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ABSTRACT
A simple genealogical process is found for samples from a metapopulation, which is a population that

is subdivided into a large number of demes, each of which is subject to extinction and recolonization and
receives migrants from other demes. As in the migration-only models studied previously, the genealogy
of any sample includes two phases: a brief sample-size adjustment followed by a coalescent process that
dominates the history. This result will hold for metapopulations that are composed of a large number of
demes. It is robust to the details of population structure, as long as the number of possible source demes
of migrants and colonists for each deme is large. Analytic predictions about levels of genetic variation are
possible, and results for average numbers of pairwise differences within and between demes are given.
Further analysis of the expected number of segregating sites in a sample from a single deme illustrates some
previously known differences between migration and extinction/recolonization. The ancestral process is
also amenable to computer simulation. Simulation results show that migration and extinction/recoloniza-
tion have very different effects on the site-frequency distribution in a sample from a single deme. Migration
can cause a U-shaped site-frequency distribution, which is qualitatively similar to the pattern reported
recently for positive selection. Extinction and recolonization, in contrast, can produce a mode in the site-
frequency distribution at intermediate frequencies, even in a sample from a single deme.

THE standard neutral coalescent model (Kingman follows from one important assumption about the popu-
lation: that lineages or alleles are exchangeable. Roughly1982a,c; Hudson 1983; Tajima 1983) assumes a
speaking, exchangeable lineages are ones whose pre-panmictic species with a constant, large, effective popu-
dicted properties are unchanged if they are relabeledlation size over time within which no selective differ-
or permuted. More precise definitions can be found inences exist. While this model is often applied in the
Kingman (1982b) and Aldous (1985). In the case ofanalysis of genetic data, its assumptions are probably
population subdivision, which is the focus of the presentinappropriate for most organisms. That is, many species
work, the genealogy of a sample depends on the loca-are subdivided and/or have changed in size over time
tions of the lineages, so the lineages are not exchange-and/or are subject to natural selection. The study of
able. For example, very different genealogies result ifgenealogical processes in populations subject to these
all n members of a sample are from the same subpopula-forces has been a major part of the recent effort in
tion or deme than if one is from one deme and thepopulation genetics. The key parameter of the coales-
other n � 1 are from another. Even when the entirecent is the effective population size, Ne, because this
sample is from a single deme, so that the present-dayis what determines the time scale of the process. It is
lineages appear to be exchangeable, the lineages ances-important to note that some biologically interesting
tral to the sample will not be exchangeable if they arecharacteristics of species are manifest only through this
in different demes. A similar situation holds for naturaleffective size. These include the distribution of offspring
selection, but in this case the labels are the allelic statesnumber among individuals in the population and the
of the lineages rather than the geographic locations.details of the age structure of the population. The ro-

The facility with which extensions to the coalescentbustness of the coalescent to these features is generally
can be made depends on this problem of exchange-thought to be a positive aspect of the model. However,
ability. For instance, when the effective size of the popu-it might also be considered disadvantageous, or at least
lation changes over time, the analysis is relatively straight-unfortunate, that genetic data from a large population
forward because lineages remain exhangeable (Donnellywill not contain information about these important bio-
and Tavaré 1995; Slatkin 1996). In the case of naturallogical characteristics of organisms.
selection, Neuhauser and Krone (1997) recently con-The mathematical simplicity of Kingman’s coalescent
structed a “dual process” (Donnelly 1984) for an ances-
tral selection graph in which lineages are exchangeable.
Other approaches to selection assumed that it is strong
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and Kaplan 1995; Nordborg et al. 1996; Nordborg scaled rates of demic migration and extinction/recolo-
nization (M � 2Nm and E � 2Ne below) are assumed1997). Formally, population subdivision is modeled us-

ing the structured coalescent (Notohara 1990, 1997; to be finite. However, as the number of demes in the
population becomes large, there is also a strong-migra-Wilkinson-Herbots 1998), but analytical results are

difficult to obtain because lineages are not exchange- tion limit for movement among types of demes (defined
below). Lineages become exchangeable in this large-able. The structured coalescent applies to populations

in which the per-generation migration rates are on the number-of-demes model only after a short burst of
within-deme coalescent events. Thus the model predictsorder of the reciprocal of the deme sizes. However,

making this assumption does not simplify the analysis higher genetic variation among than within demes. In
contrast to the small-number-of-demes structured coa-much, as exact expressions for samples of size two

(Nagylaki 1998) are about as complicated as those com- lescent (Wilkinson-Herbots 1998) and exact approaches
(Nagylaki 1998), in which analytic results are typicallying out of the structured coalescent. If we are confident

that the demography of a population is such that the confined to samples of size two, here results for arbitrary
samples can be obtained. The large-number-of-demesgeneral structured coalescent process is applicable, then

simulation-based maximum-likelihood methods, like model does not predict isolation by distance in the sense
of Wright (1943), but such a pattern could result ifthose of Beerli and Felsenstein (1999) and Bahlo and

Griffiths (2000), may provide the best framework for the sizes of demes, in numbers of individuals, are posi-
tively correlated with their geographic extent; see thehistorical inference. However, there are practical issues

in the implementation of these methods. Chief among discussion.
The term metapopulation was introduced by Levinsthese in relation to the present work, it is unclear how

to account for possibly numerous unsampled demes. (1968, 1969) to describe a population that is subdivided
into a large number of discrete demes, each of whichWhen the demography of a subdivided population is

such that lineages are exchangeable, genealogical mod- is subject to random extinction and recolonization.
Originally, the concern was for the numbers or fractionsels that are robust to some of the details of demography

can be found and applied. For example, when migration of empty and full demes in the population. Later meta-
population models focused on within-deme dynamicsrates among demes are high relative to the sizes of

demes, the strong-migration limit of Nagylaki (1980, and included other processes, such as migration among
demes. Over the last 30 years, metapopulation biology2000) and Notohara (1993) approximates the behav-

ior of the population. A Kingman-type coalescent de- has grown into an active subfield of biology as a whole.
Most of the emphasis has been on empirical and theoret-scribes the genealogy of the sample but with an effective

size that depends on the pattern of migration among ical ecology. The recent book by Hanski and Gilpin
(1997) gives a good overview of the subject. Of course,demes. This result follows from a separation of time-

scales between fast migration and slow coalescence (Nagy- the study of subdivided populations has, from the begin-
ning, been an important part of population geneticslaki 1980; Nordborg 1997; Möhle 1998b). Because

lineages are exchangeable in the strong-migration limit, (Wright 1931). The Levins-type metapopulation was
promoted by Wright (1940) as a demography thatthe structure of the population will only be manifest in

the effective size of the coalescent process. In particular, could lead to rapid evolution or speciation. Neverthe-
less, the rise of metapopulation ecology beginning inif a sample is taken from such a population, levels of

polymorphism within and between demes will be the the 1970s caused a coincident increase in research on
the genetics of metapopulations. Hanski (1998) andsame. The existence of the strong-migration limit ex-

plains why geographic structure is sometimes not ob- Pannell and Charlesworth (2000) provide thorough
histories of these developments from the ecological andserved in samples, even in widely dispersed species that

are obviously not panmictic across their entire range. genetic perspectives, respectively.
Slatkin (1977) described the two fundamental con-In fact, it is not uncommon to find evidence of geo-

graphic structure in genetic data (Slatkin 1985). With flicting consequences of extinction and recolonization
in a subdivided population. One is the added geneticthis motivation, the present model provides a framework

for historical inference using samples from a metapop- drift within demes that can occur when extinct demes
are recolonized by a small number of individuals. Thisulation. A metapopulation is a population subdivided

into many different demes among which there is some will tend to increase the level of differentiation among
demes. Founder effects, or bottlenecks, such as this canpattern of migration, extinction, and recolonization. As

with the migration-only cases studied previously (Wake- also substantially decrease effective size of the popula-
tion. The second consequence of extinction and recolo-ley 1998, 2001), a simple genealogical process exists

for samples from a population in which there are a large nization emphasized by Slatkin (1977) is the increased
amount of genetic exchange among demes that resultsnumber of demes. The result holds for a fairly broad

class of population structures and has similarities both from the movement of colonists across the population.
This, like regular migration, will tend to decrease theto the structured coalescent and to the strong-migration

limit. In common with the structured coalescent, the level of differentiation among demes. These same two
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forces were envisioned by Wright (1940) to facilitate the parameters that determine the pattern of genetic
variation in a sample are the rates of migration andthe fixation of chromosomal rearrangements or other

strongly underdominant mutations. Slatkin (1977) il- extinction/recolonization and the founding-propagule
sizes for each sampled deme. Thus, in a large metapopu-lustrated these effects with quantitative predictions about

genetic variation within and between demes for two dif- lation, on the one hand, many interesting aspects of the
biology of the species are tied together in the effectiveferent models of extinction and recolonization: the pro-

pagule-pool model and the migrant-pool model. size of the collecting phase. On the other hand, we have
a robust framework for investigating other phenomena,In the propagule-pool model, the k individuals that

recolonize extinct demes come from a single source such as changes in effective size over time, within the
context of a metapopulation. While many analytic resultsdeme, and each deme in the population has an equal

chance of providing these founders. In the migrant- are possible, and some are given below, the model is
also easy to program. Simulations are used here to showpool model, the k founders come from the migrant

pool, which each deme in the population contributes the contrasting effects of migration and extinction/recolo-
nization on site-frequency distribution at polymorphic sitesto equally, so all k may have different source demes.

Thus, the structure of movement among demes is simi- in a sample from a single deme.
lar to that in the island model of migration (Wright
1931; Maruyama 1970; Latter 1973). Under the above

THEORY
assumptions, Slatkin (1977) studied recurrence rela-
tions for the probabilities of identity-by-descent for two Large metapopulation model: Consider a population

that is subdivided into a large number of local popula-gene copies sampled either from the same deme or
from different demes. He also found expressions for tions or demes. The total number of demes is D, and

these are arbitrarily labeled 1 through D. Deme i hasthe effective number of alleles in the metapopulation.
Maruyama and Kimura (1980) studied probabilities of diploid size Ni, or, equivalently, haploid size 2Ni. In

either case 2Ni copies of each genetic locus reside withinidentity under a propagule-pool model and also ob-
tained expressions for the effective size of the metapo- deme i. The results presented below apply in a straight-

forward way to haploid organisms and to diploid monoe-pulation. Wade and McCauley (1988) reformulated
the model in terms of FST. Whitlock and Barton cious organisms with the additional assumption that

migration and recolonization are gametic rather than(1997) derived formulas for the effective size of a more
general metapopulation in which demes may vary in zygotic. This leads to an apparent factor of two differ-

ence of terms involving k below, relative to results ofsize and within which there can be selection. Pannell
and Charlesworth (1999) recast Slatkin’s (1977) previous authors, but this is not a meaningful difference.

Nagylaki (1998) has shown that results for zygotic mi-model in terms of genetic diversity within and between
demes and emphasize the important point that no single gration will be equivalent to those for gametic migration

as long as the effective number of migrants each dememeasure (e.g., FST) is sufficient to characterize a subdi-
vided population. A full account of research on Slat- accepts each generation is not too small.

Each deme receives migrants from other demes inkin’s (1977) model can be found in a recent review by
Pannell and Charlesworth (2000). the population and is also subject to extinction/recolo-

nization. If a deme goes extinct, it is recolonized imme-The model considered here includes variation in the
characteristics of demes and allows for structure in the diately. Thus, there are no empty habitat patches in

this model as there often are in ecological models ofpattern of movement of lineages, by migration or by
recolonization, across the population. It is not, there- metapopulations; e.g., see Hanski (1997). This assump-

tion is unnecessary as long as the total number of extantfore, an island model in the strict sense of Wright
(1931) or in the general sense of Wakeley (2001). Simi- demes remains constant from one generation to the

next (Pannell and Charlesworth 1999). Deme i re-lar to genealogies in a large migration-only population
(Wakeley 1998, 1999), it is shown here that, when the ceives Mi (haploid) migrants each generation. That is,

a fraction Mi/(2Ni) of deme i is replaced by migrantsnumber of demes in the population is large, the geneal-
ogy of a sample includes two phases. There is a short every generation. The other portion, 1 � Mi/(2Ni), is

derived from the previous generation of deme-i individ-recent part of the history, which I have elsewhere called
the “scattering” phase (Wakeley 1999), and a more uals. Reproduction within each deme occurs according

to the Wright-Fisher model (Fisher 1930; Wrightancient “collecting” phase that dominates the history.
Coalescent events during the scattering phase are the 1931). The parameter Mi is the scaled backward migra-

tion rate for deme i. Correspondingly, Ei is the scaledsource of the within- vs. between-deme structure of ge-
netic variation in a sample. The collecting phase is a extinction/recolonization rate, so Ei/(2Ni) is the per-

generation probability that deme i goes extinct. If demeKingman-type coalescent process, with an effective size
determined by the rate and pattern of movement across i goes extinct, it is recolonized by ki individuals, which

immediately restore the deme to its original size of 2Nithe population and by the distribution of deme sizes
and propagule sizes. In addition to this effective size, gene copies. This step also occurs according to the
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It leads to a separation of timescales in the ancestral
process of a sample, which is similar to that found in
studies of partial selfing (Nordborg 1997, 1999; Nor-
dborg and Donnelly 1997). A useful convergence the-
orem, derived in context of partial selfing, was found
by Möhle (1998a). Consider the genealogy of a sample
from such a population. The separation of timescales
is a consequence of the fact that at any given time in
the past, the overwhelming majority of demes in the
population will not contain any lineages ancestral to
the sample. Demes that do contain ancestral lineages
are called occupied demes (Wakeley 1999), and the
fraction of these in the population is never �n/D. Two
kinds of events differ vastly in rate. The first is migration
and extinction/recolonization events in which the
source deme is occupied. The second is coalescent
events within demes and migration or extinction/recol-

Figure 1.—An example, with K � 3 classes of demes, of onization events in which the source deme is unoccu-
the population structure assumed throughout this work. pied. Events of the second type dominate the history ofWithin each of the three classes, or regions, there are many

the sample because they are approximately D timesdemes. Arrows depict the movement of lineages, by migration
more likely than events of the first type.and/or extinction/recolonization, both within and among

regions. Given this, it is necessary to distinguish sample con-
figurations in which every lineage is in a separate deme
from those in which at least one deme contains multiple

Wright-Fisher model. That is, the 2Ni descendants are lineages. When at least one deme contains multiple
obtained by sampling with replacement from the ki colo- lineages, migration events and extinction/recoloniza-
nists. It is important to note that the subscripts of N, tion events will send lineages to unoccupied demes
M, E, and k refer to individual demes, not to the classes and coalescent events will join together lineages within
of demes introduced below. demes until each remaining lineage is in a separate

The population is assumed to comprise K different deme. This scattering phase takes a negligible amount of
types of demes, which may represent different geo- time compared to the waiting time to the next relevant
graphic regions. Demes of type i make up a fraction �i event, which is a migration or extinction/recolonization
of all demes; thus, R K

i�1�i � 1. In addition, demes of event to an occupied deme. At least one event of this
type i receive a portion mij of their gametes via migration type must occur before another coalescent event can
from demes of type j, where 1 � j � K. In total, each happen. In fact, if n � D, so many will occur that the
deme of type i is a fraction mj� R K

j�1mij of its gametes movement of the lineages among unoccupied demes
replaced by migrants every generation. Thus, Mj/(2Nj) � by migration and extinction/recolonization will reach
mi for every type i deme, j. Migrants into a type i deme a statistical equilibrium before two lineages will have
might have come from another deme of type i. They may the chance to coalesce. This is the essence of Möhle’s
also originate in the same deme they migrate to, although (1998a) result and of the strong-migration limit (Nagy-
the effect of this is negligible when the number of demes laki 1980). As shown below, the collecting phase is a
is large. Demes of type i go extinct with probability ei each Kingman-type coalescent process with a characteristic
generation and are recolonized by a mixture of gametes effective size. Thus, the structure of genealogies is two-
from the different classes of demes in proportions ei1/ei, fold. First there is a one-time stochastic sample size adjust-
ei2/ei, . . . eiK/ei (RK

j�1eij � ei). When a lineage is a migrant ment, the scattering phase, which results in greater re-
or a colonist from a deme of type i, it is equally likely to latedness within than between demes; then the bulk of
have come from each of the �iD type i demes. The struc- the history is spent in a collecting phase coalescent
ture of this model is depicted in Figure 1. process. Figure 2 illustrates the structure of genealogies

Separation of timescales and the structure of genealo- under this approximation for a sample from one deme.
gies: As in Wakeley (1998, 1999, 2000, 2001), the results Scattering phase: Consider the recent history of a
presented here will hold for metapopulations that are sample n � (n1, . . . , nd) taken from d different demes.
composed of a large number of demes. In particular, The total sample size is n � R d

j�1ni. Following the geneal-
the sample size must be much smaller than the number ogy of the sample from deme i, it will take on the order of
of demes in the population (n � D). This does not 2Ni generations for the scattering phase to be complete,
appear to be an unrealistic assumption for some meta- fewer if Mi and/or Ei are large. Let n�i represent the
populations in nature and is one that is commonly made number of lineages remaining of the sample ni from

deme i at the end of the scattering phase. When therein theoretical studies of metapopulations (Hanksi 1997).
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second case, the scattering phase for deme i ends, with
each remaining lineage in a separate deme, before an
extinction/recolonization event has occurred.

To know how many lineages remain at the end of the
scattering phase, we must first distinguish histories that
involve different numbers of migration events. The
probability that x migration events occur and the extinc-
tion event occurs when there are j lineages is given by

PME(x, j |ni) �








2Ei/j
2Mi � ( j � 1) � 2Ei/j

S (x�1)
ni,j

(2Mi)x

�ni
l�j�12Mi � (l � 1) � 2Ei/l

,

2 � j � ni

S (x�1)
ni,1

(2Mi)x

�ni
l�22Mi � (l � 1) � 2Ei/l

,

j � 1 (2)(2)

in which

S (x�1)
ni,j � coefficient of (2Mi)x in �

ni

l�j�1

[2Mi � (l � 1)].

(3)

These coefficients can be generated recursively,

S (l )
j,i � ( j � 1)S (l )

j�1,i � S (l�1)
j�1,i , (4)

starting with S (1)
i,i � 1, and S (l )

j,1 are unsigned Stirling
numbers of the first kind. The source deme of each
migrant is determined by the stochastic migration pro-
cess described above.

Figure 2.—An example of a genealogy of sample size eight Given that an extinction event occurs when there are
from a single deme. In this case, during the scattering phase, j lineages remaining in deme i, the probability that these
there are two migration events (to some unoccupied demes have y colonist-parents in the propagule of size ki is giventhat are not pictured) and then an extinction/recolonization

byevent with k � 2 in which all of the lineages remaining in the
deme are descended from a single common ancestor. The
coalescent collecting phase of the three resulting lineages is Gi[y| j] �

�(y)
j �y�1

l�0(ki � l)
k j

i

. (5)
shown above. The relative duration of the scattering phase is
greatly exaggerated for purposes of illustration.

Equation 5 is the usual backward Wright-Fisher process;
see, for example, Watterson (1975). That is, the num-
ber of parents of the j lineages has the same distributionare j lineages in the deme, the scaled rates of migration,
as the number of nonempty cells when j balls are throwncoalescence, and extinction/recolonization are jMi,
randomly into ki boxes. The coefficients, � (y)

j , are Stirlingj( j � 1)/2, and Ei, respectively. The value of ni� will
numbers of the second kind. The source deme of eachdepend upon how many migration events occurred be-
colonist-parent is determined by the stochastic extinc-fore the deme experiences an extinction/recoloniza-
tion/recolonization process described above.tion event and on the number of colonist-parents there

When an extinction/recolonization event occurs, asare of the lineages that exist at the time of this event.
long as D is large, each lineage will have a differentThe probability that the extinction event occurs when
source deme and the scattering phase will end for demethere are j lineages, and not before, is given by
i. Thus, this model is a general version of Slatkin’s
(1977) migrant pool model. At the other extreme is
Slatkin’s (1977) propagule-pool model in which all y
lineages in (5) would have the same source deme, cho-

PE( j |ni) �








2Ei/j
2Mi � ( j � 1) � 2Ei/ j �

ni

l�j�1

2Mi � (l � 1)
2Mi � (l � 1) � 2Ei/l

,

2 � j � ni

�
ni

l�2

2Mi � (l � 1)
2Mi � (l � 1) � 2Ei/l

,

j � 1.

sen randomly according to some probability function.
If this were the case, the scattering phase would con-
tinue, but with the scaled coalescent, migration, and(1)
extinction/recolonization rates of the source deme. If

The first case specifies that ni � j migration or coalescent there was no migration, the propagule-pool model
events occur, which leaves j lineages in deme i, and would always give ni� � 1. Wade and McCauley (1988)

proposed an intermediate model, in which a fraction,then an extinction/recolonization event occurs. In the
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φ, of the lineages would follow the propagule-pool tion, there are two kinds of events: changes in the con-
figuration, (r1, . . . , rK), and the movement of a lineagemodel and the other 1 � φ would follow the migrant

pool model. These and more complicated schemes could into an occupied deme. Events of the first kind occur
be modeled within the present framework but are not with probability
pursued here. When an extinction/recolonization event

P �� . . . , ri � 1, . . . , rj � 1, . . .)occurs the scattering phase is over for the sample from
that deme. If ki is equal to one or if the rate of extinc- → ( . . . , ri, . . . , rj, . . . �� � (rj � 1)hji. (8)
tion/recolonization is low, the present results will be
identical to those of a propagule-pool model.

The movement of a lineage into an occupied deme ofIf there are x migration events and y colonist-parent
type i occurs with probabilitylineages in the sample from deme i, then the scattering

phase for deme i ends with n�i � x � y lineages each in
bi,(r1,...,rK) � rihii�ri � 1

�iD
� � �

j: j �i
rjh ji� ri

�iD
�. (9)separate demes. The probability function for n�i is

P[n�i |ni] � �
n

j�1
�
n�j

x�0

PME(x, j |ni)Gi[n�i � x| j], (6)
Clearly the first kind of event is much more likely to
occur when D is large relative to r. The probability thatwhere we define Gi[y| j] to be equal to zero if y is 	1
the sample configuration is unchanged is equal toor �j. Because events occur independently in different

demes, the joint probability function of all the n�i is
P�(r1, . . . , rK) → (r1, . . . , rK)� � 1 � �

K

i�1

ri �
j: j �i

hij � �
K

i�1

bi,(r1,...,rK) (10)
given by

≈ 1 � �
K

i�1

ri �
j: j �i

hij. (11)P[n�|n] � �
d

i�1

P[n�i |ni]. (7)

As in Wakeley (2001), the essence of the separation ofThe collecting phase of the history then begins with
timescales is that, when r � D, an equilibrium for (r1,n� � Rd

i�1 ni� lineages, each in separate demes.
. . . , rK) is reached with respect to (8) and (11) beforeCollecting phase: The distribution among deme types
any event of the type in (9) occurs. Then, the waitingof the n� lineages that enter the collecting phase will
time to a movement event that places two lineages intodepend on the particular outcome of the scattering
the same type i deme is the average of (9) over thephase for each deme’s sample. Let ri be the number of
stationary distribution of (r1, . . . , rK). Möhle (1998a)lineages that are in type i demes. The vector (r1, . . . ,
provided a convergence theorem for processes such asrK) then denotes the configuration of the lineages
this, which is used implicitly below.among the different types of demes. The total number

Consider first the movement of just one lineageof lineages is equal to r � RK
i�1ri and at the start of the

among demes in the population. This is determined bycollecting phase we have r � n�. Here it is shown that
the matrix Q , which has off-diagonal entries qij � hij.the time to a coalescent event does not depend on
The diagonal entries are qii � 1 � Rj:j�i hij, which it isthe starting value of (r1, . . . , rK) and is exponentially
important to note are not equal to hii defined above. Thedistributed as in Kingman’s coalescent. First, as in
hii do not directly affect the equilibrium configurationWakeley (2001), the time until two lineages are in the
because such moves do not take the lineage into a differ-same deme is shown to be exponentially distributed.
ent class of demes. Standard matrix theory shows thatThe coalescent result follows from this and the fact that
as long as the matrix Q is ergodic, i.e., irreducible andthe number of times two lineages must be in the same
aperiodic, a stationary distribution will exist. As Nagy-deme before a common ancestor event occurs is geomet-
laki (1998) notes, ergodicity in itself probably doesrically distributed.

Note that, from the perspective of a single lineage not rule out very many plausible biological scenarios.
in a singly occupied deme, a migration event and an Ergodicity requires only that lineages can eventually get
extinction/recolonization event are indistinguishable. from any deme type to any other and that lineages have
Both simply move the lineage to another deme. There- some chance of staying in their current type of deme.
fore, it is sufficient during the collecting phase to con- If fi is the equilibrium probability that a lineage is in a
sider the combined effect of migration and extinction/ deme of type i, we have
recolonization: hij � mij � eij. It is assumed that hij is
small, on the order of the reciprocal of the deme size. fi � �

K

j�1

fj q ji (12)
Thus, squared and higher-order terms in hij, which rep-
resent the movement of two or more of the lineages in or, equivalently,
a single generation, will be ignored. Note also that here

fi �
j : j �i

qij � �
j : j �i

fj q ji , (13)there is no difference between migrant-pool and propa-
gule-pool recolonization.

Looking back to the immediately previous genera- where we may assume 0 	 fi 	 1 and RK
i�1 fi � 1. The
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quantity fi can be interpreted as the average relative overall chance that the two will have a common ancestor
is equal toamount of time a lineage spends in demes of type i.

The stationary distribution of the full configuration
(r1, . . . , rK) is multinomial: 	 1 � E/k

2M � 1 � E
i

�
1

D�i
�

{j: j�
i}

1 � Ej/kj

2Mj � 1 � Ej

, (21)

p(r1, . . . , rK) �
r!

r1! . . . rK!
f r1

1 . . . f rK
K . (14) where 
i is the set of labels of the D�i demes of type i.

As in Wakeley (2001), the number of movement events
This is proved by induction over time. Using (8) and to occupied demes that must occur before a common
(11), we have ancestor event happens is geometrically distributed with

probability of success equal to the average of (21) over
p(r1, . . . , rK) � �

K

i�1
�

j: j�i
p(. . . , ri � 1, . . . , rj � 1, . . .)(rj � 1)qji the distribution gr,i/gr. Because the waiting time between

these events is exponential with rate gr, it follows
� p(r1, . . ,rK)�1 � �

K

i�1

ri �
j: j�i

qij� (15) (Wakeley 1999) that the time to coalescent event
among the r lineages is exponentially distributed with
rateor equivalently,

p(r1, . . . , rK) �
K

i�1

ri �
j: j�i

qij �r
2�

2
D �

K

i�1

f 2
i hi

�i
	 1 � E/k
2M � 1 � E
i

. (22)

� �
K

i�1
�

j: j�i
p(. . . , ri � 1, . . . , rj � 1, . . .)(rj � 1)qji. (16) When a coalescent event occurs, the number of lineages

decreases by one and the process continues.
If the stationary distribution of (r1, . . . , rK) is given by This shows that the collecting phase is a Kingman-
(14), then type coalescent process and is thus independent of the

starting distribution of lineages among deme types, (r1,
p(r1, . . . , rK) �

K

i�1

ri �
j: j�i

qij � �
K

i�1
�

j: j�i
p(r1, . . . , rK)

ri fj

(rj � 1) fi

(rj � 1)qji (17) . . . , rK). The effective size of this coalescent process is
given by

� p(r1, . . . , rK) �
K

i�1

ri

fi
�

j: j�i
fjqji, (18)

1
2Ne

�
2
D �

K

i�1

f 2
i hi

�i
	 1 � E/k
2M � 1 � E
i

. (23)
which is true because the fi satisfy (13). The stationary
distribution (14) is unique since the Markov chain is An equation like (23) can provide a framework for un-
ergodic and has a finite number of states. derstanding the determinants of the effective popula-

The total rate of events that put two lineages together tion size. Wakeley (2001) discusses the effects of differ-
in a deme of type i is the average of (9) over the station- ent factors in the case of a migration-only model. It is
ary distribution of (r1, . . . , rK), that is, important to note that (23) determines the rate in a

coalescent process that occurs in the history of everygr,i � �
{(r1,...,rK):RK

i�1ri�r}

p(r1, . . . , rK)bi,(r1,...,rK). (19)
sample. This is different than the traditional effective
sizes, which are descriptions of the equilibrium behavior

Equation 19 is just the expectation of bi,(r1,...,rK) over the of genetic drift in the population. However, (23) is by
multinomial distribution (14). Using (13) and the fact definition an inbreeding effective size and is essentially
that qij � hij for j � i, we have the same as the various effective metapopulation sizes

that others have discussed in detail; for example, see
gr,i � �r2�

2 f 2
i hi

�iD
(20) Whitlock and Barton (1997). For purposes here, the

significance of (23) is twofold. First, it will not be possi-
ble to differentiate among many different parametersin which hi � RK

j�1hij. The total rate of events that put
two lineages into the same deme, regardless of the type, of the model because they are buried in the composite

parameter, Ne. Second, the collecting-phase coalescentis the sum of (20) over all types of demes: gr � RK
i�1gr,i.

Given that such an event occurs, the probability that result holds for many specific population structures.
Analytic predictions about DNA sequence polymor-the two lineages are in a deme of type i is equal to gr,i/

gr. Then, once two lineages are in the same deme, they phisms: Because the collecting phase is a coalescent
process, a natural way to incorporate neutral mutationseither have a common ancestor or they again wind up

in separate demes, either by migration or through an is to define � � 4Neu, where Ne is given by (23) and u
is the neutral mutation rate at some genetic locus. Withextinction/recolonization event. If they wind up in sepa-

rate demes, there will be another exponentially distrib- � defined in this way, the history of one particular kind
of sample (n1 � 1, n2 � 1, . . . , nd � 1) will conformuted waiting time with rate gr before two lineages are

in one deme and again have a chance to coalesce. to the standard neutral coalescent model. All the usual
coalescent results, for example, those found in TavaréBecause each of the �iD demes of type i is equally

likely to be the one that contains the two lineages, the (1984), will apply directly to this sample when � � 4Neu.
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Predictions about levels of genetic variation for other Equations 24 and 25 provide results for arbitrary sam-
ples. For example, Figure 3 plots (25) for a sample ofsamples will have to be averaged over the possible out-

comes of the scattering phase and weighted by their proba- five sequences from each of two different demes over
a broad range of migration and extinction/recoloniza-bilities as given in (7). If S(n) is the number of segregat-

ing sites in the multideme sample, n � (n1, . . . , nd), tion rates. Shown are results for two different propagule
sizes: k � 1 in Figure 3a and k � 10 in Figure 3b. Inthen
both cases, � � 10. As expected, the model predicts that

P[S(n) � i] � �
n�

P[S(n�) � i]P[n�|n]. (24)
samples from demes with larger backward migration
rates will be more polymorphic. If within each deme all

Under Watterson’s (1975) infinite sites mutation model, five lineages share a common ancestor by the end of
P[S(n�) � i] may be given by Tavaré’s (1984) equation the scattering phase, the collecting phase begins with
(9.5). Summing over all possible values of i gives the just two lineages and the expected number of segregat-
corresponding equation for the expectation of S(n), ing sites will be equal to 10.0. At the other extreme, if,

for example, migration is very frequent, the scatteringE[S(n)] � �
n�

E[S(n�)]P[n�|n], (25)
phase could end with 10 sequences all in different
demes. The collecting phase would then begin with 20in which E[S(n�)] � �Rn��1

i�1 1/i (Watterson 1975). In
lineages, and the expected number of segregating sitesthe case of migration only, integral representations of
will be equal to 28.3. These extremes are very nearlyP[S(n�)] and E[S(n�)] allow the sums in (24) and (25) to
realized in Figure 3. In contrast to migration, the effectbe evaluated, resulting in somewhat simpler expressions
of changes in the rates of extinction/recolonization in(Wakeley 2001), but this does not appear possible here.
the two demes depends on the propagule size. WhenThe most basic prediction of this model, or of any
the propagule size is small (Figure 3a), increases in thesubdivided population model, is that levels of polymor-
rate of extinction/recolonization make the expectedphism will be higher among than within demes. The
number of segregating sites smaller, whereas when thesimplest case, two sequences sampled either from the
propagule size is large (Figure 3b), increases in extinc-same deme or from two different demes, illustrates this
tion/recolonization rates have a similar effect to in-point. If the two are from different demes, the expected
crease in the migration rates, which is to increase levelsnumber of pairwise differences will be equal to �, identi-
of polymorphism. This is just restatement, within thecally for any pair of demes. A randomly chosen pair
framework of the coalescent, of Slatkin’s (1977) con-will have this same expectation because the chance of
clusions about the dual roles of extinction/recoloniza-randomly sampling the same deme twice will be low
tion.when the number of demes is large. The expected num-

As in Wakeley (1999) it may be possible to find ana-ber of differences between a pair of sequences from
lytic expressions for the expected number of sites segre-deme i will be equal to this, �, times the probability
gating at particular joint frequencies among the sam-that the scattering phase for this sample ends with two
pled demes. In addition, because the collecting phaselineages. Call these expected values �T and �i, respec-
is a coalescent, it is relatively straightforward to incor-tively. We can define an inbreeding coefficient for the
porate changes in effective population size over time.deme,
Again, existing expressions found for changing popula-
tion sizes in the context of a Kingman-type coalescent,Fi �

�T � �i

�T

(26)
such as those in Slatkin and Hudson (1991) and Hey
and Harris (1999), will apply directly to the sample

�
1 � Ei/ki

2Mi � 1 � Ei

, (27) where n � d and can be averaged over (7) for other
samples. It should also be possible to model diverging
species, each of which conforms to the present metapo-which is simply the probability that the two lineages

coalesce during the scattering phase. The inbreeding pulation model, as in Wakeley (2000). Instead of pursu-
ing these ideas any further here, the next section de-coefficient for the deme will be small when the migra-

tion rate is large or when the extinction/recolonization scribes how genealogies can be simulated easily so that
these and other questions can be addressed computa-rate and the propagule size are both large. It will be

large when the rates of migration and extinction/recol- tionally.
onization are both small or when the extinction/recolo-
nization rate is large and the propagule size is small. It

SIMULATIONS
is important to note that here � is assumed to remain
constant and that these differences in Fi represent the The coalescent process in the large-number-of-demes

metapopulation is simulated as follows. First, the scatter-possible differences among sample demes. If � changes
as well, i.e., if demes do not differ in their characteristics, ing phase is carried out for each sampled deme. This is

done by simulating a series of coalescent and migrationthen the conclusions are different (Pannell and Charles-
worth 1999; Wakeley 2001). events, and possibly an extinction/recolonization event,
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Figure 3.—The expected num-
ber of segregating sites in a sample
of five sequences from each of two
demes, plotted as a function of the
migration and extinction/recolo-
nization rates. These rates are as-
sumed to be the same for both
demes. In a the propagule size is
equal to 1 and in b it is equal to
10.

for each deme according to the relative rates specified but it could also be included. The source code of this
C program is available upon request.above Equation 1. The result for deme i is a number

of lineages, n�i , to enter the collecting phase, and for One aspect of DNA sequence data that has received
a lot of attention in recent years is the distribution ofeach lineage the number of descendants it has in the

sample, or its “size.” For example, the sizes of the lin- allele frequencies in a sample. These form the basis of
many tests of the standard neutral coalescent model,eages in Figure 2 are two, five, and one. The sizes of

lineages are required to simulate anything beyond the such as Tajima’s (1989) D, so it is of interest to know
what other models predict about these “site frequen-most simple properties of the model. When there is no

extinction and recolonization, Wakeley (1999) showed cies.” Figure 4 shows the predicted site-frequency distri-
butions under different regimes of migration and ex-that the sizes of lineages for a single-deme sample have

the same probability distribution as the allele counts in tinction/recolonization. These are the “unfolded” site
frequency distributions, that is, assuming it is knownthe Ewens (1972) sampling formula, with infinite-allele

mutation replaced by infinite-deme migration. If, on which is the ancestral and which is the mutant base at
each polymorphic site. Figure 4, a–c, shows simulationthe other hand, the rate of extinction/recolonization

is very high relative to migration and coalescence, the results for a sample of 10 sequences from a single deme
and are averaged over 1 million replicates. Figure 4adistribution will be identical to the distribution of the

occupancy numbers when ni balls are thrown randomly shows that as the migration rate becomes small when
there is no extinction/recolonization, the site-frequencyinto ki boxes; see (5). With intermediate rates of extinc-

tion/recolonization, the size distribution will be some distribution becomes U-shaped. When migration is in-
frequent, typically only one or zero migration eventskind of mixture of these two extremes. The results pre-

sented below show that these two extremes produce will occur during the scattering phase of the sample.
The genealogies with a single scattering-phase migra-very different patterns of polymorphism.

When this instantaneous scattering phase has been tion event will have a long internal branch, and it is
most likely that this branch separates a single sequencecompleted for every deme, the n� � Rd

i�1 n�i lineages are
thrown together into the usual coalescent process; for from the rest of the sample. This U-shaped distribution

under low migration appears to be a general propertyexample, see the routine make_tree in Hudson (1990).
After a tree is generated, a Poisson-distributed number of subdivision with migration because it also occurs in

a continuous-habitat model (J. F. Wilkins, unpublishedof mutations, with mean Ttot�/2, are placed randomly
on its branches, where Ttot is the total length of the tree results) and when the number of demes in the popula-

tion is small (results not shown).measured in units of 2Ne generations. According to the
infinite-sites mutation model (Watterson 1975), each Figure 4b shows the site-frequency distribution ex-

pected when there is no migration among demes. Inof these mutations produces a polymorphic site. The
infinite sites mutation model is a good approximation this case, as the rate of extinction/recolonization in-

creases, the distribution develops a mode for i � 1. Thisfor mutations in DNA sequences as long as the mutation
rate per site is small. It is important to note that this results from the fact that k � 2 in the simulations that

produced Figure 4b. As E increases, the scattering phasecould be replaced by any other neutral mutation model
if needed. There is no recombination in the program, becomes equivalent to throwing 10 balls into two boxes,



902 J. Wakeley and N. Aliacar

demes will reveal certain aspects of population structure
but not others. Genetic variation will be shaped by the
overall rates of migration, extinction/recolonization,
and the number of colonists for the sampled demes
only and by the scaled mutation parameter, �, which
hides all other aspects of demography. In particular,
the geographic structure represented by the rates of
movement of lineages, mij and eij, among the different
classes of demes will not be discernible if the number
of demes in each class is large. For this result to hold,
the only restrictions on the movement matrix, Q , are
that lineages can get from any deme class to any other
given enough time and that there is some chance a
lineage does not switch deme classes in a single genera-
tion, i.e., that Q is ergodic. Even highly structured popu-
lations, such as those with stepping-stone movement
among deme classes (Kimura and Weiss 1964), meet
these simple criteria.

Analysis shows that samples from demes with higher
rates of migration will be more polymorphic than sam-
ples from demes with lower rates of migration. Demes
with higher rates of extinction/recolonization will be
more polymorphic if the number of colonists is not
small; otherwise they will be less polymorphic. These
effects are shown in Figure 3. If demes vary in their
characteristics, it is possible to observe a great reduction
of variation within sampled demes even if the variability
between demes is high. This may explain the recent
observation of such a pattern, by Liu et al. (1998), in
samples from populations of the plant Leavenworthia.
In a large metapopulation, no structure will be visibleFigure 4.—The expected site frequency distribution in a

sample of 10 sequences from a single population, as a function in between-deme comparisons. This is analogous to the
of the rates of migration and extinction/recolonization. The (total) lack of geographic structure in data under the
vertical bars represent the proportion of polymorphic sites strong-migration limit of Nagylaki (1980) and Noto-expected to be segregating at various frequencies in the sam-

hara (1993). However, the source of the limit here isple. In b and c the propagule size is equal to 2.
that there are a large number of demes within each
class, while the values of M and E per deme are not
necessarily large.

the result being a binomial (n � 10, p � 0.5) distribution It is interesting to note that a kind of isolation by
for the “sizes” of the two collecting-phase lineages. For distance could be observed under the present model.
other values of k, the sizes will be multinomial, and the To see how this might develop, imagine a species with
mode will be for site frequencies around n/k. While a two types of demes: small and large. For simplicity, as-
U-shaped distribution of unfolded site frequencies can sume that every deme accepts the same fraction of mi-
result from positive Darwinian selection, e.g., see Fay grants and has the same chance of extinction each gen-
and Wu (2000) and Kim and Stephan (2000), this ap- eration. Thus, we have mij � m and eij � e for all i and
pears to be the first report of exchangeable lineages of j. The smaller demes will have smaller values of M and
a mode in the site-frequency distribution for anything E than the larger demes and will thus be less polymor-
other than the singleton-polymorphism (i � 1) class. phic. For example, if the smaller demes have M � E �
Figure 4c shows that when both migration and extinc- 0.5 and the larger demes are 10 times larger (M � E �
tion/recolonization occur, a mixture of the two above 5.0), and if � � 10.0, then the average number of pair-
cases can result, and this can lead to a trimodal distribu- wise differences within small demes will be 4.94, and
tion of unfolded site frequencies. the average number of pairwise differences within large

demes will be 7.74. These values are obtained from (25)
with the additional assumption that k � 2 for all demes.

DISCUSSION
The average number of pairwise differences between
demes will be equal to �, or 10.0 in this case. Then allThe above work shows that samples of genetic data

from a metapopulation that contains a large number of that is needed to create a pattern of isolation by distance
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would be for the larger demes to occupy larger geo- population coalescent model. As with mutation, there
will be no recombination events during the scatteringgraphic ranges and for the geographic distances be-
phase if the total population recombination rate is fi-tween demes to be larger than the average geographic
nite. That is, in the same way mutations are modeleddistance of within-larger-deme pairwise comparisons.
we assume that the population recombination rate, R �Thus, while the model loses some of its structure in
4Ner, where r is the rate per locus per generation andthe large-number-of-demes limit, a correlation between
Ne is given by (23), is finite. Similar to the case of partialgeographic and genetic distances can develop under,
selfing (Nordborg 2000), the observable recombina-arguably, reasonable biological conditions. This result
tion rate will be smaller than this actual recombinationdoes not depend strongly on the particular values of M,
rate. When a recombination event occurs in some col-E, and k used here; e.g., if E � 0.0 for all demes, the
lecting-phase lineage, it will split it into two lineages.only differences are that the within-small-deme average
The two lineages will necessarily be in the same deme,becomes 4.90 and the within-large-deme average be-
so there is some chance that they coalesce and the eventcomes 9.0.
is erased. The relationship between the actual and ob-It should be possible to estimate the relative contribu-
servable recombination rates in this case istions of migration vs. extinction/recolonization using

DNA sequence data, due to the dramatically different
effect these have on the frequencies of the segregating Robs � R�

K

i�1

fi 	 1 � E/k
2M � 1 � E
i

. (28)
bases at polymorphic sites (Figure 4). The migration
site-frequency distribution can be U-shaped, and this
could be tested using Fay and Wu’s (2000) statistic, In words, relative to mutation, the recombination rate
which was designed to detect signatures of positive se- is decreased by a factor that is equal to the average
lection. In contrast, the extinction site-frequency dis- chance that two ancestral lineages in the same deme
tribution can have a mode for middle-frequency poly- either coalesce before one of them migrates or have a
morphisms, which is quite unusual for exchangeable common ancestor during an extinction/recolonization
coalescent models. Note, however, that the colonization event. This reduction in R will cause linkage disequilib-
events in a metapopulation violate a fundamental prem- rium among sites to be elevated in addition to that
ise of the coalescent: that no more than one common accrued more directly during the scattering phase via
ancestor event can happen in a single generation. Thus, within-deme coalescent events.
we should expect to see an identical middle-frequency The metapopulation model presented here has so far
mode in the site-frequency distribution in samples from not addressed some well-known features of such species.
species that recently experienced brief severe bottle- The assumption that a recolonized population regains
neck events. Coalescent models of bottleneck events, in its previous size in a single generation is not realistic.
which � becomes small for some period of time, never It is known that delayed or slower growth can change
predict a nonsingleton mode in the site-frequency distri- some results (Whitlock 1992; Ingvarsson 1997). The
bution. Instead, the distribution simply flattens out as effect here would be to increase the number of coales-
a coalescent bottleneck becomes more severe. Thus, it cent events during the scattering phase. Another point
will sometimes be inadequate to use Kingman’s coales- is that there is probably an inverse relationship between
cent to model population bottlenecks. the size of a deme and its probability of going extinct

A noteworthy consequence of there being a large (Foley 1997). In fact, the present model allows for this
number of demes in a population is that if the popula- possibility already. One would simply have to add the
tion mutation parameter, �, is finite, then the demic assumption that deme classes with higher rates of extinc-
mutation rates, 4Niu, will be vanishingly small. Con- tion/recolonization also contained smaller-sized demes.
versely, if the demic mutation rates are not small, so Finally, one of the major concerns in metapopulation
that mutations occur during the scattering phase, then studies is whether the population under study is at equi-
the population mutation rate will be infinite. Metapopu- librium or not. The present work shows that if there
lation studies often presume the former (Hanksi 1997). are a large number of demes in the population, changes
In fact, the latter can often be rejected using data be- in demography over time will be manifest simply as
cause it predicts complete saturation (i.e., multiple mu- changes in the effective size of the population. If the
tations per site) in among-deme samples. When the changes occur on a longer timescale than the scattering
latter case does hold, then the approach of Slatkin phase, they will affect only the collecting phase and
(1982), which assumes an infinite-allele mutation model, can be modeled as a change in effective size of that
could be used. In this model, migration and extinction/ coalescent process. Consequently, using samples of ge-
recolonization act like mutation, because every lineage netic data it will be impossible to distinguish between
that enters the collecting phase is guaranteed to repre- changes in population number and changes in the rates
sent a unique allele. and patterns of migration and extinction/recoloniza-

tion as explanations of variable effective size over time.Recombination could easily be included in this meta-
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CORRIGENDA

In the article by Fernando Pardo-Manuel de Villena and Carmen Sapienza (Genetics 159:
1179–1189) entitled “Female Meiosis Drives Karyotypic Evolution in Mammals,” it should be noted
that the authors made equal contributions to the work.

In the article by Mikkel H. Schierup, Barbara K. Mable, Philip Awadalla and Deborah
Charlesworth (Genetics 158: 387–399) entitled “Identification and Characterization of a Polymor-
phic Receptor Kinase Gene Linked to the Self-Incompatibility Locus of Arabidopsis lyrata,” on page
389, line 10 of the paragraph entitled “Identification and sequencing of Aly13 subtypes:” the SLGR
primer sequence is: ATCTGACATAAAGATCTTGACC.

In the article by John Wakeley and Nicolas Aliacar (Genetics 159: 893–905) entitled “Gene
Genealogies in a Metapopulation,” Figure 2 should appear as it does here:
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