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The Variance of Pairwise Nucleotide Differences
in Two Populations with Migration
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The variances of three measures of pairwise difference are derived for the case of
two populations that exchange migrants. The resulting expressions can be used to
place standard errors on estimates of population genetic parameters. The three
measures considered are the average number of intrapopulation nucleotide differ-
ences, the average number of interpopulation nucleotide differences, and the net
number of nucleotide differences between the two populations. The expectations of
these statistics are previously known and suggest that they might be used to the
quantify the divergence between populations. However, the standard errors of all
three statistics are shown to be quite large relative to their expectations. Thus, our
ability to quantify divergence between populations with them is limited, at least using
available data. An analysis of mitochondrial DNA sequences from grey-crowned
babblers illustrates the application of the theory. The variances derived here for
migration are compared to previously published results for two populations that
have been completely isolated from one another for some length of time. All three
variances are greater under migration than under isolation, suggesting that a test
to distinguish these two demographic situations could be developed. � 1996

Academic Press, Inc.

1. Introduction

Understanding the demographic history of natural populations is of
fundamental significance in population genetics. The multitudes of DNA
sequence data currently being collected offer the hope of accurately quan-
tifying important genetic and demographic parameters. Of particular
interest are samples of multiple DNA sequences from single species, e.g.,
Edwards (1993), since the numbers of nucleotide differences and the
genealogies of sequences contain information about population genetic
history. This paper is concerned with the effects that population subdivi-
sion and migration have on the variance of pairwise nucleotide differences.
The model of population subdivision considered here is a two-population
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version of the finite-island model (Kimura and Weiss, 1964; Maruyama,
1970). While this model is an over-simplification of the demography of
most natural populations, it does provide a starting-point from which we
can draw initial conclusions.

Using the notation of Takahata and Nei (1985), dX , dY , dXY , and d are
measures of pairwise nucleotide difference within and between two popula-
tions called X and Y. The intrapopulation measures, dX and dY , are defined
as the average number of nucleotide differences between two randomly
chosen sequences from within populations X and Y, respectively. The inter-
population measure, dXY , is defined as the average number of differences
between one sequence randomly chosen from population X and another
sequence randomly chosen from population Y. Nei and Li's (1979) d, the
net number of nucleotide differences between populations, is defined as

d=dXY&
(dX+dY)

2
. (1)

When a number of sequences, nX and nY , are sampled from populations X
and Y, respectively, dX and dXY are given by

dX=
2

nX (nX&1)
:

nX&1

i=1

:
nX

i $=i+1

kii $ (2)

and

dXY=
1

nX nY
:
nX

i=1

:
nY

j=1

kij , (3)

where k represents the number of differences between a particular pair of
sequences. The subscripts i and j denote sequences from populations X and
Y, respectively, with primes indicating additional sequences from the same
population. The expression for dY is identical to (2) but with i replaced by
j and nX replaced by nY . In computing dX and dY , each sequence is
compared to all others but not to itself.

The relationship between intrapopulation and interpopulation differences
gives an indication of the degree of population subdivision (Slatkin, 1987;
Strobeck, 1987). Specifically, d, as a measure of the excess number of
substitutions, quantifies the extent of divergence between populations.
However, a lack of knowledge about the variation in dX , dY , dXY , and d
under particular genetic and demographic models has both discouraged
their use (Berry and Kreitman, 1993) and made their interpretation dif-
ficult (Simmons et al., 1989). What follows is a derivation of the variances
of dX , dY , dXY , and d for the case of two populations with migration. The
resulting expressions are then used to place standard errors on estimates of

40 JOHN WAKELEY
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these parameters made using mitochondrial DNA sequences from the grey-
crowned babbler (Edwards, 1993). The variances of dX , dY , dXY , and d
derived here for two populations that exchange migrants are also com-
pared to the variances, given by Takahata and Nei (1985), for two isolated
populations. The results show that the variances of these quantities all
quite large and are greater under migration than under isolation.

2. Methods

2.1. Assumptions and Expectations

Two randomly mating populations, each of effective haploid size N or
diploid size N�2, are considered. Generations are nonoverlapping and the
mutation rate at a locus for which data are available is u per sequence
per generation. Each haploid individual has probability, m, of having
immigrated from the other population in the previous generation. It is
assumed that 1�N, u, and m are all much less than one. This last assump-
tion means that terms involving (1�N )2, for example, can be ignored
relative to terms involving 1�N. Mutuations occur according to the infinite
sites model of Kimura (1969) with the restriction that there is no recom-
bination (Watterson, 1975). It is assumed that the two populations have
reached equilibrium with respect to the above processes. Takahata (1983)
studied that rate of approach to equilibrium conditions for the finite island
model and found that it is approximately equal to the mutation rate.

The expectations of dX , dY , dXY , and d can be evaluated as E(kii $),
E(kjj $), E(kij), and E(kij)&[E(kii $)+E(kjj $)]�2. As illustrated below, these
quantities are calculated by considering samples of two sequences from the
two populations. With the assumptions oulined above, E(dX)=E(dY)=4Nu,
E(dXY)=4Nu+u�m, and E(d )=u�m (Nei and Feldman, 1972; Li, 1976;
Griffiths, 1981; Slatkin, 1987; Strobeck, 1987; Notohara, 1990; Hey, 1991).
The symbols % and M are used below to represent 4Nu and 2Nm, respec-
tively. Thus, E(dX)=E(dY)=%, E(dXY)=%+%�(2M), and E(d )=%�(2M ).

2.2. The Variance of Pairewise Differences

The variances of dX , dY , dXY , and d can be calculated using (1), (2),
and (3). Following Tajima (1983) and Takahata and Nei (1985), these
variances can be written as

Var(dX)=
1

nX (nX&1)
[2E(k2

ii $)+4(nX&2) E(kii $ kii")

+(nX&2)(nX&3) E(kii $ ki" i $$$)]&[E(kii $)]2, (4)

41NUCLEOTIDE DIFFERENCES
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Var(dXY)=
1

nX nY
[E(k2

ij)+(nX+nY&2) E(kij ki $j)

+(nX&1)(nY&1) E(kij ki $j $)]&[E(kij)]2, (5)

and

Var(d )= 1
4 [Var(dX)+Var(dY)]+Var(dXY)+ 1

2 Cov(dX , dY)

&Cov(dXY , dX)&Cov(dXY , dY), (6)

where

Cov(dX , dY)=E(kii $ kjj $)&E(kii $) E(kjj $) (7)

and

Cov(dXY , dX)=
2

nX
E(kii $ kij)+

nX&2
nX

E(kii $ ki"j)&E(kii $) E(kij). (8)

The assumptions of equivalent effective population sizes and symmetric
migration make populations X and Y interchangeable. Thus, E(kii $ kij)=
E(kjj $ kji), E(kii $ kii")=E(kjj $ kjj $), and so on, so that the expressions for
Cov(dXY , dY) and Var(dY) are obtained from the expressions for
Cov(dXY , dX) and Var(dX) by replacing nX with nY .

Each of the terms on the right-hand sides of (4), (5), (7), and (8) can be
calculated based upon the historical relationships among sequences sampled
from the two populations. The history of a sample sequences is described by
the ``coalescent'' process (Kingman, 1982a, 1982b; Hudson, 1983; Tajima,
1983). Looking back into the past, the coalescent models the occurrence of
successive common ancestors of pairs of sequences in a sample (coalescent
events) until the single common ancestor of all the sequences is reached.
Hudson (1990) gives a thorough review. The approach taken here involves
using matrices of single-generation transition probabilities among all the
possible states that the sequences in a sample might have occupied during
their history to derive probability generating functions for the times to par-
ticular coalescent events. This is illustrated below for the case of two
sequences.

2.3. Calculating the Expectation and Variance of kii $ and kij from a Sample
of Two Sequences

In any particular generation in the past, two sequences can either be in
the same or in different populations, or they can have coalesced into a
common ancestral sequence. That there are these three, rather than six
possible states, results from the assumptions that the two populations are
of the same effective size and that migration is symmetric. Otherwise, the

42 JOHN WAKELEY



F
ile

:6
53

J
12

54
05

.B
y:

B
V

.D
at

e:
07

:0
2:

96
.T

im
e:

08
:3

6
L

O
P

8M
.V

8.
0.

P
ag

e
01

:0
1

C
od

es
:

28
01

Si
gn

s:
20

09
.L

en
gt

h:
45

pi
c

0
pt

s,
19

0
m

m

identity of the population in which a sequence resides would also be impor-
tant (Takahata and Slatkin, 1990). The three states for the two sequences
will be called zero, one, and two, respectively. If the sequences are labelled
A and B, these states can be represented as AB, A | B, and (AB), where the
vertical bar indicates that the two sequences are in different populations
and the parentheses signify that they have coalesced. Since, for two sequen-
ces, only a single absorbing state exists, the probability of absorption in
state two is equal to one.

Let pij represent the single-generation probability of transition from state
i to state j. Then, the transition matrix for this sample has entries
p00=1&2m&1�N, p01=2m, p02=1�N, p10=2m, p11=1&2m, and p22=1,
with all others equal to zero. Because of the assumption that 1�N, u, and
m are all much less than one, the chance of more than one event happening
in a single generation is negligible. Thus, p01 represents the event that, in
a single generation, the sequences move from state zero, being in the same
population, to state one, being in different populations. This happens with
probability 2m, one for each haploid individual. Let ,(t) be the probability
that two sequences destined to coalesce are separated from their common
ancestor by exactly t generations. For the two sequences, A and B,

,02(t)= p00 ,02(t&1)+ p01 ,12(t&1) (9)

and

,12(t)= p11 ,12(t&1)+ p10 ,02(t&1), (10)

for t�2 and ,02(0)=0, ,02(1)=1�N, and ,12(0)=,12(1)=0.
Equations (9) and (10) can be used to obtain the probability generating

functions for the time to common ancestry starting in states zero and one.
Let 8(s)=��

t=0 st,(t) be the probability generating function of ,(t).
Multiplying (9) and (10) by st and summing over all values of t gives

802(s)=(1&2m&1�N ) s802(s)+2ms812(s)+s�N (11)

812(s)=(1&2m) s812(s)+2ms802(s), (12)

which are then solved to give

802(s)=
(s�N )[1&(1&2m) s]

[1&(1&2m) s][1&(1&2m&1�N ) s]&(2ms)2 (13)

812(s)=
(2m�N ) s2

[1&(1&2m) s][1&(1&2m&1�N ) s]&(2ms)2 . (14)
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The moments of t are easily derived from these probability generating func-
tions. If 8$(s) and 8"(s) are the first and second derivatives of 8(s) with
respect to s, then E(t)=8$(1) and Var(t)=8"(1)+8$(1)&[8$(1)]2.

Differentiating (13) and (14) and putting in s=1 gives E02(t)=2N and
E12(t)=2N+1�(2m) with variances

Var02(t)r4N 2+N�m (15)

Var12(t)r4N 2+N�m+1�(4m2). (16)

Thus the expected time, in generations, to common ancestry of two sequen-
ces sampled from the same population is equal to the total size of the two
populations together. The expected time to common ancestry of two
sequences sampled from different populations is the waiting time until they
are in the same population plus this value. The variances of the coalescence
time for two sequences depend on both the population size and the migra-
tion rate. These results for the times to common ancestry are previously
known (Notohara, 1990; Hey, 1991) and are consistent with work on the
expected number of differences separating sequences from a subdivided
population (Nei and Feldman, 1972; Li, 1976; Griffiths, 1981; Slatkin,
1987; Strobeck, 1987).

Once the expectation and variance of the time to a particular coalescent
event are known, the rules of random sums are used to obtain information
about the numbers of changes during that interval. The number of muta-
tions on a particular lineage in the history of a sample is the sum, over the
length of that lineage in generations, of the number of mutation per genera-
tion. Since u is assumed to be small, the number of mutations in a gene in
one generation is one with probability u and zero with probability 1&u. If
a number of lineages exists over a random length of time, t, generations, and
k and k$ are the numbers of changes on two particular lineages during that
time, then E(k)=E(k$)=uE(t), Var(k)=Var(k$)=u(1&u) E(t)+u2 Var(t),
and Cov(k, k$)=u2 Var(t). Again because u is assumed small, Var(k)=
uE(t)+u2 Var(t) can be used as an approximation.

Using these rules, E(kii $) = 2uE02(t) and Var(kii $)=2uE02(t)+4u2 Var02(t),
with the corresponding formulas for E(kij) and Var(kij), obtained by replacing
zero in the subscripts with one. Thus, E(kii$)=% and E(kij)=%+%�(2M), with
%=4Nu and M=2Nm, as already mentioned. The variances are given by

Var(kii $)=% \1+%+
%

2M+ (17)

Var(kij)=% \1+%+
%

2M++
%

2M \1+
%

2M+ . (18)

44 JOHN WAKELEY
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The expectations of k2
ii $ and k2

ij , which are needed in (4) and (5) to
calculate Var(dX) and Var(dXY), are easily derived from these expressions.

2.4. Samples of More the Two Sequences

The remaining seven quantities in Eqs. (4), (5), (7), and (8) are
calculated from samples of more than two sequences. Specifically, E(kii $ kij),
E(kij ki $j), and E(kii $ kii") are calculated from samples of three sequences
and E(kij ki $j $), E(kii $ kjj $), E(kii $ ki"j), and E(kii $ ki"i $$$) are calculated from
samples of four sequences from the two populations. In each case, the
protocol is similar to that followed above. However, the transition matrices
for samples of more than two sequences generally have more than one
absorbing state. That is, there are typically several possible coalescent
events. This means that several different histories of each sample need to be
considered. The seven quantities above are calculated separately for each
possible history, then averaged, weighted by the probability of each.

Thus, when more than one coalescent event is possible, the probability
of each being the first coalescent event to occur among the sequences must
be derived. These probabilities, ?ik , of absorption in state k, starting in
state i, satisfy ?ik=�n

j=0 pij ?jk , where n is the total number of states the
sample can assume. Once obtained, they are used to construct conditional
single-generation transition matrices, one for each absorbing state, given
fixation in that state. The single-generation probability of transition from
state i to state j, given eventual fixation in state k is given by
p(k)

ij = pij ?jk �?ik (cf. Ewens, 1979, Eq. (2.126)). These conditional transition
matrices define sets of recursion equations, analogous to (9) and (10)
above, that are solved to give the probability generating functions for the
times to each particular coalescent event.

For example, E(kii $ kij) is computed from the sample AAB, of two
sequences from one population and one from the other. In this case, it is
important to distinguish both whether the first coalescent event is
intrapopulational or interpopulational and whether the two ancestral
sequences were last in the same or in different populations. Thus, there are
four possible coalescent events for the sample AAB. In general, the number
of possible histories of a sample of size n is just the number of absorbing
states for that sample times the number of absorbing states for the n&1
ancestral sequences times the number for n&2, and so on. Since there is
only one absorbing state for the sample of two considered above, there are
four possible histories of the sample AAB. These are shown in Fig. 1. The
probabilities of these four histories are simply the probabilities of the four
coalescent events of the sample AAB. The expectation and variance of the
length of branches spanning t3 are obtained from the probability genera-
tion functions for the times to each of these four events. The lengths of the
branches spanning t2 are described by the results of the previous section.

45NUCLEOTIDE DIFFERENCES
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Fig. 1. The four possible histories of the sample AAB. AB at the t2 : t3 boundary indicates
that the two ancestral sequences were in the same population and A | B that they were in
different populations. As discussed in the text, there are two equiprobable designations of the
two A's in the sample AAB as either i or i $.

In Calculating E(kii $ kij) for each of the histories in Fig. 1, first E(kii $),
E(kij), and Cov(kii $ , kij) are computed, then these quantities are combined
to give the expectations of the product. The covariances and expectations
are obtained by expressing kii $ and kij , in terms of the numbers of changes
on the lineages spanning t2 and t3 in Fig. 1. For instance, if k3 is the
number of changes on a lineage spanning the interval t3 in history I0 , then
E(kii $)=2E(k3). If k$3 is the number of changes on a different branch
spanning t3 , then Cov(kii $ , kij)=Var(k3)+3 Cov(k3 , k$3) because there is
no correlation between the numbers of changes on segments spanning t3

and those on segments spanning t2 . For histories II0 and II1 , values of
E(kij) and E(kii $ kij) differ depending on which of the sequences labelled A
is designated i and which is designated i $. The two possible assignments,
(a) and (b), shown in Fig. 1 are equiprobable and values of E(kij) and
E(kii $ kij) must be calculated for each case then averaged.

When four sequences are considered, these calculations become laborious.
For example, in computing E(kij ki $j $) and E(kii $ kjj $) from the sample AABB,
of two sequences from each population, a total of 24 distinct histories must
be considered. They are not reproduced here because of length considera-
tions and since no new concepts need to be introduced. The details of the

46 JOHN WAKELEY
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derivation of all of E(kii $ kij), E(kij ki $j), E(kii $ kii"), E(kij ki $j $), E(kii $ kjj $),
E(kii $ ki"j), and E(kii $ ki"i $$$) can be found in (Wakeley, 1994) and are also
available from the author upon request.

3. Results

Once all of the required quantities have been calculated, Var(dX),
Var(dXY), and Var(d ) are obtained by simply substituting these expressions
into Eqs. (4), (5), (7), and (8). The expressions for Var(dX) and Var(dXY)
are shown in the Appendix. The expression for Var(d ) is substantially more
complicated than either of these and is not shown. It is obtained by sub-
stituting the Var(dX), Var(dXY), Cov(dX , dY), and Cov(dXY , dY), which are
all shown in the Appendix, into Eq. (6).

As the expressions for all three of these variances are quite complicated,
it is instructive to look at their behaviors under certain limiting conditions.
For instance, when M is very large, these variances become

Var(dX)=
(nX+1)

3(nX&1)
%+

2(n2
X+nX+3)

9nX (nX&1)
%2, (19)

Var(dXY)=
(2nX nY+nX+nY+2)

6nX nY
%+

(2nX nY+nX+nY+5)
9nX nY

%2, (20)

and

Var(d )=
(nX+nY&1)(nX+nY&2)

6nX (nX&1) nY (nY&1)
% \1+

5
3

%+ , (21)

which are the values expected in a single population of size 2N. Thus, (19)
is identical to the variance derived by Tajima (1983) and (21) is the same
as the corresponding expression given by Takahata and Nei (1985) for the
case of two isolated populations as the time of separation between them
goes to zero.

The effect of sample size on the variances of dX , dXY , and d is also of
interest. When nX=2, Var(dX) reduces to (17) and when nX=nY=1,
Var(dXY) reduces to (18). Further, when the samples sizes, nX and nY , are
very large, the three variances become

Varst(dX)=
%

6(3+6M+2M 2) _(6+13M+4M 2)+
%

6M(1+M )(1+2M )

_(3+4M )(6+27M+43M 2+34M 3+8M 4)& , (22)
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Varst(dXY)=
%

6M(3+6M+2M 2) _(9+18M+15M 2+4M 3)

+
%

6M(1+M )2 (1+2M )
(27+162M+459M 2

+780M 3+843M 4+562M 5+208M 6+32M 7)& , (23)

and

Varst(d )=
%

2M(3+6M+2M 2) _(3+M )+
%

6M(1+2M )

_(9+33M+54M 2+16M 3)& . (24)

These are the stochastic variances of dX , dXY , and d, that arise from the
random nature of the history of any sample, as opposed to their sampling
variances (Nei and Tajima, 1981; Tajima, 1983). The sampling variances of
dX , dXY , and d are given by Vars=Var&Varst .

When M, nX , and nY , are all very large,

Var(dX)=Var(dXY)= 1
3 %+ 2

9 %2 (25)

and Var(d ) approaches zero, in agreement with the results of Tajima
(1983) and Takahata and Nei (1985). Alternatively, when M is very small,
and keeping only terms of order 1�M or larger, (22), (23), and (24)
becomes %2�(6M), %�(2M )[1+%�(2M )], and %�(2M )[1+%�(2M )&%�6],
respectively. These can be compared to (17) and (18) and the expression
(not shown) for Var(d ) when just two sequences are sampled from each
population. The conclusion reached is that, when the level of divergence
between the two populations is great, increasing the sample size can
decrease Var(dX) by about a factor of three, but has little effect on
Var(dXY) and Var(d ). In contrast, when M is large, comparing (20) and
(21) with (25) shows that the effects of sample size on Var(dXY) and Var( d)
can be substantial. Tables I and II illustrate these concepts.

Table I gives values of sdX , the standard error of dX ��the square root of
Var(dX)��over a broad range of values of both E(dX) and E(d ) and for
three different values of the sample size, nX . Recall that E(dX)=% measures
divergence within a single population and that E(d )=%�(2M ) measures
divergence between populations. Several interesting trends emerge. First,
for a given value of E(dX), sdX increases with E(d ), that is, as the amount
of divergence between populations increases. This was first apparent in (17)
for Var(kii). As the migration rate between the two populations decreases,
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TABLE I

The Standard Error, sdX
, of dX

nX

E(dX) E(d ) 2 10 1000

100.0 100.0 141.77 79.71 70.93
10.0 105.36 55.84 49.81

1.0 101.00 53.47 47.77
0.1 100.55 53.23 47.56
0.01 100.50 53.21 47.54

10.0 100.0 33.32 20.77 18.75
10.0 14.49 8.20 7.31

1.0 10.95 5.91 5.28
0.1 10.54 5.68 5.08
0.01 10.49 5.66 5.06

1.0 100.0 10.10 6.43 5.82
10.0 3.46 2.16 1.95

1.0 1.73 1.02 0.92
0.1 1.45 0.85 0.77
0.01 1.42 0.83 0.75

0.1 100.0 3.18 2.03 1.84
10.0 1.05 0.67 0.61

1.0 0.46 0.29 0.26
0.1 0.35 0.22 0.20
0.01 0.33 0.21 0.19

the variance of intrapopulation pairwise differences increases. Second,
increasing the sample size, nX , does decrease sdX , and the magnitude of this
effect is similar over all values of E(d ). However, relatively little accuracy
is gained by increasing nX from 10 to 1000. Third, when E(dX) is large, sdX

can be quite a bit smaller than E(dX) but when E(dX) is small, sdX is always
larger than its expectation.

Table II gives values of sd and sdXY , the standard errors of d and dXY ,
over the same range of parameter values used in Table I. The values of sdXY

are given in parentheses after corresponding values of sd . The expectation
of dXY is simply the sum of E(dX) and E(d ). Similarly to sdX , for a given
value of E(dX), sd and sdXY both increase with increasing E(d ). That the
same thing is not always true as E(dX) increases for a give value of E(d )
is a consequence of the fact that E(d )=%�(2M ); holding E(d ) constant and
changing %=E(dX) means also changing M. Increasing the sample size
does not have much of an effect on sdXY but does greatly reduce sd , except
when E(d ) is greater than or equal to E(dX). Unlike sdX and sdXY , sd con-
tinues to decrease with increasing nX and nY even when a great number of
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TABLE II

The Standard Errors, sd and (sdXY
), of d and dXY

nX=nY

E(dX) E(d ) 2 10 1000

100.0 100.0 161.71(147.22) 112.64(127.45) 102.89(122.85)
10.0 74.52(75.62) 21.63(56.32) 11.48(52.87)
1.0 65.71(69.77) 11.90(50.93) 1.25(48.00)
0.1 64.84(69.20) 10.97(50.42) 0.22(47.56)
0.01 64.75(69.15) 10.87(50.37) 0.12(47.52)

10.0 100.0 105.75(103.37) 100.92(101.38) 99.92(100.89)
10.0 16.48(15.18) 11.51(13.17) 10.52(12.70)
1.0 7.64(7.95) 2.22(5.97) 1.19(5.61)
0.1 6.74(7.35) 1.22(5.41) 0.13(5.11)
0.01 6.66(7.29) 1.13(5.36) 0.02(5.06)

1.0 100.0 101.00(100.75) 100.52(100.55) 100.42(100.50)
10.0 10.99(10.78) 10.50(10.58) 10.40(10.53)
1.0 1.93(1.92) 1.37(1.68) 1.26(1.62)
0.1 0.93(1.11) 0.28(0.87) 0.15(0.82)
0.01 0.83(1.04) 0.15(0.79) 0.02(0.75)

0.1 100.0 110.55(100.52) 100.50(110.50) 100.49(100.50)
10.0 10.54(10.51) 10.49(10.49) 10.48(10.49)
1.0 1.45(1.45) 1.39(1.42) 1.38(1.42)
0.1 0.37(0.42) 0.27(0.37) 0.25(0.36)
0.01 0.19(0.27) 0.06(0.22) 0.03(0.20)

sequences have already been sampled. However, sd is always greater than
E(d ). Thus, even when the sampling variance is reduced to near zero, the
standard error of d is still very large. Lastly, sdXY is generally smaller than
E(dXY), except when E(dX) is small.

3.1. An Example Using Mitochondrial DNA

Edwards (1993) presented sequence data from the control region of mito-
chondrial DNA of the grey-crowned babbler (Pomatostomus temporalis)
from 12 different populations in two subspecies and made estimates of gene
flow between seven pairs of populations. Table III shows (d� X+d� Y)�2, d� XY ,
and d� and their associated standard errors for these seven population pairs.
Also shown are values for several additional pairs of populations between
which Edwards (1993) found no evidence of gene flow using the genealogical
method of Slatkin and Maddison (1990). The standard errors shown in
Table III were obtained by simply substituting values of (d� X+d� Y)�2 and
(d� X+d� Y)�(4d� ), which estimate % and M, respectively, into the expressions
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TABLE III

Values of (d� X+d� Y)�2, d� XY , and d� and Their Standard Errors
Calculated from Edward's (1993) Babbler mtDNA Data

Population pairs (d� X+d� Y)�2 d� XY d�

P. t. temporalis

A�B 10.4(8.1) 13.2(7.4) 2.8(4.2, 3.2)
A�M 12.0(9.7) 20.0(12.1) 8.0(9.4, 8.6)
B�M 10.6(8.2) 13.9(7.8) 3.3(4.7, 3.7)
M�O 7.8(9.3) 30.1(23.8) 22.2(23.0, 22.5)

A�N 9.6(11.2) 34.7(27.1) 25.1(26.2, 25.4)
B�N 8.3(11.0) 37.0(30.4) 28.8(29.8, 29.0)
M�N 9.8(11.7) 38.3(30.4) 28.5(29.4, 28.8)
O�N 5.5(6.0) 17.5(13.4) 12.1(12.7, 12.4)

P. t. rubeculus

G�H 5.8(4.5) 6.0(3.3) 0.20(0.74, 0.25)
D�F 3.4(3.5) 8.6(6.3) 5.2(5.8, 5.5)
F�K 6.8(5.6) 11.3(7.0) 4.5(5.3, 4.9)

D�E 3.7(4.2) 11.7(9.1) 8.0(8.6, 8.3)
G�I 4.5(4.1) 8.0(5.3) 3.5(4.4, 3.9)
E�I 3.8(4.5) 12.5(9.9) 8.7(9.5, 9.0)

Note. Standard errors of (d� X+d� Y)�2, d� XY , and d� are given in
parentheses following each value. For d� , the second value in the
parentheses is the standard error expected when nX=nY=1000.

for the variances derived here and taking the square root. The variance of
(dX+dY)�2 is given by [Var(dX)+Var(dY)+2 Cov(dX , dY)]�4.

As the assumption of infinite sites was made throughout this work, the
values of d� X , d� XY , and d� shown in Table III are based on corrected dis-
tances. These were obtained using the method of Tamura and Nei (1993).
Their method requires an estimate of the gamma distribution parameter, a,
which quantifies the extent of rate variation among sites in the sequence.
A value of a=0.19 was obtained here from the entire data set by fitting a
negative binomial distribution to the distribution of the inferred number of
changes at each site (Uzzell and Corbin, 1971). The results below do not
depend on the use of this or any other currently available distance cor-
rection. While the observed differences are, of course, smaller than the
corrected values, the patterns shown in Table III are identical for both.

As expected, the standard errors of d� , which estimates %�(2M ), are quite
large for Edward's (1993) data, greater than d� for every population pair in
Table III. While sample sizes for these populations range from 6 for pop-
ulation I to 20 for population K with a mean of about 14, increasing these
to one thousand sequences per population would not affect this result. If
this were done, the resulting standard errors of d� , which are shown in
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Table III, would still be larger than d� for every pair. Thus, as evident from
Table II, much of the variance of d� is due to stochastic factors rather than
sampling. On the other hand, the standard errors of (d� X+d� Y)�2, and d� XY

are smaller in comparison to the estimates of those parameters, indicating
that % and %+%�(2M ), at least, can be estimated with some confidence
using these data. Of course, d� , as a measure of the extent of divergence
between populations, is the parameter of interest here, so there results
might be somewhat discouraging. Estimates of divergence between popula-
tions based on pairwise nucleotide differences at a single locus are not very
accurate.

3.2. Comparing Variances under Migration and Isolation

While, perhaps, discouraging in one sense, the great magnitude of the
variances of dX , dXY , and d for two populations with migration actually
offers hope of distinguishing two important demographic scenarios.
Takahata and Nei (1985) give expressions for Var(dX), Var(dXY), and
Var(d ) for the case of two populations that have been completely isolated
from each other for some length of time, T, measured in units of 2N
generations. In this case, E(dX)=%, E(dXY)=%+%T, and E(d )=%T
(Kimura, 1969; Watterson, 1975; Li, 1977; Gillespie and Langley, 1979;
Nei and Tajima, 1981; Takahata and Nei, 1985). Thus, when T=1�(2M ),
the expectations of all four pairwise difference measures are exactly the
same under migration as under isolation, making them useless in dis-
tinguishing these two situations. In addition, Slatkin and Maddison (1989)
and Takahata and Slatkin (1990) conclude that gene genealogies will also
not serve to distinguish migration from isolation (but see Slatkin and
Maddison, 1990).

Takahata and Nei (1985) showed that Var(dX) in the isolation case is
equal to the variance for a sample from a single, randomly mating popula-
tion given in (19) and first derived by Tajima (1983). The expressions for
Var(dXY) and Var(d ) for the case of two isolated populations are not given
here but are slightly different from those derived by Takahata and Nei
(1985); some minor errors were found. Specifically, Takahata and Nei's
(1985) F, S2, and S1 should be

F=
1&(1+T) e&T

2(1&e&T)
, S2=

1&(1+3T ) e&3T

3(1&e&3T)
,

and

S1=
2(1&e&3T)&3Te&T(1+e&T)

(1&e&T)2 (2+e&T)(1+e&T+e&2T)
,
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Fig. 2. Comparison of Var(dX), graph (a), Var(dXY), graph (b), and Var(d ), graph (c),
under migration and under isolation. In all three graphs, % is equal to one. Along the horizon-
tal axes, T=1�(2M ) so that the expectations of dX , dXY , and d are identical for the two
models. As indicated, the upper curves describe the variances under migration and the lower
curves describe the variances under isolation.
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and I have used these corrected values. This changes the values of Var(dXY)
and Var(d ) only slightly and does not affect the conclusions of Takahata
and Nei (1985).

Figure 2 plots Var(dX), Var(dXY), and Var(d ), under migration and
under isolation when % equals one. The equivalence of the expectations of
dX , dXY , and d in these two cases when T=1�(2M ) provides a convenient
basis for comparing the variances, which are plotted as functions of
log10(M )=log10(1�2T )). All three variances are generally greater under
migration than under isolation. As the migration rate decreases or the time
of separation increases, that is, as M=1�(2T ) gets smaller, the variances of
all three statistics become much greater under migration than under isola-
tion. This dependence on M=1�(2T ) is similar over a broad range of
values of %. However, when % is smaller, smaller values of M=1�(2T ) are
needed for the differences between the variances to become apparent. The
variance of dX does not depend on T in the isolation case (Takahata and
Nei, 1985). As M=1�(2T ) increases, Var(dX) in the migration case, and
Var(dXY) and Var(d ) under both migration and isolation approach the
limiting values given in (19), (20), (21), respectively.

4. Discussion

Like the variances derived by Tajima (1983) and Takahata and Nei
(1985), the expressions presented here for Var(dX), Var(dXY), and Var(d )
for a sample from two populations with migration include components due
to both stochastic and sampling factors (Nei and Tajima, 1981). Lynch and
Crease (1990) studied the partitioning of the sampling variances of dX ,
dXY , and d in subdivided populations into components attributable to
various sources. These sampling variances can all be reduced to zero by
simply increasing the sample sizes, nX and nY . Stochastic variance, on the
other hand, is the variance over all possible evolutionary histories and is
unaffected by changes in sample size. The results presented here show that
the stochastic components of Var(dX), Var(dXY) and Var(d ) for two pop-
ulations with migration are so large that estimates of population genetic
parameters using these measures are not very accurate.

The only way to decrease this stochastic component of the variance is to
sample more loci. If we had sequence data for n loci, an improved estimate
of %�(2M ) would be d� =�n

i=1 di �n. If the value of % is the same for every
locus and the histories of the loci independent, the variance of d� would be
Var(di)�n. Thus, stochastic and sampling variances are defined relative to
the sampling scheme. By adding another axis to our sampling scheme,
former stochastic factors come under the realm of sampling. Or course, the
assumptions of equal % values and independence among loci will often be
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violated. Thus, before the importance of multilocus sampling in quantifying
genetic and demographic parameters can be properly assessed, appropriate
multilocus models must be developed.

The results presented here demonstrate that the variances of pairwise
nucleotide differences are generally greater under migration than under
isolation and much greater as M or 1�(2T ) decreases. Under isolation,
interpopulation coalescent events can occur only prior to the time the pop-
ulations were first separated. This restricts the range of possible coalescence
times. For large T, it is unlikely that more than one common ancestor of
the sequences sampled from each population will exist at the time of
separation (Takahata and Nei, 1985; Takahata, 1989). In contrast, under
migration, it is possible for a common ancestor of two sequences from dif-
ferent populations to exist in the very recent past, even when the migration
rate is low. Since interpopulation coalescent events occur over a much
broader range, the variance is larger.

The great difference between the variances under migration and under
isolation suggests that a test to distinguish these two demographic situa-
tions could be developed. Because Var(dX), Var(dXY) and Var(d ) as
derived here include variation over all possible histories, this would require
data from multiple loci. Figure 2 implies that our ability to distinguish
migration from isolation will be poor when the populations are not sub-
stantially diverged, but it might be quite good when the migration rate is
low, or equivalently, when the time of separation is great. However, in con-
structing such a test, knowledge of the covariances between the expecta-
tions and the variances of pairwise nucleotide differences, as well as among
the variances, is likely to be important. Thus, while the present results
indicate that a test is possible, much work remains before one might be
implemented effectively.

Appendix A

Var(dX) for a sample of nX sequences from population X. With the
assumptions outlined in the body of the paper, the expression for Var(dY)
is obtained simply by substituting nY for nX :

Var(dX)=
%

6nX (nX&1)(3+6M+2M 2) _6M+nX (6+7M+4M 2)

+n2
X (6+13M+4M 2)+

%
6M(1+M )(1+2M )

[6M(1+M )
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_(15+54M+64M 2+16M 3)+nX (18+123M+327M 2

+358M 3+160M 4+32M 5)+n2
X (3+4M )

_(6+27M+43M 2+34M 3+8M 4]& .

Var(dXY) for a sample of nX sequences from population X and nY

sequences from population Y:

Var(dX)=
%

6nX nY M(3+6M+2M 2) _M 2(9+4M )+(nX+nY)

_M(3+M )(3+2M )+nX nY (9+18M+15M 2+4M 3)

+
%

6M(1+M )2 (1+2M )
[M 2(36+222M+573M 2

+706M 3+400M 4+80M 5)+(nX+nY) M(27+153M

+390M 2+525M 3+374M 4+128M 5+16M 6)

+nX nY (27+162M+459M 2+780M 3+843M 4

+562M 5+208M 6+32M 7)]& .

Cov(dX , dY) and Cov(dXY , dX) as needed to calculate Var(d ):

Cov(dX , dY)=
%

6(3+6M+2M 2) _M(9+4M )+
%

6(1+M )2 (1+2M )

_(3+2M )(3+18M+53M 2+56M 3+16M 4)&
Cov(dXY , dX)=

%
6nX (3+6M+2M 2) _2M(5+2M )+nX (1+M )

_(9+4M )+
%

6M(1+M )(1+2M )

_[16M 3(4+7M+2M 2)&6(3+11M+11M 2)

+nX (3+2M)(3+18M+53M 2+56M 3+16M 4)]& .
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