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Abstract

We study the ancestral genetic process for samples from two large, subdivided populations that are connected by migration to, from,

and within a small set of subpopulations, or demes. We consider convergence to an ancestral limit process as the numbers of demes in the

two large, subdivided populations tend to infinity. We show that the ancestral limit process for a sample includes a recent instantaneous

adjustment to the sample size and structure followed by a more ancient process that is identical to the usual structured coalescent, but

with different scaled parameters. This justifies the application of a modified structured coalescent to some hierarchically structured

populations.

r 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Natural populations are typically distributed over the
landscape such that it is unusual for an individual organism
to traverse the entire species range within its lifetime. For
this reason it is common to find some correspondence
between genetic diversities and geographic locations
(Slatkin, 1987). Observations of this sort are not predicted
by the standard models, which assume a well-mixed, or
panmictic, population and which form the basis of the
ancestral limit process called the coalescent (Kingman,
1982; Hudson, 1983; Tajima, 1983). The standard coales-
cent describes the ancestry of a sample of genetic data at a
locus without selection or recombination from a popula-
tion of constant size over time. In order to develop an
understanding of structured populations and to provide
tools for making inferences about migration rates from
genetic data, a number of alternative models which include
population structure have been proposed.
e front matter r 2006 Elsevier Inc. All rights reserved.
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The most commonly used model of a subdivided
population is the model behind the structured coalescent

(Notohara, 1990; Herbots, 1994, 1997; Wilkinson-Herbots,
1998). This model accounts for geographic–genetic struc-
ture by supposing that migration rates between popula-
tions are of the same order of magnitude as the inverse of
the local population size, and that the local population size
is very large. Here we study a model of hierarchical
population structure in which geographic–genetic structure
develops without small migration rates, as a result of a
constriction in the species range. We show that the
structured coalescent may be applied in this situation if it
is modified slightly to account for the hierarchical structure
of the population.
The structured coalescent underlies most software

packages for inferring migration rates from genetic data,
including MIGRATE (Beerli and Felsenstein, 2001), GENE-
TREE (Bahlo and Griffiths, 2000), MDIV (Nielsen and
Wakeley, 2001) and IM (Hey and Nielsen, 2004). The
structured coalescent considers the ancestral process for a
sample of genetic data from a population made up of a
number of local populations that exchange migrants. We
follow the usual population genetic terminology and use
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deme to mean local population. The number of demes is D,
the deme sizes are Ni, and mij is the fraction of deme i that
is replaced by migrants from deme j each generation.
Reproduction is assumed to occur according to the
Wright–Fisher model (Fisher, 1930; Wright, 1931),
although other models give essentially the same result.
The structured coalescent holds for a fixed number of
demes in the limit as the deme sizes tend to infinity with the
products Nimij assumed to be finite. Thus, this model is
intended to approximate the dynamics of a population in
which Ni is large for every deme i, and mij is small for every
pair of demes i and j. The description above assumes the
organisms are haploid, but the structured coalescent may
be applied to diploid organisms, with some restrictions
(Nagylaki, 1998), if Ni is replaced with 2Ni.

While the structured coalescent can be expected to apply
over a broad range of values of Ni and mij, in situations
where the products Nimij are either very small or very large
other limit models will provide a better approximation to
the ancestral process. One such model is the strong-
migration limit, which Nagylaki (1980) proved for the
forward-time diffusion of allele frequencies and Notohara
(1993) put into a gene genealogical context. In this limit,
the products Nimij tend to infinity as the deme sizes Ni tend
to infinity, and the dynamics of the population become
identical to those of a single well-mixed population with an
effective size that depends on the parameters Ni and mij.

Nordborg and Krone (2002) introduced a more general
model that combines aspects of both the structured
coalescent and the strong-migration limit. Specifically, they
considered a subdivided population in which Nimij remains
finite for some pairs of demes but diverges for other pairs
of demes. Nordborg and Krone (2002) used a result due to
Möhle (1998) to prove convergence of the ancestral process
to a structured coalescent. The difference between this
model and the usual structured coalescent is that structure
collapses within sets of demes that are connected by strong
migration, so that migration is restricted only between sets
of demes for which all the pairwise Nimij (where i is in one
set and j is in another set) remain finite. This model is
intended as an approximation to the coalescent process in a
subdivided population containing a finite number of large
demes in which some rates of migration are high and others
are low.

Slatkin and Voelm (1991) studied inbreeding coefficients
in a model of hierarchical population structure (Nei, 1973;
Carmelli and Cavalli-Sforza, 1976; Sawyer and Felsenstein,
1983), but made different assumptions than Nordborg and
Krone (2002) about the relative sizes of migration fractions
within and between sets of demes. Slatkin and Voelm
(1991) assumed that demes of a single size N were
organized into ‘‘neighborhoods’’ and that migration rates
between demes within neighborhoods, mw, could be
different than migration rates between demes in different
neighborhoods, mb. Their analysis of expected pairwise
coalescence times showed that population structure can be
appreciable both between demes in the same neighborhood
and between demes in different neighborhoods if the
products Nmw and NDmb are not too large. Note that
mw and mb are called m1 and m2 in Slatkin and Voelm
(1991), whereas we reserve the latter for use below.
The ancestral process for a sample from a subdivided

population of this sort was considered in Wakeley (2000),
where it was shown that a result analogous to that of
Nordborg and Krone (2002) is obtained in the limit as the
number of demes tends to infinity. Two subdivided
populations, each with many demes, were assumed to be
connected by migration. Migration among demes within
each population was assumed to occur according to the
island model (Wright, 1931), with migration fraction m for
each deme. Another migration fraction m12 accounted for
movement between demes in different populations. A
heuristic analysis showed that if Nm and NDm12 are finite
as both D and N tend to infinity, then a modified version of
the structured coalescent described the ancestral limit
process. The modifications were to recognize that the time
scale of coalescence within populations depends on Nm in
addition to the total population size ND and to include a
‘‘scattering phase’’ for cases when multiple samples are
taken from single demes (Wakeley, 1999).
All of the above results, as well as some more recent

findings (Wilkinson-Herbots and Ettridge, 2004), reflect
the fact that in order for there to be any appreciable effect
of subdivision between large populations, the migration
fractions between populations or between demes in
different populations must be of the same order of
magnitude as the inverse of the total population size. This
is true whether one considers very large demes or very large
numbers of demes per population or both. When the rates
of movement between populations are small in this sense,
i.e. scaled inversely with the population size, then the
structured coalescent is an appropriate limit model to use
to approximate the ancestral process and to make
inferences from genetic data. However, this can be achieved
without assuming that the migration fractions themselves
are small. In this article, we consider a different kind of
hierarchical subdivision, in which this scaling of migration
rates results from a constriction in the habitat, and is
obtained for arbitrary migration fractions. We imagine
that migration is hierarchically structured by the relatively
low abundance of gateway demes which give individuals
access to a ‘‘migration corridor’’ between populations.
The model we introduce in the next section is suggested

by recent empirical work on a variety of organisms. For
example, Vollmer and Palumbi (2002) obtained sequence
data at two nuclear loci and one mitochondrial locus in
three sympatric species of Caribbean corals in the genus
Acropora. All the individuals of the relatively rare species
Acropora prolifera were shown to be F1 hybrids between
two relatively more common species Acropora cervicornus

and Acropora palmata. The genetic data provided evidence
for non-zero, but low levels of gene flow between the two
‘‘parent’’ species. The work of Krings et al. (1999) provides
another example, in which the authors used sequences of
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hypervariable region 1 of human mitochondrial DNA to
investigate long-term patterns of movement between Africa
and Eurasia along the Nile river valley. The data showed
evidence for gene flow in both directions, as well as a
pattern of isolation by distance (Wright, 1943) in which the
extent of northern versus southern affiliation changed as
one moved along the valley.
2. A model of two overlapping structured populations

We begin with the idealized model depicted in Fig. 1.
Two populations are each subdivided into a large number
of demes. Between these populations, 1 and 2, sits a third
population that is subdivided into a relatively small
number of demes. We assume that there is no direct
migration between population 1 and population 2, but that
individuals can move from one to the other by passing
through population 3. Let D1 and D2 be the numbers of
demes in populations 1 and 2, and let d be the number of
demes in population 3. The total number of demes is thus
D1 þD2 þ d. We consider the ancestral genetic process for
this model in the limit as D1 and D2 tend to infinity for a
fixed, or constant, value of d.

There are other parameters in the model. We assume
that every deme is of the same size N. The backward
migration probability for a deme is the fraction of its
membership that is replaced by migrants each generation.
We assume that generations are non-overlapping: all adults
die and are replaced by offspring each generations. The
order of events in the model forward in time is Wright–
Fisher sampling, or reproduction, followed by migration,
but we do not deal explicitly with the forward-time process.
Instead, we assume that lineages migrate independently of
one another backward in time. We let demes in different
populations have different backward migration fractions,
which we denote m1, m2, and m3. Using three migration
rates allows us to illustrate the way in which the scaled
migration parameters in the limit process depend on
movement to and from population 3. Thus, migration is
conservative (Nagylaki, 1980; Strobeck, 1987; Herbots,
1997) only when m1 ¼ m2 ¼ m3.
Population 3

Population 1

Population 2

Fig. 1. An illustration of the model.
Migration occurs according to the island model
(Wright, 1931), but structured in the following way. A
migrant in population 1 is equally likely to have come
from any deme in population 1 or population 3 (including
the deme it is in currently) and a migrant in population
2 is equally likely to have come from any deme in
population 2 or population 3. For the demes in population
3 we assume that migrants are equally likely to have come
from any deme in the total population (1+2+3). Finally,
we assume that the deme size and the three migration
probabilities are greater than zero—the migration prob-
abilities also cannot be larger than one—and that all four
of these parameters are constant in the limit as D1 and D2

tend to infinity.
The ancestry of a sample of size one reveals some

important aspects of the ancestral process. The single
ancestral lineage is either in population 1, in popul-
ation 2, or in population 3. Call these state 1, state 2,
and state 3, respectively. Movement of the lineage
among these states occurs by migration, but some
events are much more likely than others. We can separate
the probable from the improbable events by writing the
single-generation transition matrix as the sum of two
matrices,

M ¼

1 0 0

0 1 0

m3D1

D1 þD2 þ d

m3D2

D1 þD2 þ d
1�m3

0
BBBB@

1
CCCCA
þ

�
m1d

D1 þ d
0

m1d

D1 þ d

0 �
m2d

D2 þ d

m2d

D2 þ d

0 0
m3d

D1 þD2 þ d

0
BBBBBBBB@

1
CCCCCCCCA
, ð1Þ

which differ greatly in magnitude when D1 and D2 are both
large. To explain Eq. (1), the entry ðMÞij, in row i and
column j, is the probability of moving from state i to state j

in a single generation back in time.
We let D ¼ D1 þD2 þ d and assume that the ratios

D1=D and D2=D are constant in the limit D!1. The
non-zero entries in the first matrix on the right-hand side of
Eq. (1) are all of order 1 and are constant in this limit,
while those in the second matrix are all of order 1=D and
therefore decrease in proportion to 1=D. For the lineage to
move from population 1 to population 2 it must go
through population 3. This requires a migration event of
order 1=D that takes the lineage from population 1 to
population 3 followed by a migration event of order 1 that
takes the lineage from population 3 to population 2. A
mathematical formalism is available (Möhle, 1998) for
letting D!1 to obtain an ancestral limit process. We will
use this formalism to obtain the ancestral limit process for
samples larger than one, under the additional assumption
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that the total sample size is much less than the total number
of demes D.

Notice that Eq. (1) uses a collapsed state space: due to
the island-type structure of the model, within each
population every deme is equivalent to every other deme,
so it is only necessary to know which population the
lineage is in, not which deme. A full accounting of states
for a larger number of lineages would label all the demes
and record the numbers of lineages in each, but this is
unnecessary for two reasons. The first is, again, the
assumed island-type structure of the populations. The
second reason is the vast difference in probabilities of
certain events in the limit we consider. In particular,
migration events that bring lineages into demes already
occupied by another lineage (or lineages) and migration
events to population 3 occur with probabilities of order
1=D. On the other hand, migration events that move a
lineage from a multiply occupied deme to an unoccupied
deme, coalescent events within multiply occupied demes,
and migration events out of population 3 occur with
probabilities of order 1 when they are possible. As the
number of demes increases to infinity, the lineages will
almost surely be distributed such that some number sit
alone in demes in population 1 and the rest sit alone in
demes in population 2.

Therefore, we can classify the possible distributions of
lineages among demes into five disjoint sets of states, and
use a reduced notation for states within each set. S1

includes all distributions where every lineage is in a
separate deme and none are in population 3. We use
ðn1; n2; 0Þ to denote a state in S1. S2 includes all
distributions where every lineage is in a separate deme
and one lineage is in population 3; i.e. ðn1; n2; 1Þ. The set S2

is needed because migration in the limit process occurs by
the movement of a single lineage into population 3. S3

includes all distributions where a pair of lineages is in the
same deme in population 1, and every other lineage is in a
separate deme and none are in population 3. We use
ðn1þ; n2; 0Þ to denote a state in S3. S4 includes all
distributions where a pair of lineages is in the same deme
in population 2, and every other lineage is in a separate
deme and none are in population 3; i.e. ðn1; n2þ; 0Þ. The
sets S3 and S4 are needed because coalescent events in the
limit process depend on migration events to demes that
already contain a lineage. S5 includes all other states, and
this set is needed to account for the original sample, whose
distribution is determined by the experimenter.

3. The ancestral limit process

Here we state our main result, which is proved in the
next section. We use the results of Möhle (1998) to prove
that the ancestral limit process for a sample in which each
lineage is in a separate deme and none are in population 3
has a structure identical to the usual structured coalescent
reviewed above. Time in this process is rescaled by the total
population size, so that it is measured in units of ND
generations. Transitions in the ancestral process are given
by

ðn1; n2; 0Þ !

ðn1 � 1; n2; 0Þ with rate

n1

2

� �
ð1� F1Þ=a1;

ðn1; n2 � 1; 0Þ with rate

n2

2

� �
ð1� F2Þ=a2;

ðn1 � 1; n2 þ 1; 0Þ with rate n1M
ð3Þ
12 ;

ðn1 þ 1; n2 � 1; 0Þ with rate n2M
ð3Þ
21 ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

(2)

in which ai ¼ Di=D is the fraction of individuals that live in
population i,

Fi ¼
ð1�miÞ

2

Nmið2�miÞ þ ð1�miÞ
2

(3)

for i ¼ 1; 2, is the usual inbreeding coefficient and

M
ð3Þ
ij ¼ Ndmi

aj

ai

(4)

is the scaled, backward rate of migration from population i

to population j, for ði; jÞ ¼ ð1; 2Þ; ð2; 1Þ. The superscript in
Eq. (4) is in recognition of the fact that migration between
populations 1 and 2 has to occur via population 3.
The dynamics of the ancestral process are understood as

follows. In the limit as the number of demes D tends to
infinity and with time rescaled by the total population size
ND, the ancestral processes within population 1 and within
population 2 become identical to the many-demes coales-
cent described previously; e.g. see Wakeley (1998) and,
more recently, Lessard and Wakeley (2004). The rate of
coalescence in the many-demes limit depends on the size of
the population and its inbreeding coefficient, often called F.
Here, because we measure time in units of the total
population size, the factors a1=ð1� F1Þ and a2=ð1� F2Þ

appear in Eq. (2) as the relative sizes of the two
populations. Migration between population 1 and popula-
tion 2 proceeds by the unlikely event that a lineage migrates
to one of the finite number of demes in intersection
population 3 (see Fig. 1) then migrates from there to the
other population. The rescaled migration rate in Eq. (4) is
finite because it records events of order 1=D on a time scale
proportional to D.
As mentioned above, this limit result does not require

any of the migration fractions to be small. It might seem
curious that m3 does not appear in Eqs. (2)–(4). However,
this is a straightforward consequence of the assumption
that m3 is constant in the limit D!1. When a lineage is
in population 3, it will spend an average of 1=m3

generations there, and then it will move either to
population 1 or to population 2. The total number of
generations that lineages spend in population 3 up to the
most recent common ancestor of the sample becomes
negligible in the limit process with D!1. However, in
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thinking about applying our result to populations in
nature, the smaller m3 is, the larger D would have to be
for Eq. (2) to be a good approximation to the ancestral
process.
4. Convergence of the ancestral process

Here we establish the (D!1) continuous-time ances-
tral limit process for a sample. We assume that D1=D! a1
and D2=D! a2 ¼ 1� a1 with 0oa1; a2o1 as D ¼ D1 þ

D2 þ d tends to infinity, and that all other quantities (d,
and N, mi, and the sample size) are constant. Note that the
number of lineages ancestral to the sample is always less
than or equal to the sample size. We express the single-
generation transition probability matrix PD for backward
migration and coalescence among the lineages as the sum

PD ¼ Aþ B=Dþ CD, (5)

in which the matrix A is defined by A ¼ limD!1PD, the
matrix B is defined by B ¼ limD!1ðPD � AÞD, and the
matrix CD is defined by Eq. (5). Under the assumptions of
our model, all the non-zero entries of A are less than or
equal to one, all the non-zero entries of B are finite, and all
the entries of CD are of order 1=D2 or smaller.

The matrix A captures the fast events in the ancestral
process: coalescent events when at least one deme contains
more than one lineage, and migration events to demes in
populations 1 or 2 that do not contain ancestral
lineages (unoccupied demes). Further, A is a stochastic
matrix, which means that the sum of the entries in each
row of A is equal to one. The matrix B captures the slow
but crucial events in the ancestral process in which one
lineage migrates to an occupied deme or to a deme in
population 3, which might be occupied or not. In the case
of migration to an occupied deme, it is possible for the
incoming lineage to coalesce with one of the resident
lineages. In addition, B=D contains the order 1=D parts of
PD associated with the non-zero entries of A, so that the
sum of the entries in each row of B is equal to zero. The
matrix CD captures the events in the ancestral process that
become extremely improbable as D grows: for example,
two or more migration events to occupied demes in a single
generation.

The structure of Eq. (5) means we can apply a
convergence theorem for discrete-time Markov processes
with two time scales, due to Möhle (1998), to obtain an
ancestral limit process in which time becomes continuous
and is measured in units of D generations. Under this
framework, the limit process depends on the fast events
only through the equilibrium matrix P ¼ limr!1A

r, such
that the limit process has transition probability matrix

PðtÞ :¼ lim
D!1

P½Dt�
D ¼ PeGt, (6)

with infinitesimal generator G ¼ PBP.
With the classification of states into sets S1 through S5

described in Section 2, the matrices A and B have a block
structure. For example,

B ¼

B11 B12 B13 B14 B15

B21 B22 B23 B24 B25

B31 B32 B33 B14 B15

B41 B42 B43 B44 B45

B51 B52 B53 B54 B55

0
BBBBBB@

1
CCCCCCA
, (7)

in which the entries of the matrix Bij=D are the transition
probabilities, of order 1=D, from a state in Si to a state in
Sj. The presentation of the non-zero entries of these
matrices occupies the bulk of this section. Note that we will
not deal explicitly with the order of states in any of these
matrices. The statement that the lineages change state from
ðn1; n2; n3Þ to ðn01; n

0
2; n
0
3Þ with probability p should be

understood to mean that p is the entry in ‘‘row
ðn1; n2; n3Þ’’ and ‘‘column ðn01; n

0
2; n
0
3Þ’’ of the transition

matrix PD.

4.1. Non-zero entries of P

With respect to the transition probabilities of order 1,
which are contained in the stochastic matrix A, the set of
states S1 is absorbing. In other words, to get out of S1 the
lineages must undergo a transition with probability of
order 1=D or smaller: one or more migration events to an
occupied deme or to population 3. Therefore, the matrix
P ¼ limr!1A

r has non-zero entries only in the left-most
blocks:

P ¼

I 0 0 0 0

P21 0 0 0 0

P31 0 0 0 0

P41 0 0 0 0

P51 0 0 0 0

0
BBBBBB@

1
CCCCCCA
, (8)

where I ð¼ P11Þ is the identity matrix. The set S1 contains
all of the absorbing states (again, with respect to A) and
these can be reached from any state outside of S1 through a
series of coalescence events or migration events to
unoccupied demes, whose probabilities are of order 1.

Non-zero entries of P21: With probability of order 1,
lineages in state ðn1; n2; 1Þ can move either to state ðn1 þ

1; n2; 0Þ or to state ðn1; n2 þ 1; 0Þ. Note that the order 1
migration events of lineages within populations 1 and 2, i.e.
to unoccupied demes, do not change the state of the
lineages under our reduced notation. All other transitions
that change the state have probabilities of order 1=D or
smaller. Since migration from demes in population 3 occurs
according to the island model across all three populations,
the non-zero entries of P21 are

column ðn1 þ 1; n2; 0Þ column ðn1; n2 þ 1; 0Þ

row ðn1; n2; 1Þ a1 a2;

(9)

where again, in the limit, a1 is the fraction of demes that are
in population 1, and a2 ¼ 1� a1 is the fraction of demes
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that are in population 2. Again, the transition probabilities
in Eq. (9) do not depend on the migration probability m3

because of the definition P ¼ limr!1A
r. They are prob-

abilities of ultimate absorption, given that enough genera-
tions have passed to guarantee that a migration event to
either population 1 or population 2 has occurred.

Non-zero entries of P31: Order 1 transition probabilities
in A take lineages in state ðn1þ; n2; 0Þ to either to state
ðn1 þ 1; n2; 0Þ by a migration event to an unoccupied deme
in population 1, or to state ðn1; n2; 0Þ by a coalescent event.
Therefore, the non-zero entries of P31 are

column ðn1 þ 1; n2; 0Þ column ðn1; n2; 0Þ

row ðn1þ; n2; 0Þ 1� F 1 F 1

(10)

in which

F1 ¼
ð1�m1Þ

2=N

1� ð1�m1Þ
2
þ ð1�m1Þ

2=N

¼
ð1�m1Þ

2

Nm1ð2�m1Þ þ ð1�m1Þ
2

ð11Þ

is the probability that a pair of lineages in the same deme in
population 1 coalesce before one or the other of them
migrates out of the deme.

Non-zero entries of P41: Similarly to Eq. (10), for the
corresponding events in population 2 we have

column ðn1; n2 þ 1; 0Þ column ðn1; n2; 0Þ

row ðn1; n2þ; 0Þ 1� F 2 F 2;

(12)

where F 2 is given by Eq. (11) but with a change of
subscripts ð1! 2Þ.

Non-zero entries of P51: The states in S5 are characterized
by having more than two lineages in a single deme, or more
than one deme containing more than one lineage, or more
than one lineage in population 3. Most DNA sequence
data sets are of this sort because sampling is not usually
limited to a single sequence from each sampled deme.
Samples that begin in S5 will go through a series of
coalescent events and migration events to unoccupied
demes, with probabilities of order 1, until all remaining
lineages are in separate demes and none are in population
3. A process of this sort was called the ‘‘scattering phase’’
in Wakeley (1999). Again, once the lineages are in a state in
S1, only a transition of order 1=D or smaller can change
their state. Further, in the limit, the collection of states in
S5 is visited only once, at the time of sampling, because
transitions from S1 to S5 occur with probabilities of order
1=D2.

No simple expressions appear possible for many of the
non-zero entries in P51 due to our minimal assumptions
about N and mi. With the additional assumption that
limN!1Nmi is non-zero and finite, then simple expressi-
ons are available (Wakeley, 1999), and these are
closely related to the Ewens sampling formula (Ewens,
1972). We do not make this additional assumption,
and we present only the non-zero entries of P51 that
are associated with a particular set of states,
ðn1; n2; n3Þ, where n341 lineages are in population 3 and
these are in n3 distinct demes. These have transition
probabilities

column ðn1 þ k; n2 þ n3 � k; 0Þ

row ðn1; n2; n3Þ
n3

k

� �
ak
1a

n3�k
2

(13)

for k ¼ 0; 1; . . . ; n3. Each lineage stays in its deme for a
geometrically distributed number of generations, with
mean 1=m3, then migrates to a deme chosen uniformly at
random from the D ¼ D1 þD2 þ d demes in the total
population. If migration is stronger in the direction of
population 1, which here means the fraction a1 of demes
that are in population 1 is high, then lineages will tend to
migrate to population 1 as they trace their ancestry back in
time.

4.2. Non-zero entries of B

Due to the structure of P given in Eq. (8), and the form
of the infinitesimal generator, G ¼ PBP, there is no need to
compute the entries of Bij for i41. In addition, because
transitions from S1 to S5 require events with probabilities
of order 1=D2, which are thus contained in the matrix CD,
we have B15 ¼ 0. Therefore, we need only calculate the
entries of B11, B12, B13, and B14 in order to describe the
limit process.

Non-zero entries of B11: Off the main diagonal, these
correspond to events in which a lineage migrates to an
occupied deme in population 1 or 2 and there is an
immediate coalescent event. We have

column ðn1 � 1; n2; 0Þ column ðn1; n2 � 1; 0Þ

row ðn1; n2; 0Þ
n1

2

� �
m1ð2�m1Þ

a1N

n2

2

� �
m2ð2�m2Þ

a2N
:

(14)

The diagonal entries of B11 are also non-zero, and
represent what was ignored in computing A11 ¼ P11 ¼ I.
These entries are actually equal to minus the sums
of all other entries of B on the same rows but it
is not necessary to calculate them because they
do not enter into the calculation of rates in the limit
process.

Non-zero entries of B12: These correspond to events in
which a lineage migrates to a deme in population 3. We
have

column ðn1 � 1; n2; 1Þ column ðn1; n2 � 1; 1Þ

row ðn1; n2; 0Þ n1m1d=a1 n2m2d=a2:

(15)

Non-zero entries of B13: These correspond to events in
which a lineage in population 1 migrates to an occupied
deme in population 1 without an immediate coalescent
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event. We have

column ððn1 � 1Þþ; n2; 0Þ

row ðn1; n2; 0Þ
n1

2

� �
m1ð2�m1Þ

a1

N � 1

N
:

(16)

Non-zero entries of B14: These correspond to events in
which a lineage in population 2 migrates to an occupied
deme in population 2 without an immediate coalescent
event. We have

column ðn1; ðn2 � 1Þþ; 0Þ

row ðn1; n2; 0Þ
n2

2

� �
m2ð2�m2Þ

a2

N � 1

N
:

(17)

4.3. The limit process with generator G ¼ PBP

From Eq. (5) and the entries of P given above, it is clear
that the ancestral lineages will spend the majority of their
history in the set of states S1. Specifically, the single-
generation probability of leaving S1 is of order 1=D while
the single-generation probability of entering S1 is of order
1. In the limit as D tends to infinity, the dynamics are given
by Eq. (6). First, all samples undergo an instantaneous
adjustment by the matrix P, which leaves them in S1. After
this scattering phase, all further transitions in the limit
process are between states in S1 (from the equation G ¼

PBP we have Gij ¼ 0 for j41). They are either migration
events between populations 1 and 2 or coalescent events
within populations 1 or 2. Viewed in the context of the
original discrete-time process these include compound
events in which the lineages move from a state in S1 to a
state in either S2, S3, or S4, then back to another state in
S1. The rates of these transitions are the entries of

G11 ¼ B11 þ B12P21 þ B13P31 þ B14P41, (18)

and we use this equation to compute the overall rates of
coalescence and migration for the sample ðn1; n2; 0Þ.

Coalescence among ancestral lineages in population 1
can occur directly as a single step, with a rate given in B11

(see Eq. (14)). Otherwise, it can occur as the two step event
ðn1; n2; 0Þ ! ððn1 � 1Þþ; n2; 0Þ ! ðn1 � 1; n2; 0Þ whose rate
is contained in B13P31 and is the product of terms from
Eqs. (16) and (10). The rate of coalescence among ancestral
lineages in population 2 is obtained in the same way, as the
sum of terms in B11 and in B14P41. Under the assumptions
we have made, there is no single-step chance for migration
between population 1 and 2 in the discrete-time process.
Migration of an ancestral lineage from population 1 to
population 2, backwards in time, occurs via the two-step
event ðn1; n2; 0Þ ! ðn1 � 1; n2; 1Þ ! ðn1 � 1; n2 þ 1; 0Þ in
which a lineage resides temporarily in population 3. The
rate of this event in the limit process is the product of
terms from Eqs. (15) and (9). The rate for migration
of an ancestral lineage from population 2 to population 1 is
also given by an entry in B12P21. In all, after some
simplification we have

ðn1; n2; 0Þ !

ðn1 � 1; n2; 0Þ with rate

n1

2

� �
1� F1

a1N
;

ðn1; n2 � 1; 0Þ with rate

n2

2

� �
1� F2

a2N
;

ðn1 � 1; n2 þ 1; 0Þ with rate

n1dm1
a2
a1
;

ðn1 þ 1; n2 � 1; 0Þ with rate

n2dm2
a1
a2

8>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>:

(19)

for the entries of G11. Again, these are the only entries of G
that contribute to the ancestral limit process.
Recall that the limit process in this section has time

measured in units of D generations, whereas in Section 3
time was measured in units of ND generations. Since N is a
constant, we simply rescale time in Eq. (19) by N to obtain
Eq. (2).
5. Discussion

We have shown that the structured coalescent (Noto-
hara, 1990; Herbots, 1994, 1997; Wilkinson-Herbots, 1998)
forms part of the genetic ancestry of a sample taken from a
pair of large subdivided populations that are connected by
migration to and from a small number of subpopulations,
or demes. The ancestral limit process is related to the
many-demes coalescent described in Wakeley (1998, 1999),
and more recently in Lessard and Wakeley (2004). In
particular, the ancestral limit process for a sample involves
an instantaneous adjustment, or scattering phase, in which
a limited number of coalescent events and migration events
can occur, and which ends when the remaining ancestral
lineages are each in a separate deme and none are in
population 3. The rest of the ancestry of the sample is given
by a two-population structured coalescent whose para-
meters depend on the details of the model.
Importantly, this structured coalescent is obtained even

when the single-generation migration probabilities are
large between all pairs of demes that can exchange
migrants. This stands in contrast to the usual derivation
of the structured coalescent, which requires migration rates
to be low (on the order of the inverse of the population
size). The ‘‘low’’ rate of migration in our model arises
because genetic lineages must pass through a relatively
small set of demes accessible from both large subdivided
populations. Thus, it is a constriction in the habitat that
produces structure between the two large assemblages of
demes. This justifies the use of the structured coalescent in
situations where at first it would seem inappropriate.
However, we emphasize that: (1) the parameters estimated
from data will not have the usual interpretations, and (2)
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the structured coalescent will also include a scattering
phase for most samples.

Our result, which depends on a ‘‘separation of time
scales’’ between events of order 1 and events of order 1=D,
can be extended to more general situations (e.g. more than
two large subdivided populations). Here we consider one
case of particular interest in some detail. It should be clear
from the previous section that only some of the d demes in
population 3 need to be directly accessible via migration
from populations 1 and 2, as long as d is finite and the
number of accessible demes is non-zero in the limit. In
addition, migration among demes in population 3 may
assume any pattern, as long as a lineage in population 3
moves either to population 1 or to population 2 in a finite
number of generations.

Consider two island-model populations, such as our
populations 1 and 2, connected by a stepping-stone
(Kimura and Weiss, 1964) migration corridor. Specifically,
let us assume that the d demes in population 3 are arranged
in a line and labeled 1 through d. Further, assume that
deme 1 is the only deme accessible from population 1, and
that deme d is the only deme accessible from population 2.
If migration occurs between neighboring demes along the
corridor in the direction of population 1 with probability
m1 and in the direction of population 2 with probability m2,
then the dynamics of a lineage passing through population
3 are those of a random walk in one dimension.
Populations 1 and 2 are the absorbing boundaries, and
the process is identical to the classical gambler’s ruin
problem; e.g. see Feller (1968, p. 344). The probability that
a lineage now in deme i of the corridor exits to population
2 is given by

pðiÞ ¼

1� ðm2=m1Þ
i

1� ðm2=m1Þ
dþ2

if m2am1;

i

d þ 2
if m2 ¼ m1

8>>><
>>>:

(20)

for i ¼ 1; 2; . . . ; d.
Eq. (20) describes the scattering phase for a single sample

from population 3, and would also enter into the
calculation of the migration rate M

ð3Þ
ij for this model. A

scenario like this is implicit in the discussion of patterns of
variation in human mitochondrial DNA (mtDNA) at
different sampling points along the Nile river valley by
Krings et al. (1999). In particular, Krings et al. (1999)
defined mtDNA haplotypes to be of either ‘‘northern’’ or
‘‘southern’’ origin, and showed that the proportions of
different haplotypes depended on the distance from the
northern and southern source populations.
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S. (Eds.), Progress in Population Genetics and Human Evolution,

IMA Volumes in Mathematics and its Applications, vol. 87. Springer,

New York, pp. 231–255.

Hey, J., Nielsen, R., 2004. Multilocus methods for estimating population

sizes, migration rates and divergence time, with applications to the

divergence of Drosophila pseudoobscura and D. persimilis. Genetics

167, 747–760.

Hudson, R.R., 1983. Testing the constant-rate neutral allele model with

protein sequence data. Evolution 37, 203–217.

Kimura, M., Weiss, G.H., 1964. The stepping stone model of population

structure and the decrease of genetic correlation with distance.

Genetics 49, 561–576.

Kingman, J.F.C., 1982. The coalescent. Stochastic Process. Appl. 13,

235–248.

Krings, M., Salem, A.H., Bauer, K., Geisert, H., Malek, A.K., Chaix, L.,

Simon, C., Welsby, D., Di Rienzo, A., Uterman, G., Sajantila, A.,
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