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Two demographic scenarios are considered: two populations with migration and
two populations that have been completely isolated from each other for some
period of time. The variance of the number of differences between pairs of sequences
in a single sample is studied and forms the basis of a test of the isolation model.
The migration model is one possible alternative to isolation. The isolation model is
rejected when the proposed test statistic, which involves the variances of pairwise
difference within and between populations, is larger than some critical value. The
power and realized significance of the test are investigated using simulations, and
an example using mitochondrial DNA illustrates its application.  © 1996 Academic

Press, Inc.

1. INTRODUCTION

1.1. A DNA Data Set

In a recent study of mitochondrial DNA in the threespine stickleback,
Orti et al. (1994) sequenced 747 base pairs of the cytochrome b gene in 36
individuals from samples covering much of the range of this widespread
species. This revealed the existence of two major clades, one comprising
mainly western Pacific samples (Japan) and the other comprising mainly
northeastern Pacific samples (Alaska and British Columbia). Nested within
the northeastern Pacific clade was a group containing samples from the
northern Atlantic and one haplotype from Los Angeles, California. The
western and northeastern Pacific clades were separated by a minimum of
18 substitutions, yet one haplotype from British Columbia was identical to
a common Japanese haplotype and two Alaskan samples clustered with the
western Pacific clade.

From this pattern, Orti et al. (1994) inferred two major demographic
events: a recent origin of Atlantic stickleback populations from a lineage
resembling the Los Angeles sample, and an ancient isolation and
divergence between western and northeastern Pacific sticklebacks followed
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by secondary contact. The present analysis focuses only on the latter com-
parison; the sample from Los Angeles and those from the Atlantic are
omitted. Specifically, the hypothesis that the patterns of divergence within
the Pacific are due solely to the isolation and subsequent divergence of
western and eastern populations is tested. Under this hypothesis, haplotypes
found in both areas represent retained ancestral lineages. Orti et al. (1994)
did not consider this hypothesis, but the result of the test is interesting. It
illustrates the application of the method developed here and contributes
something to our understanding of stickleback historical biogeography in
that one hypothesis, at least, can be rejected with statistical confidence.

1.2. Quantifying Divergence within and between Populations

There are two commonly-used methods of summarizing the extent of dif-
ferences among sequences in a sample: counting the number of segregating,
or polymorphic, sites, and calculating the average number of pairwise dif-
ferences. Because, for the models considered here, the relationship between
the number of segregating sites and demographic or genetic parameters is
not well defined, e.g., Tajima (1989), the present work focuses on pairwise
differences.

If a number of sequences, n, are sampled from a population and k;; is
the number of differences observed between sequence i and sequence i’,
then

LY ke (1)

is the average number of pairwise differences. The statistical properties k
are well known. For a diploid, randomly-mating, population of constant
effective size N, Tajima (1983) showed that the expectation of k is 4Nu, or
0, and the variance is

_ n+1 +2(n2+n+3)
T 3(n—1) In(n—1)

Var(k) 02, (2)

where u is the mutation rate in a neutral, infinite sites model with no
recombination (Kimura, 1969; Watterson, 1975).

The present work concerns samples from a sub-divided population.
When a number of sequences, ny and ny, are sampled from two sub-pop-
ulations called X and Y, the divergence among sequences within each pop-
ulation are calculated using (1), separately for X and Y. These quantities
have been referred to as dy and dy (Nei and Li, 1979; Takahata and Nei,
1985), and this notation is followed here. Accordingly, from this sample we



TESTING ISOLATION 371

can also compute the average number of pairwise differences between
sequences from different populations,

1 ny ny

2 X Ky (3)

XNy ;1=

dXY:

where k,; is the number of differences observed between sequence i from
population X and sequence j from population Y. In addition,

dy+dy

d:dXY_ )

(4)

can be used as a measure of the excess number of nucleotide differences
between the two populations, e.g., Nei and Li (1979).

1.3. Two Contrasting Explanations

We can calculate dy, dy, and dyy (and thus d) from any sample of
sequences from two populations. For the data described above, ny=14,
ny=9,dy=81,d,=19, and d,=16.1, so d=11.1, where populations X
and Y are the eastern and western Pacific populations, respectively. In
turn, by assuming some population genetic model for the two populations,
we can use the observed values of dy, d,, and dy, to estimate its para-
meters. However, since many different models can give identical predictions
for dy, dy, and d,, we cannot use these to distinguish between alternative
explanations for observed levels of polymorphism within and between
populations.

Migration Isolation

A A B B A A B B

FiG. 1. Depiction of the migration and isolation models. Thick lines represent population
boundaries, with dashes indicating that gene flow is possible. Thin lines show one possible
genealogical history of a sample of two sequences from each population.
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Figure 1 depicts two such models. The first, labelled “Migration” in
Fig. 1, is a two-population version of the finite-island model (Kimura and
Weiss, 1964). The populations are assumed to have been exchanging
migrants at a constant rate for a long enough time that the expectations of
dy, dy, and d are close to their equilibrium values. Takahata (1983) has
studied the rate of approach to equilibrium for the finite-island model.
Migration rates are assumed to be symmetric and equal to m per haploid
individual per generation. Under the second model, labelled “Isolation” in
Fig. 1, the present populations are assumed to be descended from a single
population that split into two at some time, ¢ generations, in the past. In
both models, there is random mating within each population, generations
are nonoverlapping, and the effective sizes of each population have remained
constant through time.

Below, migration and isolation are juxtaposed as, possibly, equally good
explanations of patterns observed in sequence data. Following a demon-
stration that neither average pairwise differences nor genealogical structure
will suffice to distinguish migration from isolation, it is shown that the
variances of differences among pairs in a single sample can be used for this
purpose. From that point on, the isolation model is considered the null
hypothesis, and a test of the model is developed. Equilibrium migration is
just one of many possible alternatives, but it is the one of interest here. The
test of isolation is designed with this alternative in mind.

1.4. The Expectations of Pairwise Differences

By making some further assumptions, it is straightforward to show that
these two models are indistinguishable using dy, dy, and dy,. The first
assumption is that all variation is neutral. The second is that the sequences
under consideration are long enough that every new mutation occurs at a
previously unmutated site. The rate of mutation is u, per sequence per
generation. The third assumption is that there is no recombination within
the sequences. The fourth is that, for the isolation model, each of the three
populations, the ancestor and the two descendents, is of diploid (haploid) effec-
tive size N (2N), whereas, for the migration model, each of the two popula-
tions is of diploid (haploid) effective size N/2 (N). The final assumption is
that the sequences are sampled randomly.

With these assumptions, it has been known for some time that E(dy) =
E(dy)=0 and E(d,y) =0+ 0/(2M) in the migration case, where 0 =4Nu
and M =2Nm (Nei and Feldman, 1972; Li, 1976; Griffiths, 1981; Slatkin,
1987; Strobeck, 1987; Notohara, 1990; Hey, 1991). Thus, E(d)=0/(2M)
for this model. Under isolation, E(dy)=E(dy)=0 and E(dy,)=0+ 0T,
where T=1/(2N) (Kimura, 1969; Watterson, 1975; Li, 1977; Gillespie and
Langley, 1979; Nei and Tajima, 1981; Takahata and Nei, 1985), so that
E(d)=0T. The assumptions made above provide a basis for comparing
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migration and isolation which is used below. That is, when T=1/(2M)
these two models give identical values for E(dy), E(dy), and E(dyy).
However, this also means that when we sample some sequences from two
populations, we can fit either model to the observed values of d, dy, and
dyy, and estimate the parameters § and M or T, but we cannot use d, dy,
and d, to distinguish migration from isolation.

1.5. The Probabilities of Genealogies

The genealogy of a sample contains information about demographic
history (Slatkin, 1989). However, recent work indicates that topological
relationship, by themselves, will also not serve to distinguish migration
from isolation (Slatkin and Maddison, 1989; Takahata and Slatkin, 1990).
Figures 2 and 3 illustrate why this is true. Figure 2 shows the four possible
topologies for a sample of two sequences from each of two populations.
After graphs shown by Tajima (1983) for the isolation model and
Takahata and Slatkin (1990) for the migration model, Fig. 3 plots the
probabilities of the genealogies shown in Fig. 2 over a broad range of
values of M or 1/(2T). That is, along the horizontal axes in Fig. 3, the
expectations of dy, dy, and d, are the same for both models.

The similarlity between these two sets of curves explains why Slatkin and
Maddison (1989) and Takahata and Slatkin (1990) did not find a way to
distinguish migration from isolation using only genealogical structure. The
relationships among the four probabilities are quite similar over the entire
range of M or 1/(2T). As the migration rate decreases, or, equivalently,
as the time of separation increases, the probability of intrapopulation
monophyly approaches one. At the other extreme, all four probabilities
converge on the values expected in a single population.

A A
s A 5 A
B B
B B
A A
c B d B
A A
B B

FiG. 2. The four possible topologies for a sample of two sequences from each of the two
populations.
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FiG. 3. The probabilities of each of the four topologies shown in Fig. 2 under migration
and isolation. Along the horizontal axes, the expectations of dy, dy, and dyy are identical for
both models. The logarithms are base 10.

1.6. The Variances of Pairwise Differences

Wakeley (1996) showed that the variances of d, dy, and dy, are greater
under migration than under isolation, indicating that a test to distinguish
these two situations could be developed. However, the variances derived by
Wakeley (1996) under migration and by Takahata and Nei (1985) under
isolation are not immediately suitable for such a test. They are the varian-
ces of dy, dy, and dy, expected among identical-size samples taken from
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several independent populations that all have the same evolutionary
parameters, i.e., identical values of @ and M or T.

Except when the effective population size is very small, these are also the
variances expected among unlinked loci in a sample from one population,
since the histories of unlinked loci are essentially independent (Griffiths,
1981; Hudson, 1983). However, even if data from several loci were
available so we could calculate such variances, these previously published
formulas would apply only if the loci all had the same underlying values of
6 and M or T. This is true also of the variance for a single, randomly mat-
ing, population given by (2). Thus, the method introduced here is based on
the variance calculable from a single sample of sequences at a single locus.

2. METHODS

2.1. The Variance among Pairs in A Single Sample

There are n(n—1)/2 nonidentical pairwise comparisons possible among
sequences in a sample of size n. From these, we can calculate the average
number of pairwise differences, as in (1), and we can calculate a variance

s?= Z ) Z (ki — k), (5)

where k is defined by (1). This quantity is similar to the variance proposed
by Sved (1968), which was also considered by Brown et al. (1980) and by
Hudson (1987). The difference is that those authors sum over all n? possible
pairs.

A somewhat simpler form of (5), from which the expectation of s> can
be computed easily, is

s 2 n—1 n 5 5
s _<n(n_1) Yy ¥ k,.,.,>k. ()

i=1i"=i+1

For a single, randomly mating population of constant effective size and in
which all variation is neutral,

E(s%) = E(k2,) — E(k?) (7)
= Var(k,.) — Var(k). (8)

Equation (7) is true because E(k?) is identical for every pair of sequences.
Since E(k; )= E(k), (8) follows by the addition of E(k)? to and the sub-
traction of E(k;.)* from (7). The second term in (8) is Tajima’s (1983)
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variance, presented above as (2), and the first term is 0 4+ 0* from the same
formula with n=2. Thus,

2n—=2), In*—1ln—6
B =30 oy © ©)

is the expectation of (5) for a constant-sized, neutral population.

Unlike Var(k), when n=2, E(s*) equals zero since we cannot calculate
a variance from only one pair of sequences. The statistic, 52, quantifies the
variation in coalescence times in a given sample. It makes use of additional
aspects of a sample’s genealogy than the mean value, k, thus increasing the
amount of information we can glean from a sample of sequences.

The method is used to produce (9) can be applied to the migration and
isolation models as well. For populations X and Y, (5) through (8) apply
directly, the only differences being in notation (dy or d, instead of k) and
that the variances derived by Wakeley (1996) under migration and by
Takahata and Nei (1985) under isolation have to be used in the analogue
of (8). These intrapopulation measures are referred to as s3 and s3. For
interpopulation differences, define

1 ny ny

Y X (ky—dyy) (10)

NxNy;—1 =1

2 __
Sxy=

which, by the same logic, has expectation Var(k;) — Var(dy).

Compared under migration and isolation, the expectations of s%, 53, and
s%y show a similar pattern to that reported in Wakeley (1996) for Var(dy),
Var(dy), and Var(dyy). For a given value M =1/(2T), all three statistics
are generally greater under migration than under isolation, the differences
becoming more pronounced as the migration rate decreases or, equiv-
alently, as the time of separation increases. As M increases (7" decreases),
all three converge on the values expected in a single, randomly mating pop-
ulation. Since s%, s%, and s%, measure the variance in times to common
ancestry among the sequences in a sample, this is equivalent to saying that
there is greater variance in coalescence times under migration than under
isolation.

Thus, 5%, 5%, and s%, can be used to distinguish migration from isola-
tion. Here, in coming up with a test, the isolation model is chosen as the
null hypothesis. Because s%, 53, and s%, are smaller under isolation than
under migration, it seems likely that their variances, or the variance of any
test statistic involving them, will also be smaller. A test of isolation will
likely have greater power to distinguish migration from isolation than one
where the null model is migration.
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2.2. A Test of the Isolation Model

A simple test would be as follows: for given values of ny, ny, dy, dy, and
dyy, reject isolation if s%, s3, and/or s3, are too large. However, the
strength of correlation between d, and d,, which estimate 6 in both
models, and s3, s3, and s3, makes this test ineffective. For example, in
the simulations below, under migration with §=10.0, M =0.5, and n, =
ny=10, the correlation between dy and s3 is 0.86 and the correlation
between d and 53, is 0.64. Similarly high values are found under isolation;
large values of the variances tend to be associated with large values of the
means. Using the above test, the null hypothesis of isolation is almost never
rejected, even when it is false.

The derivation of the expected covariances between dy, dy, or d,, and
any proposed test statistics involving s%, 53, or 5%, is impractical, given
the complexity of computing just Var(dy), Var(dy), and Var(dyy)
(Takahata and Nei, 1985; Wakeley, 1996). Thus, a large part of the present
work involved screening great numbers of possible test statistics for good
performance in simulations. Three classes of statistics were investigated:
ones related to correlation coefficients, ones involving ratios of observed
variances, and ones involving ratios of observed and expected variances.
Statistics related to the correlation coefficients of intra- and interpopulation
differences showed the best performance over a broad range of parameter
values for both migration and isolation. This regrettably ad hoc procedure
yielded some useful statistics, and the results for overall best one are
presented below.

The intra population coefficients of correlation, sy/dy and sy/dy, dis-
tinguished migration from isolation better than the interpopulation coefficient,
Syy/dyxy, when the migration rate was high or the time of separation was
short, but the opposite was true when the migration rate was low or the time
of separation was long. The weighted average of these quantities, where
each was weighted by the number of pairwise comparisons involved, per-
formed better than any of these quantities alone. A less intuitively obvious
statistic, sy, /k, where k is the average number of pairwise differences among
all sequences, always performed better than s,y /d yy.

The overall best statistic was

1 S s N
"= nX(nX—1)d—f(+ny(ny—1)i+2nxnyf, (11)

which is called ¥ below. It is worth noting that several other statistics
performed only marginally worse than ¥. In (11), n is the total sample
size, ny+ny, and sy, sy, and sy, are the square roots of s%, s3, and
sy, respectively. Figure 4 plots the approximate expectation of ¥ under
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FiG. 4. The approximate expectations of the test statistic, ¥, compared under migration
and isolation. These curves are approximate since they were obtained by simply replacing d,
dy, dyy, 5%, s%, and s%, in (11) with their expected values.

migration and isolation over the same range of parameter values used in
Fig. 3. Figure 4 shows that the values under migration and isolation
become increasingly similar as M or 1/(27) increases but diverge at the
other extreme, giving some indication of when the test might perform well.

2.3. Simulations: Power and Realized Significance

Simulations were done to assess the utility of the proposed test statistic,
¥, over a broad range of values of all relevant parameters. Three programs
produced all of the results presented below: one to simulate migration, one
to simulate isolation, and one to perform the test.

The isolation program was essentially the same as the routine “make_tree”
given in Hudson (1990), but with three populations (ancestral plus two
descendant) rather than one. The usual coalescent process proceeded inde-
pendently in each of the two descendant populations until time 7 in the
past, measured in units of 2N generations, when the remaining ancestral
sequences were joined into a single population. The migration program
followed the general approach outlined by Hudson (1983) for simulating
the genealogy of a sample when one of several possible kinds of events
might happen in any given generation. Here, those events were common-
ancestor events within each population and migration events. Both pro-
grams employed the infinite-sites mutation model with no recombination.

The program that performed the test took observed values ny, ny, dy,
dy, dyy, s%, 53, and s%, as input. It then estimated 0 as (dy+ dy)/2 and
T as 2d/(dy+dy) and simulated 1000 replicate data sets under isolation
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with those parameter values to determine the approximate 5% cutoff value
for ¥. The cutoff was then compared to the observed value of ¥, and the
null hypothesis rejected or not. If 4 was negative, T was set to zero. Since
¥ is undefined when either d or d, equals zero, all results are conditional
upon observing at least some variation in both populations.

The simulations comprised two steps. For a given set of parameter
values under migration or isolation, 1000 replicate data sets were generated
and dy, dy, dyy, 5%, 53, and s%, calculated from each. The test was then
applied to each of these 1000 data sets. The fraction of data sets for which
isolation can be rejected estimates the probability of rejection for each set
of starting parameters and for each underlying model. If the underlying
model is migration, this probability represents our power to distinguish
migration from isolation. If the underlying model is isolation, it represents
what can be called the realized significance of the test. Clearly, we want the
power to be as great as possible and the realized significance to be close to
whatever significance level is used, in this case 5%.

3. RESULTS

3.1. Performance in Simulations

Simulation results are presented in Figs. 5 through 8. These show the
power and realized significance of the test when the migration rate or time
of separation, the length of the sequences, the numbers of sequences sampled

0.5
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o Isolation
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= 0.3 {
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2
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Fi1G. 5. The power and realized significance of the test for varying levels of differentiation
between the two populations. For all points, E(dy) = E(dy) =10.0 and ny=n,=10. For the
migration model, the points left to right left correspond to M equals 2, 1, 1, 4, 1 and . For
the isolation model, 7 equals 1/(2M).
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FiGc. 6. The power and realized significance of the test for different values of the parameter
6 or 4Nu. For all points, E(d)=60 (M =0.5 or T=1.0), and ny=n,=10.

from each population, and the number of independent loci are varied. All
four figures have the point where E(dy)= E(d,)=10.0, E(d)=10.0, and
ny=ny=10in common. Error bars depict 95% confidence intervals for the
probability of rejecting isolation. For multiple loci, the sum of ¥-values was
used as the test statistic. The realized significance is close to 5% in every
case and is never much above this value, but the power to reject isolation
when migration is the true model varies substantially with all parameters.

Figure 5 shows that the power to reject isolation when the underlying
model is migration depends on the migration rate, rising from about
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FiG. 7. The power and realized significance of the test for different numbers of sequences
sampled. For all points, E(dy)= E(dy)= E(d) =10.0.
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FiG. 8. The power and realized significance of the test for different numbers of independent
loci examined. For all points and each locus, E(dy) = E(dy) = E(d) =10.0, and ny=n,=10.

13% when M equals 2 to about 35% when M equals § However, as the
migration rate decreases further, this trend reverses. Figure 6 shows that
the larger 6 is, which can be interpreted as increasing the sequence length,
the greater is the power to reject isolation. Figure 7 demonstrates a signifi-
cant increase in power with the number of sequences sampled from each
population. In Figs. 5, 6, and 7, the power to distinguish migration from
isolation never exceeds 40%. Figure 8 shows the effect of varying the
number of independent loci from 1 to 10.

3.2. Application to the DNA Data

The DNA data of Orti et al. (1994) give 5.0 as an estimate of § for the
sequences examined and 2.2 as an estimate of 7, the time of separation of
the western and the eastern Pacific populations, measured in units of 2N
generations. Also, for these data, s3 =824, s =12, and s%, =574, giving
a value if 0.82 for ¥. Recall that population X is the eastern Pacific and Y
is the western Pacific, ny=14, ny=9, d,=8.1, dy,=1.9, and d,=16.1.
Ten thousand replicate data sets, simulated under isolation using the
parameter values estimated from the data, indicate that the chance of
observing a value of ¥ greater than or equal to 0.82 is about 0.013. The
hypothesis that the isolation model can explain the similarities and dif-
ferences between these two populations is rejected.

4. DISCUSSION

For the same values of the average coalescence times, quantified by dy,
dy, and dy, under migration it is possible that both very recent and very
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ancient common ancestors of the sequences in the sample exist. Under
isolation, however, the range of possible coalescence times is restricted.
This is depicted in Fig. 1 and explains why statistics such as ¥, which
quantify the variation in times to common ancestry, are generally larger
under migration than under isolation and can be used to distinguish these
two demographic situations.

According to Fig. 4, the greatest difference between migration and isola-
tion should occur when the migration rate is very small or, equivalently,
when the time of separation is very large. At this extreme, however, Fig. 3
shows that the probability of intrapopulation monophyly (tree a in Fig. 2)
approaches one. When only a single migration event occurs, migration
would appear indistinguishable from isolation, so the increase in and sub-
sequent erosion of power, pictured in Fig. 5, occurs in spite of the great
differences in expectation for ¥ under migration and isolation.

Figure 3 shows that the probability of tree a approaches one more
quickly under isolation as 7 gets large under migration as M gets small.
When log [1/(27)] and log [ M ] equal —1, which is equivalent to T being
5 and M being 0.1, the chance of observing any of the trees b, ¢, or d is less
than 1% under isolation, but 19% under migration. In this range, a test
based only on the topology of the sample would have power comparable
to that of the present test. However, for the intermediate values of M and
T used in the simulations, Fig. 3 shows that topology alone will likely not
serve to distinguish migration from isolation.
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F1G. 9. The power of the test as a function of the minimum number of migration events
that can be inferred from the true tree relating the sequences. E(dy) = E(dy) = E(d) =10.0 and
ny=ny=10. A total of 1000 replicates were done and the numbers corresponding to each
point, from right to left, were 216, 400, 278, 93, and 10. Six migration events were inferred for
the remaining three replicates; isolation was rejected for one of these three (not shown).
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As expected from the definitions of s%, s3, and s3,, the present test
makes use of both the topology and the branch lengths of the sample
genealogy. Figure 9 shows the relationship between the power of the pre-
sent test and one measure of topological structure, the minimum number
of migration events that can be inferred from a genealogy (Slatkin and
Maddison, 1989; 1990). In producing Fig. 9, the true genealogy of each
sample was used rather than one estimated from the data, E(dy) = E(dy) =
E(d)=10.0, and ny=n,=10. With these parameter values, there is a clear
peak at two inferred migration events, i.e., trees similar to the one pictured
under “Migration” in Fig. 1. However, there is considerable power even for
trees showing intra population monophyly. It seems likely that, in this case,
isolation can only be rejected when there are multiple, undetected migra-
tion events which inflate s3 and/or s3.

Increasing the numbers of sequences from each population and surveying
multiple loci both increase the chance of there being more than one migra-
tion event in the history of the sample. While the effect of sampling more
loci appears stronger, the effect of increasing ny and n, is dramatic.
Figure 7 shows a nearly linear increase in power with the logarithm of sam-
ple size. This situation is quite unlike the problem of estimating the number
of heterozygous nucleotide sites, where a sample of 5 to 10 sequences is suf-
ficient (Tajima, 1983). The more sequences we sample, the more migration
events we can expect to detect and the greater chance we have of observing
genealogies that are inconsistent with the isolation model.

Here, migration was the only alternative model considered. In fact, the
test using ¥ is simply a test of whether the variances of pairwise differences
are too large relative to the average values for the isolation model to be
true. Other alternatives than equilibrium migration could lead to signi-
ficantly large values of ¥. These include, but are not limited to, balancing
selection at or near the locus under consideration and subdivision within
either the descendent or ancestral populations. Without outside informa-
tion, such factors cannot be discounted as causes of significant results.
Deviations from the model that this test should be robust to include
recombination, multiple mutation events at single sites, and any other fac-
tors that tend to decrease the variances of pairwise differences more than
they affect the means. Of course, such deviations will also decrease the
already low power of the test.

For the threespine stickleback, Orti et al. (1994) infer an isolation event
followed by secondary contact between western and eastern Pacific popula-
tions. Like migration, this historical scenario would also tend to inflate s3,
53, and 5%, relative to the simple isolation model. Stickleback demographic
history appears to have been influenced greatly by glaciations and the
existence of ice-free refugia during the Peistocene (Hocutt and Wiley,
1986). In addition, individuals have been observed in the open northern
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Pacific Ocean, suggesting that long-distance migration is possible (Quinn
and Light, 1988). To complicate matters further, sticklebacks display three
kinds of life histories—fully marine, resident freshwater, and anadromous—and
the western Pacific haplotypes that Orti et al. (1994) discovered in Alaska
and British Columbia were found only in freshwater habitats.

It is valid, then, to question the applicability of the migration model con-
sidered here to the threespine stickleback. When the present test is applied,
with migration as the null hypothesis, the chance of observing a value of
¥ greater than or equal to 0.82 is estimated to be 0.32. The data appear
consistent with the migration model. However, the test statistic, ¥, was
chosen to maximize performance under the null hypothesis of isolation
with migration as an alternative. There is no reason to suppose that ¥ will
be the best statistic for other purposes.

Both equilibrium and nonequilibrium processes seem likely to have
played a part in stickleback history. Given the low power of the present test
to simply distinguish migration from isolation, disentangling more com-
plicated demographic models may be quite difficult. Figure 8 implies that
the most important factor affecting our ability to distinguish between alter-
native models is the number of loci studied. However, the data that produced
Fig. 8 are the result of simulations done under unrealistic assumptions,
namely, that the loci are independent and that no intralocus recombination
occurs. Most genetic loci are found in the nucleus of cells and nuclear DNA
undergoes considerable recombination e.g., Schaeffer and Miller (1993).
Figure 8 implies that a full accounting of recombination in the development
of other tests, similar to this one, would certainly be worthwhile.

A program, written in the C programming language, that performs the test
introduced here is available from the author upon request. Please send an
electronic-mail address if you have one.
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