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Substitution-rate variation among sites and differences in the probabilities of change among the four nucleotides 
are conflated in DNA sequence comparisons. When variation in rate exists among sites but is ignored, biases in 
the rates of change among nucleotides are underestimated. This paper provides a quantification of this effect when 
the observed proportions of transitions, p, and transversions, 0, between two sequences are used to estimate 
transition bias. The utility of p/Q as an estimator is examined both with and without rate variation among sites. 
A gamma-distributed-rates model is used to illustrate the effect that variation among sites has on estimates of 
transition bias, but it is argued that the basic results should hold for any pattern of rate variation. Naive estimates 
of the extent of transition bias, those that ignore rate variation when it is present, can seriously underestimate its 
true value. The extent of this underestimation increases with the amount of rate variation among sites. An example 
using human mitochondrial DNA shows that a simple comparison of the proportions of transitions and transversions 
in recently diverged sequences underestimates the level of transition bias by - 15%. This does not depend on the 
use of p/e to estimate transition bias; maximum-likelihood methods give similar results. 

Introduction 

Nearly 3 decades of comparative studies have 
shown that biases in the rates of change among the four 
nucleotides and variation in substitution rate among sites 
are common properties of DNA sequences. The most 
thoroughly investigated type of difference in substitution 
rate among the four nucleotides is transition bias. The 
extent of transition bias is typically estimated by simply 
counting the number of transition and transversion dif- 
ferences between recently diverged sequences and taking 
their ratio. Transition bias is particularly pronounced 
in animal mitochondrial DNA (mtDNA), having been 
found in primates (Brown et al. 1982; Aquadro and 
Greenberg 1983 ), rodents (Brown and Simpson 1982)) 
birds (Edwards and Wilson 1990), fishes (Beckenbach 
et al. 1990), echinoderms (Thomas et al. 1989), flies 
(DeSalle et al. 1987; Satta et al. 1987), and nematodes 
(Thomas and Wilson 199 1). While less extreme, tran- 
sition bias has also been reported in nuclear DNA (Go- 
jobori et al. 1982; Li et al. 1985) and chloroplast DNA 
(Curtis and Clegg 1984; Wolfe et al. 1987). 
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Beginning with Fitch and Margoliash’s ( 1967) 
study, substitution rate variation among sites has been 
found in nearly every molecule examined. Workers have 
used both discrete and continuous models to describe 
this variation. Discrete models typically assume two or 
three rate classes. The gamma-distributed-rates model 
(Uzzell and Corbin 197 1) has been by far the most-used 
continuous model in evolutionary studies, although a 
lognormal model has also been employed ( Olsen 1987 ) . 
Gamma distributions have been shown to fit well the 
observed patterns of rate variation in coding regions of 
nuclear DNA (Golding 1983; Holmquist et al. 1983)) 
phage DNA (Golding 1983)) ribosomal RNA sequences 
( Larson and Wilson 1989 ) , and several different regions 
of human mtDNA (Golding 1983; Kocher and Wilson 
199 1) . In a recent maximum-likelihood analysis, Yang 
et al. ( 1994) showed that a gamma-distributed-rates 
model fit both mtDNA and nuclear DNA sequence data 
significantly better than did a single-rate model. 

The present paper provides a quantification of how 
rate variation among sites and biased substitution among 
nucleotides are conflated in DNA sequence comparisons. 
Because it is commonly employed, the ratio of the pro- 
portions of transition and transversion differences be- 
tween two sequences, p/ $, is used here to illustrate the 
effects that rate variation among sites has on estimates 
of transition bias. In particular, it is shown that P/$ 
can seriously underestimate transition bias when sub- 
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stitution-rate variation exists among sites. The magni- 
tude of this underestimation increases with the level of 
rate variation among sites in the sequence. It is also 
shown that p/Q is not a good estimator of transition 
bias even when all sites evolve at the same rate. An ap- 
proximate correction formula is used to illustrate the 
extent of underestimation of transition bias that results 
from ignoring rate variation among sites in the control 
region of human mtDNA. 

Modeling Nucleotide-Site Evolution 

In 1969 Jukes and Cantor introduced the one-pa- 
rameter transition matrix (Jukes and Cantor 1969). This 
is the simplest possible model, assuming that all changes 
among the four nucleotides are equally likely. The tran- 
sition bias for the one-parameter model is ‘12 because 
there are twice as many kinds of transversions as tran- 
sitions. Later workers, including Kimura ( 1980, 198 1 ), 
Felsenstein ( 198 1)) Takahata and Kimura ( 198 1) , Go- 
jobori et al. (1982), Tajima and Nei (1982), Lanave et 
al. ( 1984)) and Hasegawa et al. ( 1985 ), developed other 
models, in an attempt to incorporate the known com- 
plexities of nucleotide-site evolution. The present work 
starts with the two-parameter model of Kimura ( 1980). 
Gamma-distributed rates are then incorporated follow- 
ing Jin and Nei ( 1990). Kimura’s ( 1980) two-parameter 
matrix is a model of transition bias; transitions occur at 
rate a per site, and transversions occur at rate p per site. 
Thus, the transition bias for this model is a/( 2p). The 
expected equilibrium base composition is 1: 1: 1: 1. While 
this is often considered a drawback of the model, an 
analysis identical to the one presented here but using 
the model of Hasegawa et al. ( 1985)) which allows for 
uneven base compositions, gave nearly the same results 
(not shown). 

Under the two-parameter model, it is straightfor- 
ward to derive the probabilities of observing each possible 
pair of nucleotides at a particular site in two sequences 
that have been separated for a length of time, z. These 
probabilities can be combined in any manner, but, for 
the purposes of the present work, they are collected into 
transitions and transversions. The probabilities of ob- 
serving a transition or a transversion’ at a site in two 
sequences separated by z are 

P(T) = l/4 + ‘1’4 exp[-8@] - ‘12 exp[-4(a+P)r] (1). 

and 

Q(T) = l/2 - l/2 exp[ -Spz] , (2) 

represent the expected proportions of sites that show 
transitions and transversions in two sequences separated 
by 2. Expected numbers of transitions and transversions 
are found by multiplying these expressions by the total 
number of sites. 

When z is close to 0, the probabilities of observing 
a transition or a transversion at a site rise linearly with 
time, according to their relative rates. The limit of P( z) / 
Q(z) as z goes to 0 is the transition bias, a/( 2p). From 
equations ( 1) and (2)) it is easy to see that, as the length 
of time separating two sequences gets very large, the ex- 
pected proportions of transitions and transversions ap- 
proach l/4 and l/2, respectively. Thus, the ratio P( z)/Q( z) 
changes with time, starting at a/(2P) and approaching 
‘12 as each site experiences multiple substitutions. A few 
authors have used Kimura’s ( 1980) results to transform 
P and Q into c1z and 2pz, thus providing an estimate of 
transition bias that is insensitive to the time of separation 
(e.g., see Jukes 1987; Goldstein and Pollock, submitted). 
Because it is not widely employed, this transformed es- 
timate was not used in the present work. However, a 
preliminary analysis suggests that it behaves similarly to 
P( r )/ Q( z), in the face of rate variation among sites. 

One way to view the relationship between transi- 
tions and transversions is to plot them against each other. 
Figure 1 a shows such a plot for values of transition bias 
ranging from l/2 to 15. Solving equation ( 2) for 2 and 
substituting it into equation ( 1) gives the expected re- 
lationship between P and Q, 

P = l/4 + 9’4 ( 1 - 2Q) - l/2( 1 - 2Q)(a+p)‘(2P) , (3) 

where now the parameter 2 has been suppressed. Close 
to the origin in figure la-i.e., for short divergences- 
the curve is nearly linear, and its slope is equal to the 
transition bias. Since P( 7:) and Q(z) approach l/4 and 
l/2, respectively, as z approaches to infinity, the point 
farthest from the origin in figure la is (P = l/4, Q = l/2) 

for all the curves. The larger the transition bias, the more 
bowed the curve becomes. Hasegawa et al. ( 1985 ) , Has- 
egawa and Horai ( 199 1 ), and Edwards and Wilson 
( 1990) display such curves for DNA sequence data. 

Gamma-Distributed Rates 

The equations presented above are applicable only 
when there is no substitution-rate variation among sites 
in the sequence. Otherwise, some account must be made 
of this variation. Here, the total substitution rate at each 
site, h, is assumed to be gamma distributed among sites 
with parameters a and b: 

where P and Q represent transitions and transversions, 
respectively ( Kimura 1980). Equations ( 1) and (2 ) also 

f(h) = ha-‘e+b 
r(a)b” 

O<h<(% (4) 
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1 .--a, Graph of the relationship between P and Q, between 

two infinitely long sequences for the two-parameter model with no 
rate variation among sites. The five curves represent different levels of 
transition bias; these are, from top to bottom, 15, 10, 5, 2.5, and 0.5. 
b, Graph of the relationship between P* and Q*, between two infinitely 
long sequences for the two-parameter model when rates are gamma 
distributed among sites. For all five curves the transition bias is equal 
to 15. The curves differ in the value of the gamma-distribution param- 
eter, a, which is inversely related to the extent of rate variation among 
sites; these are, from top to bottom, 10, 1 .O, 0.3, 0.1, and 0.0 1. 

The mean of this distribution is ab, and the variance is 
ab2, making the coefficient of variation, in rate, among 
sites a- . ’ I2 The parameter a can be used to describe the 
extent of rate variation when gamma distributions are 
compared. For distributions with the same mean, as a 
gets smaller the variance and coefficient of variation in- 
crease. When a is small, most sites have rates near 0, 
but a few have very high rates. Alternatively, as a gets 
larger, the variance and coefficient of variation decrease 
until the entire distribution is concentrated at a single 
rate. In the present work, when a > - 1, the effects of 
rate variation seem small enough to be ignored. Most 
reported values of a lie between 0.1 and 2.0 (Golding 

1983; Holmquist et al. 1983; Larson and Wilson 1989; 
Kocher and Wilson 199 1; Yang 1993; Yang et al. 1994). 

When the gamma distribution of rates among sites 
is taken into account, the probabilities of observing a 
transition or a transversion at a randomly chosen site 
in two sequences separated for a length of time z become 

a 

l/2 
( 

a - 
a + 4(Cc + p)z 1 

a (5) 

a (6) 

for the two-parameter model, where ti and p are the 
mean, over all sites, of a and p, respectively. These 
equations were first derived by Jin and Nei ( 1990 ) . As- 
terisks have been added to distinguish these equations 
from equations ( 1) and (2). In this model, only the 
overall rate of substitution varies among sites; the ratio 
a/(2P) is the same for every site. Golding ( 1983), Nei 
and Gojobori (1986), and Tamura and Nei (1993) have 
derived similar expressions for other transition matrices. 

Figure 1 b shows the expected relationship between 
P*(z) and Q*( z) when rates are gamma distributed. 
Analogous to the derivation of equation (3)) this rela- 
tionship is found by solving equation ( 6) for z and sub- 
stituting it into the equation for P*( 2) : 

P* =‘/4+1/4(1-2&*) 

- l/2 1+$+1 - 2Q*)-1’” - l]]-a. (7) 
i 

where, again, the parameter z has been dropped. All the 
curves in figure 1 b have the same transition bias, 15, but 
each represents a different level of rate variation among 
sites, low (a = 10.0) to high (a = 0.01). The similarity 
of these curves to the ones shown in figure la is inten- 
tional; a comparison of the figure’s two panels illustrates 
clearly how transition bias and rate variation among sites 
are conflated. Even with substantial transition bias, as 
a decreases, the relationship between P* and Q* ap- 
proaches that obtained when there is no transition bias 
at all. The reason for this is simple: when extreme vari- 
ation in rate exists among sites, very rapidly evolving 
sites experience multiple substitutions before most sites 
have changed at all, biasing the ratio P*/ Q* toward i/2. 

Ratios of Random Variables 

Figure la and b plots the expected proportions of 
transitions and transversions for the single-rate model 
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and for the gamma-distributed-rates model. As noted, 
the extent of transition bias is often estimated by com- 
paring the observed proportions of transitions and 
transversions in recently diverged sequences. Figure la 
indicates that this might provide an accurate estimate 
when all sites in the sequence change at approximately 
the same rate. However, these curves describe what we 
should expect to see only in sequences of infinite length. 
When, as invariably must be the case, we have sequences 
of finite length, the observed p and & may be quite dif- 
ferent from what would be expected. The effects of finite 
sample size are particularly important for our estimate 
of transition bias, p/Q, because it is the ratio of two 
random variables. For two sequences consisting of n in- 
dependent homologous sites, the expectation and the 
variance of P/ Q, obtained using a Taylor series expan- 
sion of the ratio, are given approximately by 

E(p/&) x ; 1 + h 
( 1 

These apply both to the single-rate model of equations 
( 1) and (2) and to the gamma-distributed rates model 
of equations ( 5 ) and (6). 

Figure 1 a together with equation ( 8 ) indicates that 
p/Q is no< a very good estimator of the transition bias 
a/(2P), even when there is no rate variation among 
sites. Figure la shows that, as the time of separation 
between two sequences increases, the expectation of p/ 
Q for infinitely long sequences, P/Q, approaches l/2, re- 
gardless of the value of a/ ( 2p). Equation ( 8 ) introduces 
two further sources of error. For sequences of finite 
length, p/Q is a biased estimator of P/Q Only as n 
approaches infinity does E( p/ Q) approach P/ Q. The 
direction of this bias is toward higher values of p/Q, 
and its magnitude is greatest precisely when we expect 
P/Q to be closest to the actual transition bias (i.e., when 
P and Q are small). This is a consequence of the fact 
that Q appears with n in the denominator in equation 
( 8 ) . For this reason, the strategy suggested by figure 1 a- 
i.e., that of using very recently diverged sequences to 
estimate transition bias-does not appear to be a good 
one. While these observations warrant further investi- 
gation, it is clear that there are good reasons not to use 
p/ $ as an estimate of transition bias. 

On the other hand, there are circumstances under 
which p/ Q provides an acceptable estimate of transition 
bias. Because it is commonly employed, this ratio is used 

here to illustrate the effect that substitution rate variation 
among sites has on inferences about transition bias. Fig- 
ure 2 shows a plot of equation ( 8 ) , the expected value 
of P/ $, as a function of the number of sites, n, when 
there is no rate variation among sites. In figure 2, the 
actual transition bias a/(2P) is 10.0, and the two se- 
quences are recently enough diverged (Q x 0.0 1) that, 
as n gets large, p/Q is reasonably close to this number 
(P/ Q = 9.1) . A search of the parameter space indicates 
that, for a transition bias of 10.0 and in view of all of 
the sources of error discussed so far, this is an optimal 
level of divergence for using p/ & to estimate transition 
bias. The dashed curves show the expected value of p/ 
& f 2 standard deviations (SD), i.e., two times the 
square root of equation ( 9). Even under these best of 
circumstances, p/Q is close to its expected value only 
when a great number of sites are sampled. 

Rate Variation and Transition Bias 

The values just described (Q = 0.0 1 and a transi- 
tion bias of 10.0) will now be used to illustrate how rate 
variation among sites and transition bias are conflated 
in pairwise sequence comparisons. One thousand was 
chosen for the number of sites, as a realistic number for 
actual DNA sequence data and in an attempt to mini- 
mize the error due to sample size outlined above. Figure 
3 shows the ratio p/Q expected for a pair of sequences 
with these parameter values, as a function of the gamma- 
distribution parameter a. Consistent with figure lb, as 
a approaches 0, this estimate of the transition bias de- 
creases. When a is small, few sites vary at all, and those 
that do have already experienced multiple substitutions, 
even in two recently diverged sequences. As a gets larger, I 
the extent of underestimation decreases, and the value 
of p/ & approaches that expected when there is no rate 
variation. The dashed curves, again, show the expected 
value k2 SD. For these parameter values, when a 
< -0.1, the interval described by these curves does not 
include 10.0, the actual transition bias. 

As suggested by figure 1, substitution-rate variation 
among sites can have a profound effect on estimates of 
transition bias. Transition bias is underestimated because 
some sites in the sequence have diverged substantially, 
before others have experienced any substitutions at all. 
Equation (7) can be solved for the transition bias a/ 
(2PL giving 

a,(2P) _ (1 - 2P* - Q*)-“’ - 1 _ l,2, 
- 

(1 - 2Q*)-l” - 1 (10) 

which can be used to give a rough idea of the magnitude 
of the effect that rate variation has on the estimation of 
transition bias. This is not recommended as a correction 
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FIG. 2.-Graph of the expected value of p/d as a function of the number of sites sampled when there is no rate variation among sites. 
The smallest sample size shown in is n = 100, and the transition bias is 10. As n increases, E( p/$) approaches 9.1, the value expected for 
infinitely long sequences showing this level of divergence (Q = 0.0 1). Dashed curves represent the expected value +2 standard deviations. 

formula, because it ignores the effect of sample size. It 
is used below, for sequences of 1,135 sites, only to give 
a very crude estimate of the extent of underestimation 
of the transition bias caused by rate variation among 
sites. 

An Example Using Human mtDNA 

Kocher and Wilson ( 1991) analyzed complete 
DNA sequences from the mitochondrial control region 
of 14 humans, 3 chimpanzees, and 1 pygmy chimp. 
Their paper is well-suited to illustrate the present results, 
since it includes both a matrix of pair-wise transition and 
transversion differences and an estimate of the gamma- 
distribution parameter a. In the alignment of these 18 
sequences, the control region consists of 1,135 sites. p/ 
0 ratios for the four human sequence pairs closest to 
the best-case scenario above, those showing five trans- 
version differences ( 0 = 0.0044), can be used to estimate 
transition bias in the control region. The values of p/ & 
for these four pairs range from 3.2 to 4.4, with a mean 
of 3.6. Discrepancies between these numbers and those 
that would be calculated from Kocher and Wilson’s table 
3 are due to errors in their table. 

By fitting a negative binomial to the distribution 
of the inferred number of changes ,per site (see Uzzell 
and Corbin 197 1 ), Kocher and Wilson estimate a to be 
0.11. Putting the values of p, 0, and a for each sequence 
pair into equation ( 10) gives approximate corrected val- 
ues of the transition bias. These new values range from 
3.7 to 5.4, with an average of 4.26. Thus, ignoring rate 
variation among sites causes the transition bias to be 
underestimated by - 15%. While these two estimates 
are of the same order of magnitude, it is clear from figure 
3 that ignoring the rate variation can lead to much more 
serious underestimates of transition bias. This is partic- 
ularly important here, since fitting a negative binomial 

to the distribution of the inferred number of changes 
per site is known to overestimate a ( Wakeley, 1993 ) . 

The effect that transition bias is underestimated 
when rate variation among sites is ignored does not de- 
pend either on the method of estimating this bias or on 
the model of rate variation assumed. Using a maximum- 
likelihood approach to fitting pairwise differences, Has- 
egawa and Horai ( 199 1) found that allowing sites to 
occupy either of two rates caused estimates of the tran- 
sition bias in the control region to increase over values 
obtained when a single rate was assumed for all sites. 
Performing maximum-likelihood calculations in the 
context of a tree relating the sequences, Yang et al. 
( 1994) reported a negative correlation between estimates 
of the transition ratio and the gamma-distribution pa- 
rameter. Their analysis was done on the mtDNA data 
of Brown et al. ( 1982). When the computer programs 
developed by Yang ( 1993) are applied to the data an- 
alyzed here, a similar pattern emerges. Ten of the 14 
human sequences, H 1 through H 10, were used in ob- 
taining the numbers below, as that was the most that 
the programs could handle. Unfortunately, the relatively 
low level of divergence among human mtDNA se- 
quences does not permit the simultaneous estimation of 
transition bias and the gamma-distribution parameter 
a. However, when a single-rate model is assumed, the 
transition bias is estimated to be 4.06, and, when the 
gamma-distributed-rates model is assumed and a is set 
to 0.11, it is estimated to be 4.78. 

Discussion 

Estimates of substitution-rate variation among sites 
and of biased mutation rates among the four nucleotides 
should be made simultaneously. Two studies have re- 
cently made significant contributions toward this goal. 
Kelly ( 199 1) and Kelly and Rice (in press) describe a 
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FIG. 3.-Graph showing the extent to which p/ $ underestimates 
the transition bias when rates are gamma distributed among sites. The 
expected value of Is/$ is plotted against the gamma-distribution pa- 
rameter a, which is inversely related to the extent of rate variation 
among sites. $ x 0.01, meaning that, on average, one transversion is 
observed every 100 sites between the two sequences. Dashed curves 
represent the expected value +2 standard deviations. 

maximum-likelihood approach to the analysis of sub- 
stitution-rate variation among sites in DNA sequences, 
under general models of nucleotide-site evolution. The 
method provides both for a test of rate uniformity and 
for the calculation of lower bounds for the mean and 
variance of rates among sites when sequences are related 
by a star phylogeny. If rates are gamma distributed, the 
parameters of the distribution can be estimated. Because 
the likelihood calculations are computationally very in- 
tensive, Kelly restricted many of her analyses to pairs 
of species. Recently, Yang ( 1993) presented a maxi- 
mum-likelihood method of estimating phylogenies when 
rates are gamma distributed among sites, for Felsen- 
stein’s ( 198 1) model of nucleotide-site evolution. The 
parameters of the gamma distribution and the substi- 
tution model can be estimated along with the tree. The 
method has now been extended to several other models 
of nucleotide-site evolution (Yang et al. 1994). While 
still quite computationally intensive, this method has 
the advantage of working for arbitrary tree topologies 
and is available in program form. 

Two conclusions can be drawn from the present 
work. The first is that p/d is not a very good estimator 
of the transition bias, even when there is no rate variation 
among sites. As two sequences diverge, P/Q, the ex- 
pected value of p/& for infinitely long sequences, ap- 
proaches l/2 for any value of transition bias. In addition, 
B/ 0, being the ratio of two random variables, is a biased 
estimator of P/Q. This bias can be quite large unless a 
great number of sites are sampled and is greatest in mag- 
nitude exactly when P/Q is closest to the actual tran- 
sition bias, i.e., when P and Q are small. Rate variation 
among sites introduces another source of error: sites that 
change rapidly will experience multiple substitutions 

Rate Variation and Transition Bias 441 

before slowly evolving sites have changed at all. This 
biases P/ Q toward ‘12. Thus, the observation of a low p/ 
& ratio in two recently diverged sequences can result 
either from low transition bias and little variation in rate 
or from high transition bias and great variation in rate. 
This illustrates the second conclusion of the present 
work: transition bias is underestimated when rate vari- 
ation is ignored, a result that does not depend on the 
use of p/Q as an estimator. 
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