix, its eigenvalues are given by its diagonal
elements. These are just the probabilities of remaining in each state
over a single iteration. For reference, we reproduce Eq. (4)

λ =
{
1, a2, bc, d2, a0, d0

}
(76)

and further note that λ2, λ3 and λ4 are the probabilities that
both individuals survive the iteration. Under the assumption that
neither surviving nor perishing of individuals is guaranteed over a
single iteration, which is to say 1 > a, b, c, d, a0, d0 > 0, λ1 = 1 is
the largest eigenvalue and 1 > λ2, λ3, λ4, λ5, λ6 > 0.

From the standard theory of finite Markov chains (cf. section
2.12 in Ewens, 2004), if ri and li are the corresponding right and
left eigenvectors ofM , normalized so that
6∑

j=1

rijlTij = 1, (77)

for each i ∈ (1, 2, 3, 4, 5, 6), thenMn may be expressed in terms of
its spectral decomposition

Mn
=

6∑
i=1

λn
i ril

T
i (78)

in which T denotes the transpose. With λ defined as above, the
corresponding right and left eigenvectors of the matrixM are

r1 = [1, 1, 1, 1, 1, 1]T (79)

r2 = [1, 0, 0, 0, 0, 0]T (80)

r3 = [0, 1, 0, 0, 0, 0]T (81)

r4 = [0, 0, 1, 0, 0, 0]T (82)

r5 =

[
2a(1 − a)
a0 − a2

,
b(1 − c)
a0 − bc

, 0, 1, 0, 0
]T

(83)

r6 =

[
0,

c(1 − b)
d0 − bc

,
2d(1 − d)
d0 − d2

, 0, 1, 0
]T

(84)

l1 = [0, 0, 0, 0, 0, 1]T (85)

l2 =

[
1, 0, 0,

2a(1 − a)
a0 − a2

, 0, −1 −
2a(1 − a)
a0 − a2

]T

(86)

l3 =

[
0, 1, 0,

b(1 − c)
bc − a0

,
c(1 − b)
bc − d0

, −1 −
b(1 − c)
bc − a0

−
c(1 − b)
bc − d0

]T

(87)

l4 =

[
0, 0, 1, 0,

2d(1 − d)
d0 − d2

, −1 −
2d(1 − d)
d0 − d2

]T

(88)

l5 = [0, 0, 0, 1, 0, −1]T (89)

l6 = [0, 0, 0, 0, 1, −1]T. (90)

In terms of the notation here, the probabilities in the main text
are

Prob(AA → AA) = (Mn)11 (91)

Prob(AB → AB) = (Mn)22 (92)

Prob(BB → BB) = (Mn)33 (93)

Prob(AA → A) = (Mn)14 (94)

Prob(AB → A) = (Mn)24 (95)

Prob(AB → B) = (Mn)25 (96)

Prob(BB → B) = (Mn)35 (97)

Prob(AA → Ø) = (Mn)16 (98)

Prob(AB → Ø) = (Mn)26 (99)

Prob(BB → Ø) = (Mn)36. (100)

We can define the limiting matrix

M (∞)
= lim

n→∞
Mn

= r1lT1 (101)

which has all six rows equal to [0, 0, 0, 0, 0, 1] and thus captures
the fact that absorption in stateØ is guaranteed, if n is large enough,
regardless of the starting state. Then we may write

Mn
= M (∞)

+

6∑
i=2

λn
i ril

T
i . (102)

Because 1 > λi > 0 for i ∈ (2, 3, 4, 5, 6), the eventual rate of
decay towardM (∞) will be depend on which λi is the leading non-
unit eigenvalue of M . This, in turn, will depend on the values of a,
b, c , d, a0 and d0. If n is very large, the sum in Eq. (102) will become
dominated by a single term, namely the one involving the largest
non-unit eigenvalue.

For example, if λ2 = a2 is the largest eigenvalue and n is very
large,

Prob(AA → AA) = (Mn)11 ≈ a2n (103)

Prob(AA → A) = (Mn)14 ≈
2a(1 − a)
a2 − a0

a2n (104)

Prob(AA → Ø) = (Mn)16 ≈ 1 − a2n −
2a(1 − a)
a2 − a0

a2n (105)

Prob(AB → Ø) = (Mn)26 ≈ 1 (106)

Prob(BB → Ø) = (Mn)36 ≈ 1. (107)

Then the effects of selection via the game reduce to

a(n) − c(n) ≈ a(n) = Prob(AA → AA) + Prob(AA → A)/2

≈
a − a0
a2 − a0

a2n (108)

b(n) − d(n) ≈ 0. (109)

Our general results, Eqs. (23) and (24), are written to facilitate the
direct inference of such conclusions.

Derivation of the replicator equation

We assume a well-mixed population of infinite size. Well-
mixed means specifically that initial partnerships in the game are
formed at random in proportion to the current frequencies of A
and B. The game is the only cause of death in the population
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and the only source of differences in fitness. Here we consider a
continuous-time model. The replicator equation for the iterated
survival game can be developed as follows. Changes in the frequen-
cies (x and y) of A and B are given by a pair of differential equations

ẋ = −x2
[
2Prob(AA → Ø) + Prob(AA → A)

]
− 2xy

[
Prob(AB → Ø) + Prob(AB → B)

]
+ xφ (110)

ẏ = −y2
[
2Prob(BB → Ø) + Prob(BB → B)

]
− 2xy

[
Prob(AB → Ø) + Prob(AB → A)

]
+ yφ (111)

in which the factor of 2 inside the brackets in Eqs. (110) and (111)
comes from the fact that both individuals die in the transition to
state Ø. Individuals perish in the game, which causes x and y to
decrease. This is balanced by reproduction, by the positive terms
xφ and yφ. As there are only two types, y = 1 − x, so x + y = 1
and ẋ+ ẏ = 0. Then using these to solve for φ and substituting into
Eq. (110) gives

ẋ =2x(1 − x)
([

Prob(AB → Ø) + Prob(AB → A)

− Prob(AA → Ø) − Prob(AA → A)/2
]
x

+
[
Prob(BB → Ø) + Prob(BB → B)/2

− Prob(AB → Ø) − Prob(AB → B)
]
(1 − x)

)
. (112)

Note that pairs of terms in the brackets in Eq. (112) are related
individual survival probabilities. For example, Prob(AB → Ø) +

Prob(AB → A) = 1 − c(n). In addition, because the choice of
time scale here is arbitrary, we may drop the leading factor of 2
in Eq. (112). Making these changes yields

ẋ = x(1 − x)
(
[a(n) − c(n)]x + [b(n) − d(n)](1 − x)

)
(113)

which is identical to Eq. (1) but now with payoffs from the n-step
game.

Classical population-genetic model

The replicator equation is a model of instantaneous, infinitesi-
mal change in a population. Alternatively, we may follow the fates
of pairs of individuals when generations are non-overlapping, as
in classical models of diploid viability selection. The population
is still assumed to be infinite but time is now measured in units
of discrete generations. As a straightforward extension of classical
models (Fisher, 1930; Haldane, 1932; Wright, 1931), we assume
that the population is well-mixed and that at the start of each
generation it is composed of pairs AA, AB and BB in frequencies x2,
2x(1 − x) and (1 − x)2. The frequency of A is computed from the
pair frequencies as

x = x2 + 2x(1 − x)
1
2

(114)

because both members of AA are A but only one member of AB is A.
We emphasize that the accounting is of pairs. The total population
is represented by

x2 + 2x(1 − x) + (1 − x)2 = 1. (115)

After selection, which is to say after the game, the population is
composed of some intact pairs with type AA, AB or BB and some
loners with type A or B. Their relative frequencies are

AA : x2Prob(AA → AA) (116)

AB : 2x(1 − x)Prob(AB → AB) (117)

BB : (1 − x)2Prob(BB → BB) (118)

A : x2Prob(AA → A) + 2x(1 − x)Prob(AB → A) (119)

B : 2x(1 − x)Prob(AB → B) + (1 − x)2Prob(BB → B). (120)

Loners must receive half the weight of intact pairs in this account-
ing. So, what remains of the total population is represented as

x2
(
Prob(AA → AA) + Prob(AA → A)/2

)
+ 2x(1 − x)

(
Prob(AB → AB) + Prob(AB → A)/2

+ Prob(AB → B)/2
)

+ (1 − x)2
(
Prob(BB → BB) + Prob(BB → B)/2

)
. (121)

By definition, this is equivalent to the average fitness of the popu-
lation. Using Eqs. (19) through (22), it may be written

w̄ = x2a(n) + x(1 − x)b(n) + x(1 − x)c(n) + (1 − x)2d(n). (122)

Note that is proportional to φ in Eqs. (110) and (111). Finally,
accounting as in Eq. (114) for the fact that only onemember of each
intact AB pair is A and w̄ in Eq. (122) for the average fitness, the
frequency of A after the game is

x′
=

(
x2a(n) + x(1 − x)b(n)

)
/w̄. (123)

Then the change in the frequency of A over one generation, ∆x =

x′
− x, is given by

∆x = x(1 − x)
(
[a(n) − c(n)]x + [b(n) − d(n)](1 − x)

)
/w̄ (124)

which is presented in the main text as Eq. (27).
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