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Abstract. A number of different migration and isolation models of population subdivision
have been studied. In this paper I analyse a general model of two populations derived from
acommon ancestral population at some time in the past. The two populations may exchange
migrants, but they may also be completely isolated from each other. [ derive the expectation
and variance of the number of differences between two sequences sampled from the two
populations. These are then compared to the corresponding results [rom two other much-used
models: equilibrium migration and complete isolaticn,
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1. Introduction

Populations in nature may rarely conform to the commonly used Wright-Fisher
model (Fisher 1930; Wright 1931). One of the most prevalent deviations is when
a population is divided into a number of subpopulations between which there may
be genetic exchange. A number of different migration models have been studied,
including the infinite island model (Wright 1931), the finite island model (Maruyama
1970), and the stepping-stone model (Kimura and Weiss 1964). The two-population
migration model, in particular, has received a lot of attention (Nei and Feldman
1972; Li and Nei 1977; Tajima 1989). In all of these migration models, the rate of
migration is generally assumed to have been constant for a long period of time,
so that the populations are in equilibrium with respect to mutation and random genetic
drift.

Two subpopulations can resemble each other either as a result of migration between
them or because they have recently descended from a common ancestral population.
Thus a different kind of model of population subdivision is one where there is no
genetic exchange between subpopulations. In this case, which can be called isolation,
the differentiation or resemblance of subpopulations is due solely to divergence after an
isolation event. The two-population version of this class of models is the best studied
(Takahata and Nei 1985; Hudson et al. 1987). This is a nonequilibrium model, but has
often been compared to two-population equilibrium migration (Slatkin and Maddison
1989; Takahata and Slatkin 1990). In practice migration and isolation are quite difficult
to distinguish (Wakeley 1996a).

In this paper I analyse and present some results for a general model of population
subdivision. The two-population isolation model and the two-population equilibrium
migration model are special cases of this. The results presented are the expectation and
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2. Model and statistics

In this model g single, random-mating population splits into two subpopulations
which, after the split, exchange migrants. The two descendent populations are assumed
to be each of haploid effective size N, and the ancestral population is assumed to be of

sequence per generation, and according to the infinite-site mode] of Kimura (1969),
Further, all mutations are of negligible selective advantage or disadvantage, i.e.
they are neutral (Kimura 1968). Generations are nonoverlapping and it is assumed
that m and I/N are small €nough that terms containing m?, m/N and 1 /(N?) can be

numbers of differences between two randomly sampled Sequences. If the two sequences
are from the same population, call thege quantities E(k,.) and Var (k;), and if the first
S€quence is from one population and the second sequence is from the other, call them

of pairwise differences within and between populations in samples of more than two

Sequences. However, it ig Important to note that Var(k,,) and Var(kij) apply only to
samples of size two (Tajima 1983).

3. Theory and results

Tepresented as (AA).

Thus, with the assumptions outlined above, the history of a sample of two sequences
during the last T x 2N generations can be described by a three-state Markov process.
One of the States, (AA), is absorbing and the other two are transient. Let P (1) be the
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following matrix of single-generation transition probabilities.

Previous state

AA AlA  (AA)
AA |[1—-1/N-2m 2m 1/N
Current state  A|A 2m 1-2m O (1)
(AA) 0 0 1

Thatis, P,_, ;(1) is the probability that a sample, currently in state i, wasiin state j in the
previous generation. Then, P, _, (1) is the same probability, but for generation ¢ in the
past, and P(t) is the t-generation transition matrix.

The assumption of a Markov process means that P(t) is equal to [P(1)7". This can be
represented in spectral form as

P(t) = Aoroly + Ay xy Iy + 451,15, (2)

where the A’s, r’s and I's are the eigenvalues and right and left eigenvectors of P(1)
(given in the Appendix), which are normalized so that Lir,= 1. It is convenient to
use a continuous-time approximation to equation (2). Let ¥ be equal to 1,—1.
Then,

P(f) = e%r I + eMir I, + e, I (3)

approximates equation (2) very well, as long as ¥ is small. Here A} is of the same order
of magnitude as m and 1/N.

In calculating E(k;;,) and E(k;;), the expected times back to the common ancestor of
two sequences must be computed. These expected times, which can be called E, , (t) and
E, (1), will in general differ depending on whether the sample is presently in state AA
or A|A. They are given by

Ean(t)= f TG @)
0

and

EA|A(t) = J‘w th|A(t)dt’ (4)
0

where f,,(t)dt and f, ,(1)d are the probabilities of coalescence into a common an-
cestral sequence at time ¢ in the past. Once these are calculated, then E(k;;,) = 2uE, , (t),
as does E(k;;,), and E(k;;) = 2uE, , (1). ‘

For two sequences to have a common ancestor in the immediately previous
generation, they must both be in the same population now. For generation ¢ in the past,
the probabilities of this are P, , 4, (t) and P, 5, (t). When two sequences are in the
same population, the probability of a coalescent event is just P, a-@a)l)or 1/N. Thus
the probabilities of coalescence at generation ¢ in the past, starting in states AA and
A|A, respectively,are P, _, , o (1)dt/N and P aa—aa(f)dt/N. Switching variables, so that
time, now called 7, is measured in units of 2N generations,

fAA(T)d'C = 2PAA—»AA(T)dT (6)
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and

Sanp(@)dr = 2Py p - aa(D)dr. (7)

Equations (6) and (7) apply only to the portion of the sample’s history after time T
According to the model, before T the two subpopulations were actually a single

T
WOES 2[ TP yaan(r)dr + PAA—»{AAorAfA}(T)[T +1] (8)
0
and

T
Eya(n)= zf P panaa(®)dr + PAJA-»{AAorA[A}(T)[T +11. ©)
0

The second terms in equations (8) and (9) are just the probabilities that the two
Séquences have not coalesced by time T, in the past, multiplied by the expectation of 7,
given that this is the case. The probabilities in equations (8) and (9) are got using
equation (3), together with the values given in the appendix, and after a change of
variables from ¢ to 1,

Evaluating the integrals in equations (8) and (9) and simplifying,

1

T lexp{—(1+2M - /1 +4M*) T}
/ +

Ea(m)=1—

—exp{~(1+2M + /11407 T} (10)

and

1
EAIA(T) =1 + m

1 1 _
_m[(H— 1_}_4Mz)exp{~(1-!- 2M~«/1+4M)T}
1
- - 1+4M3T
-I-(l 1+4Mz)exp{ (1+2M + /1 + 4Mm7) }]

(11)

are the expected times to common ancestry of two S€quences sampled from the same
and from different populations respectively.

The variances of the times to common ancestry are derived by calculating E, , (12)
and E, , (¢2). Analogous to equations (8) through (11)

2

T
Eu(@®)= 2J‘ TzPAA-»AA(T)dT + PAA—»{AAorA]A}(T) [T2+2T + 2] (12)
0
and

T
Eju(t®) = 2[ r"“PAIA_,AA(t)dT + PA|A~>{AA0;A|A}(T)[T2 +2T+21  (13)
0
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become

1
E N=24+—
Aa(T?) +2M

_|:1+2M(3+2T)+«/1+4M2]

4M. /1 +4M?

x exp{ —(1+2M — /1 +4M*)T}
N [1+2M(3+2T)—J1+4M2J

4M /1 + 4M?
xexp{—(1+2M+ /1 +4M*) T} (14)

and

EAlA(12)=2+EM + m—z

[2M2 +(1+3M+2MT)(1 - /1 + 4M2}
aM* /1 + 4M?

xexp{ —(1+2M —./1+4M?* T}

N [2M2 +(1+3M+2MT)(1 + /1 +4M2}
AM?2. /1 + 4M?>

xexp{—(1+2M +./1+4M*T}. (15)

The variances of times to common ancestry for a single pair of sequences are, then,
Var,, (1) = E,,(t*) — [E A (r)]* and Vary 4 (1) = By 4 (1%) — [E 4 (1) 1%

The total length of the genealogy of the two sequences is 27, which has mean and
variance 2E(7) and 4 Var(t) respectively. Because u is small, the number of mutations
in one time interval, i.e. 2N generations, is Poisson-distributed with mean 2Nu.
Then, since the total number of mutations on the entire genealogy is just the sum of
these numbers over all intervals, the mean numbers of differences between the two
sequences are E(k;; ) = 0E,,(7) and E(k;;) = 0E, , (1), where 0 = 4Nu. Furthermore,
the variances of the numbers of differences are Var(k;,) = 0E, ,(t) + 6*Var, ,(t) and
Var(k;;) = 0,4 (1) 4+ 6 Var, (7).

As mentioned above, the present model has the two-population isolation and two-
population equilibrium migration models as special cases. Of course, a single random-
mating population is another special case. Thus, when T is equal to zero or as
M approaches infinity, E(k;,) = E(k;) =0, and Var(k,,) = Var(k,;) = 6 + 62, which is
the single-population result (Watterson 1975). For a given value of T, as M approaches
zero, E(k;;) = 0(T + 1) and Var(k;) = 6(T + 1) + 62, e.g. Takahata and Nei (1985), and

(1+e727)
2

E(k;)=0 (16)

and

Var(k,) = 64 +;~2T) + 62 [(1 _Zw) +(T+ 1)e'”} (17)




86 John Wakeley

which are the values expected in the resulting isolation mode]. Equations (16) and (1 7) differ
from the corresponding expressions in Takahata and Nei (1985) because here each des-
cendent population is of size N and the ancestor is of size 2N, whereas in their model both
are of size 2N so the single-population result obtaing, For a given value of M, as T
approaches infinity, E(k;)=6and E(k;;) =0+ 0/2M) (Slatkin 1987; Strobeck 1987), and

0
Var(k,-l-') =0 <1 +0+ m) (18)
and
Var(k,)=0(1+0+ 0 O (1,8 19
arlky) = ( * +2M>+m( +m> (19

(Wakeley 1996b), which are the results for two-population equilibrium migration. The
behaviour of E(k;.) and Var(k;;.), and E(k;) and Var(kij), over ranges of M and T, is
shown in figures 1 and 2.

4. Discussion

It is clear from equation (10) and figure 1 that E(k;.) depends on both M and T in addition
to 0. This contrasts with the results of Slatkin (1987) and Strobeck (1987) who found that
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Figure 1. lJ‘E(kﬁ,) and Var(kil.,) plotted for a range of T and M, when 0 is equal to one. Note
that the vertical axes are different in the two panels.
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Elk;)
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Figure 2. E(ki Jand Var(k.)plotted fora range of T and M, when 6 is equal to one. Note that

i

the vertical axes are different in the two panels, and that horizontal axes are switched relative
to those in figure 1.

E(k;)=0 and is, thus, independent of M in symmetric migration models at equilibrium.
Figure 1 shows that, for any M greater than zero, there is a dip in E(k;) at low values of 7.
Then, as T increases, E(k;;) approaches its asymptotic value of , which in this case equals one.
E(k;) is smaller over a certain range of T owing to an increased chance of occurrence of
a within-subpopulation coalescent event more recent than any migration event, but fewer than
T x 2N generations ago, when the original population split. This effect lessens as either T or M,
or both, become large. The same phenomenon accounts for the decrease in E(k;, ), for any
positive T, as it approaches equation (16) as M decreases to zero.

The variance of k; shows both of these behaviours as well, but also exhibits a third
phenomenon. For a given large value of T, there is a peak in Var(k,,) as M increases from zero.
This can be understood as a balance of two forces. First, as T gets large, Var(k,,) approaches
expression (18) and so should increase with 1/2M). However, for any T, Var(k,, ) will converge
to expression (17) as M goes to zero. For large T(> 2 in figure 1), expression (17) approaches the
single-subpopulation value of /2 + (6/2)*. These results for E(k;,) and Var(k,,), especially for
small M, demonstrate how fragile the equilibrium results really are.
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The properties of E(k,;) and Var(k, ;) pictured in figure 2, are less complicated. Noti_ce 't!1at
the M and T axes are switched in figure 2 relative to figure 1. E(k;;) approaches its limiting
values, which were discussed above, monotonically. Var(k;;) displays some more interesting
behaviour. As with Var(k;, ), the peak here is explained by a balance between the approaches to
two limiting values: expression (19) as T goes to infinity and O(T + 1) + 6* as M goes to zero.
Again, the behaviour for small M is very different from that under equilibrium migration,

The model analysed above has been called a general model throughout. However, much
more general models are possible, including ones with differing subpopulation sizes and
asymmetric migration. Further, only two subpopulations were considered here while popula-
tions in nature may seldom comprise just two groups. In fact, Takahata (1995) has recently
proposed a very general model that is similar to the present one, but which allows for any
number of subpopulations. In addition, his model includes the possibility of extinction and
recolonization of subpopulations, as well as a change in population size at the time the
subpopulations were formed. However, Takahata (1995) was concerned only with expected
times to common ancestry, and so did not investigate the variances. The more restricted model
used here was chosen so that its relationship to the two-population isolation and two-
population equilibrium migration models could be illustrated.
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Appendix

The eigenvalues and normalized eigenvectors of P(1).

2,2

Go=1, ilzl_(1+4Nm+«/1+16Nm)

2N ’
;L7=1~(1+4Nm~,/1+16N2m2)

- 2N

r,=(1,1,1)

. _(~(1+</1+16N2m2) Nm
=(—TV_ 7T hvm)

1 C+ > C+ 3

v (~(1 —+/ 1+ 16N?m?) 4Nm

5 = - —_—

= C. C C_ >0

C.=1+16N?m?>+ (1 +4Nm),/1 + 16N 22

I, =(0,0,1)

13_(—%1+4Nm+u/1+16N%w3 (0 —4Nm— /11 16N?m?)
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