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Abstract. More than an order of magnitude differ- 
ence in substitution rate exists among sites within 
hypervariable region 1 of the control region of hu- 
man mitochondrial DNA. A two-rate Poisson mix- 
ture and a negative binomial distribution are used to 
describe the distribution of the inferred number of 
changes per nucleotide site in this region. When 
three data sets are pooled, however, the two-rate 
model cannot explain the data. The negative bino- 
mial distribution always fits, suggesting that substi- 
tution rates are approximately gamma distributed 
among sites. Simulations presented here provide 
support for the use of a biased, yet commonly em- 
ployed, method of examining rate variation. The 
use of parsimony in the method to infer the number 
of changes at each site introduces systematic errors 
into the analysis. These errors preclude an unbiased 
quantification of variation in substitution rate but 
make the method conservative overall. The method 
can be used to distinguish sites with highly elevated 
rates, and 29 such sites are identified in hypervari- 
able region 1. Variation does not appear to be clus- 
tered within this region. Simulations show that bi- 
ases in rates of substitution among nucleotides and 
non-uniform base composition can mimic the ef- 
fects of variation in rate among sites. However, 
these factors contribute little to the levels of rate 
variation observed in hypervariable region 1. 

Key words: Rate variation - -  Hypervariable re- 
gion 1 - -  Human mitochondrial DNA - -  Gamma 
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Introduction 

Since Benzer's (1961) demonstration of mutational 
"hot spots" in T4 phage, workers have recognized 
that variation in substitution rate exists among sites 
in molecular sequences. It now appears that such 
rate variation is quite common, and there is cur- 
rently a growing effort to study its effects. Besides 
being of interest in its own right, knowledge of rate 
variation will help refine our methods of phyloge- 
netic inference, molecular clock analyses, and stud- 
ies of molecular structure and function. This paper 
presents an analysis of substitution rate variation 
among sites in hypervariable region 1 of the control 
region of human mitochondrial DNA. The results 
show that substantial variation in rate does exist, 
that this variation is well described by a gamma 
distributed-rates model, that sites with elevated 
rates can be identified, and that variation does not 
appear to be clustered in this region. Further, sim- 
ulations provide support for the use of a parsimony 
method commonly employed in studies of rate vari- 
ation. 

Evolutionary Studies of  Rate Variation 

Evolutionary studies of rate variation began soon 
after the phenomenon of the molecular clock was 
first reported (Zuckerkandl and Pauling 1965). If all 
sites in a sequence change according to the same 
rate, the number of substitutions per site in the his- 
tory of a sample of sequences should follow a Pois- 
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son distribution. Using pairwise comparisons 
among hemoglobin and cytochrome c sequences, 
King and Jukes (1969) found that the number of 
amino acid substitutions inferred to have occurred 
at each site could be fit by a Poisson distribution 
only if a number of invariable sites were excluded. 
Fitch and Margoliash (1967), employing a tree- 
based method to count changes, estimated the num- 
ber of unmutable and hypermutable positions in ey- 
tochrome c by excluding sites until a minimum chi- 
square fit to a Poisson distribution was achieved. 

Fitch and Markowitz (1970) and Markowitz 
(1970) employed more sophist icated statistical 
methods to fit a one-rate model, a one-rate-plus- 
invar iab le-s i tes  model ,  and a two-ra te -p lus-  
invariable-sites model to the inferred number of nu- 
cleotide substitutions per codon in the evolution of 
cytochrome c and fibrinopeptide A among 29 di- 
verse species. They reported that the best fit to the 
data from cytochrome c and fibrinopeptide A was 
achieved by the two-rate-plus-invariable-si tes  
model. Later, Fitch (1976) compiled the distribution 
of the number of nucleotide changes per codon in 
cytochrome c sequences from more than 50 species. 
He found that the two-rate-plus-invariable-sites 
model was insufficient to explain the observed data, 
indicating that there are at least four classes of rate 
variability among sites in that molecule. Other au- 
thors have employed a variety of these discrete 
rate-class models (e.g., Jukes and Holmquist 1972; 
Aquadro et al. 1984; Hasegawa et al. 1985; Kuni- 
sawa et al. 1987; Palumbi 1989). 

Each site in a molecular sequence probably has a 
uniquely determined substitution rate resulting 
from the specific structural and functional con- 
straints of the molecule of which it is a part (Dick- 
erson 1971; Golding and Glickman 1986; Holmquist 
and Pearl 1980; Kimura 1979). For some molecules, 
models with a fixed small number of rate classes 
might be appropriate (Foster et al. 1982). For oth- 
ers, models incorporating continuously distributed 
rates are better. In 1971, Uzzell and Corbin intro- 
duced a gamma distributed-rates model and showed 
that it fit as well as the variable-rate models of Fitch 
and Markowitz (1970) when applied to the same 
data. When rates are gamma distributed across 
sites, the number of substitutions in the history of a 
sample of sequences should follow a negative bino- 
mial distribution. Uzzell and Corbin (1971) em- 
ployed a minimum chi-square procedure identical to 
the one used by Fitch and Margoliash (1967) to ex- 
clude numbers of invariable sites from the analysis. 

The gamma distributed-rates model has been em- 
ployed by several other workers without the addi- 
tion of invariant sites. Holmquist  et al. (1983) 
showed that a negative binomial distribution fit 
nicely the number of nucleotide changes inferred 

per codon in et hemoglobin, [3 hemoglobin, myoglo- 
bin, the et crystalline A chain, and cytochrome c, 
whereas the Poisson failed miserably. Golding 
(1983) fit a negative binomial distribution to a vari- 
ety of data from different organisms, including num- 
bers of spontaneous mutants in the rII region of T4 
phage and the lacI gene of Escherichia coli, of nu- 
cleotide changes per codon in cytochrome c and 
myoglobin, of nucleotide substitutions per site in 
human mtDNA and b globin, and of base substitu- 
tions per restriction site in human mtDNA. Larson 
and Wilson (1989) used the negative binomial to de- 
scribe the number of nucleotide changes per site in 
ribosomal RNA in salamanders. Kocher and Wilson 
(1991) recently fit a negative binomial to the in- 
ferred number of changes per site in the entire con- 
trol region of human mtDNA. 

Mitochondrial DNA Sequences 

For the present work, I have fit a two-rate model 
and a gamma distributed-rates model to the distri- 
bution of the inferred number of changes per site in 
three sets of sequences from hypervariable region 1 
of the control region of human mtDNA. The human 
mitochondrial genome is a 16,569-bp circular mole- 
cule encoding 22 transfers RNAs, 13 proteins, and 
two ribosomal RNAs. In humans, mitochondria ap- 
pear to be maternally inherited and their evolution- 
ary genetics conform well to a haploid model with 
no recombination (Wilson et al. 1985). Olivo et al. 
(1983) suggested that recombination or gene con- 
version may occur in the displacement loop (D 
loop) region, but this exception has not been dem- 
onstrated conclusively. Less than 10% of the mito- 
chondrial genome is noncoding and about 90% of 
this noncoding DNA is found in the control region. 
The control region spans 1,122 bp between the pro- 
line and phenylalanine transfer RNA sequences. It 
contains the origin of heavy-strand replication 
(Anderson et al. 1981), the origins of both heavy- 
and light-strand transcription (Cantatore and At- 
tardi 1980), promoters for both heavy- and light- 
strand transcription (Chang and Clayton 1984; Hix- 
son and Clayton 1985), two transcription-factor 
binding sites (Fisher et al. 1987), three conserved 
sequence blocks associated with the initiation of 
replication, and the D-loop strand-termination- 
associated sequences (Walberg and Clayton 1981; 
Brown et al. 1986; Foran et al. 1988). 

Brown et al. (1979) estimated that mtDNA 
evolves at a rate which is five to 10 times that of 
single-copy nuclear DNA. Control region se- 
quences appear to diverge about 10 times faster 
than the mitochondrial genome as a whole (Green- 
berg et al. 1983). Variation is nonrandomly distrib- 
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uted over the control region; two hypervariable seg- 
ments of roughly 350 bp each flank a central 
conserved sequence (Walberg and Clayton 1981; 
Aquadro and Greenberg 1983). Also, hypervariable 
region 1, which falls between tRNApro and the con- 
served middle segment, displays about twice as 
much variability as hypervariable region 2 (Vigilant 
1990). Although it is rapidly evolving and noncod- 
ing, the control region appears to be subject to an 
intricate system of constraints to variation, presum- 
ably as a consequence of the many functions it sup- 
ports. Saccone et al. (1985), Brown et al. (1986), 
Mignotte et al. (1987), and Saccone et al. (1991) all 
report conservation of proposed structure and func- 
tion even when diversity across taxa makes se- 
quences hard to align. These studies imply a com- 
plex pattern of substitution rate variation across 
sites in this region. In the absence of detailed 
knowledge of these forces, the two-rate model and 
the gamma distributed-rates model may provide 
useful quantifications of the differences in rate 
among sites. 

Compared to the control region as whole, hyper- 
variable region 1 may appear relatively homoge- 
neous in substitution rate. However, levels of rate 
variation among sites specifically within this region 
have not been adequately investigated. As men- 
tioned above, Golding (1983) and Kocher and Wil- 
son (1991) used the gamma distribution to describe 
variation in substitution rate among sites in the 
whole mitochondrial genome and the entire control 
region, respectively. Hasegawa et al. (1985) intro- 
duced a one-rate-plus-invariable-sites model in a 
molecular clock analysis of sequences from the two 
proteins and three tRNAs in hominoid mtDNA that 
was later used by Hasegawa and Horai (1991) to 
analyze human control region sequences. This pa- 
per presents an analysis of substitution rate varia- 
tion in hypervariable region 1 using the data re- 
ported by DiRienzo and Wilson (1991), Horai and 
Hayasaka (1990), and Vigilant (1990). The data sets 
are analyzed first separately and then combined 
into one large data set. 

detecting variation in substitution rates have not yet been ex- 
plored. The simulation results presented below outline the ef- 
fects of these systematic errors. 

Independently derived trees are not generally available for 
within-species data. The trees relating the human mtDNA se- 
quences examined here were reconstructed using the neighbor- 
joining method of Saitou and Nei (1987). The use of recon- 
structed trees for within-species data is valid only if the 
sequences are nonrecombining. Otherwise different portions of 
the sequence have different historical relationships (Hudson 
1983a; Hein 1990). It is important to note that this entire analysis 
depends on all the sites in the sequence sharing a common his- 
tory. Fitch's (1971) algorithm was used to infer the minimum 
number of changes at each site in the history of a sample of 
sequences for any particular tree. This paper examines the ef- 
fects of using this parsimony method of reconstructing states to 
make inferences about rate variation. Questions about the accu- 
racy of reconstructed trees are not addressed here. 

Once the number of changes per site was obtained, a statistic 
which I call f, described by Tiago de Oliveira (1965), provides a 
test for non-uniformity of rate: 

s, ~ - m, 
b(Mn) = 1 - 2 V r ~  - 3Mn (1) 

where n is the sample size, S 2 is the sample variance, and Mn is 
the sample mean. The asymptotic distribution of f is normal 
(mean = 0, variance = 1), so significant positive values lead to 
the rejection of the null hypothesis of a single rate at all sites in 
favor of the alternative hypothesis that more than one rate exists. 
In the results presented here, the null hypothesis was rejected if 
f w a s  greater than 2.326 (1% significance level). The value o f f  is 
a more informative and appropriate measure of deviations from 
rate uniformity than the lack of fit of the Poisson distribution. 

If rate uniformity could be rejected, I then fit a two-rate Pois- 
son mixture and a negative binomial distribution to the data. Two 
methods of moments procedures suggested by Cohen (1965) and 
Johnson and Kotz (1969, Method 2 p. 131) were used to estimate 
the parameters of these distributions. These were tested against 
a number of different estimation procedures and performed as 
well or better than the others. Chi-square values indicate the 
goodness of fit tests of these distributions to the observed data. 
Here, a model fit the data if its chi-square value was not signif- 
icant at the 1% level. In the analysis of the mtDNA sequence 
data and in the simulations described below, I considered the 
following three models of substitution rate variation among sites. 

One-Rate Model. Let X be the number of changes per site in 
the history of the sequences and let T be the total length, in 
generations, of that history. If all sites have the same per- 
generation substitution rate, ~x, the number of changes per site, 
follows a Poisson distribution with parameter txT. 

Methods 

All the studies of substitution rate variation discussed above 
share an underlying methodology. Given a tree relating the se- 
quences, a parsimony reconstruction of states at the internal 
nodes of the tree is used to infer the number of changes at each 
site. These numbers are then treated as data, usually being fit by 
various statistical distributions. Numerous workers have em- 
ployed versions of this method and, presumably, will continue to 
do so. However, the method is biased because a parsimony re- 
construction of states gives the minimum number of changes 
required at a site. The magnitude of this bias and how it might 
affect the usefulness of the parsimony method as a means of 

Two-Rate Model. Here, a fraction, 8, of the sites are in one 
rate class (fast) and the remaining 1 - g are in another (slow). 
Fast sites have a per-generation substitution rate of ix 1 and slow 
sites have a per-generation substitution rate of ix 2, where ~x I > 
ix 2. The distribution of X given that a site is fast is Poisson(ha) 
and the distribution of X given a site is slow is Poisson(h2), where 
h~ = ~IT and hz = p,2 T .  The marginal distribution of X is a 
mixture of two Poisson distributions: 

~. lke-~ ' t  ~.2ke - ~'2 
P ( X = k ) = ~ + ( 1 - ~ )  k! , k = O ,  1,2 . . . . .  

(2) 

Gamma Distributed Rates Model. In this model, each site, i, 
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has a per-generation substitution rate, I~, which is drawn from a 
gamma distribution with parameters a and ®. That is, 

~ i  a -  I e - g ' i / o  

f ( P ~ i )  - -  F ( a ) O a  , 0 <~ ~i < ~ .  (3) 

If T is again the total length of the history of the sequences, the 
number of changes at site i will follow a Poisson distribution with 
parameter p~iT. Then, the distribution of the number of changes 
per site follows a negative binomial distribution: 

(4) 

k = 0, 1, 2 . . . .  where P = OT. 
Under both of these variable-rate models, it is possible to 

distinguish sites that evolve rapidly from sites that evolve 
slowly. When there are two rate classes, a site is identified as fast 
if the probability that it is actually a slow site, given the number 
of changes it has undergone, is lower than some critical value, 
say 0.01. When rates are gamma distributed among sites, a cutoff 
value for the rate at a site can be chosen and sites whose rates are 
greater than that value can be designated "fast ."  This value will 
correspond to a cutoff point for the number of changes at a site 
such that sites with numbers of changes above this cutoff are 
identified as fast. 

Coalescent Simulations. To provide an idea of how the bias 
in the parsimony method of counting state changes affects our 
ability to detect and quantify variation in substitution rate, I 
simulated sets of sequence data and applied the method to them. 
The simulations presented here follow a process known as the 
"coalescent" (Hudson 1983b; Tajima 1983). The coalescent is a 
convenient way to simulate samples of sequences taken from a 
large, random mating population of constant effective size. It is 
assumed that the sequences are not subject to selection and do 
not undergo recombination. Under the coalescent, genealogies 
of sequences are random bifurcating, rooted topologies. The dis- 
tribution of the time, in generations, between two successive 
nodes in a coalescent tree is approximately exponential with 
parameter i(i - 1)/(2N) where N is the effective population size 
and i is the number of lineages present in that interval. The 
coalescent process is an appropriate model for within-species 
data in the absence of other information about the population 
from which the samples were taken. 

For each replicate, a coalescent tree of 100 sequences was 
generated. This is about the average number of sequences in the 
mtDNA data sets analyzed below. A random sequence 300 bp in 
length was then assigned to an interior node of the tree. Se- 
quences evolved along the branches of the tree according to one 
of the three models of rate variation described above. Changes 
among nucleotides at each site followed a Jukes-Cantor one- 
parameter substitution matrix (Jukes and Cantor 1969). The 
method of assessing rate variation described above was then 
applied to the simulated data set. Since the parameters of the 
models are known and because the actual changes in the se- 
quences are recorded, we can compare the results of the analysis 
to our expectations of them. 

For each of the three models of rate variation among sites, I 
considered four cases of absolute substitution rate. These were 
chosen so that levels of variation in the simulated data sets would 
cover the range of variation observed in the three mtDNA data 
sets. Table 1 lists the 12 resulting sets of simulation parameters. 
Case A represents the lowest overall substitution rate and case D 
the highest. For each case A, B, C, and D, the mean substitution 
rate is exactly the same for all three models. Further, when there 

Table 1. Simulation parameters: values of 0i = 2Nui are as- 
signed to each site, as described in the text and according to the 
parameters below, where N is the effective population size and u i 
is the per generation substitution rate at site i (N assumed to be 
equal to 105 ) 

Case A Case B Case C Case D 

One rate: 
0.0325 0.0975 0.1625 0.2275 

Two rates: 
~L 1 0.10 0.30 0.50 0.70 
P~2 0.01 0.03 0.05 0.07 
8 0.25 0.25 0.25 0.25 

Gamma distributed 
rates: 

a 0.0310 0.0855 0.1317 0.1714 
O 1.0467 1 . 1 4 0 2  1 . 2 3 3 7  1.3271 

is variation among sites, for each case A, B, C, and D the vari- 
ances in substitution rate among sites are identical in the two- 
rate model and the gamma distributed-rates model. To get some 
idea of the variation in the estimated parameters, I performed 
100 replicates for each of the 12 sets of input parameters in Ta- 
ble 1. 

Simulation Results 

In  t h e  f i g u r e s  b e l o w ,  " a c t u a l "  r e f e r s  to  t h e  k n o w n  

v a l u e  o f  p a r a m e t e r s  a n d  " i n f e r r e d "  r e f e r s  to  t h e  

v a l u e  o b t a i n e d  w h e n  t h e  p a r s i m o n y  m e t h o d  w a s  ap -  

p l i ed  to  s i m u l a t e d  da ta .  E r r o r  b a r s  r e p r e s e n t  o n e  

s t a n d a r d  d e v i a t i o n  o f  t h e  e s t i m a t e s  o v e r  100 rep l i -  

c a t e s .  

The Number  o f  Changes Per Site 

A s  e x p e c t e d ,  a p a r s i m o n y  r e c o n s t r u c t i o n  o f  s t a t e s  

u n d e r e s t i m a t e s  t h e  n u m b e r  o f  c h a n g e s  p e r  s i te  in 

t h e  h i s t o r y  o f  a s a m p l e  o f  s e q u e n c e s .  T h i s  e f f e c t  is 

m i n o r  f o r  s i t e s  t ha t  h a v e  e x p e r i e n c e d  f e w  c h a n g e s  

b u t  c a n  b e  q u i t e  s i g n i f i c a n t  f o r  s i t e s  t h a t  h a v e  

c h a n g e d  m a n y  t i m e s .  G i v e n  t h e  s h a p e  o f  t h e  d i s t r i -  

b u t i o n s  c o n s i d e r e d  h e r e  ( m o d e  = 0), th i s  c a u s e s  

b o t h  t h e  m e a n  n u m b e r  a n d  t h e  v a r i a n c e  t o  b e  

s m a l l e r  f o r  t h e  i n f e r r e d  d i s t r i b u t i o n  t h a n  f o r  t h e  ac -  

t ua l  d i s t r i b u t i o n .  S i m u l a t i o n s  v e r i f y  t h a t  b o t h  t h e  

m e a n  a n d  t h e  v a r i a n c e  a r e  u n d e r e s t i m a t e d  in  e v e r y  

c a s e  f o r  e v e r y  m o d e l  (F ig .  1). N o t e  t h a t  t h e  m a g n i -  

t u d e  o f  u n d e r e s t i m a t i o n  is g r e a t e r  f o r  t h e  v a r i a n c e  

t h a n  it  is f o r  t h e  m e a n .  

Test for  Non-uniformity 

F i g u r e  2 s h o w s  t h e  a v e r a g e  v a l u e s  o f  t h e  t e s t  s ta-  

t i s t i c  f f o r  e a c h  o f  t h e  f o u r  c a s e s  o f  a b s o l u t e  subs t i -  

t u t i o n  r a t e  u n d e r  t h e  o n e - r a t e ,  t w o - r a t e ,  a n d  g a m m a  

d i s t r i b u t e d - r a t e s  m o d e l s .  W h e n  t h e r e  is no  v a r i a t i o n  
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Fig. 1. Underestimation of the mean and the variance of the 
number of changes per site for each case A, B, C, and D under 
(a) the one-rate model, (b) the two-rate model, and (e) the gamma 
distributed-rates model. 

Estimation of  Parameters 

Figure 3 displays the results of the parameter esti- 
mates for the two-rate Poisson mixture from data 
simulated according to the two-rate model. Only 
results for cases B, C, and D are shown since it was 
impossible to reject uniformity of rate in case A. 
Consistent with the above observation that parsi- 
mony causes the number of changes per site to be 
underestimated, the estimated values of both rate 
parameters for the two-rate model are, on average, 
less than their expected values. The magnitude of 
the underestimation becomes greater as the overall 
amount of change in the sequences increases. On 
average, the ratio of the two rates conforms well to 
its actual value but the variance in this is quite 
large. Estimates of the fraction of sites that are fast 
are somewhat biased toward larger values and the 
magnitude of this bias appears to be similar in all 
three cases. 

Figure 4 shows the estimates of the two param- 
eters of the negative binomial distribution from data 
simulated according to the gamma distributed-rates 
model. One of the parameters, P, is consistently 
underestimated and the other, a, is consistently 
overestimated. These results are also understand- 
able in terms of the effect of parsimony on the anal- 
ysis. Underestimation of the number of changes per 
sites causes P to be biased toward smaller values 
since P should be proportional to the total length of 
the history of the sequences. The negative binomial 
parameter a should be equivalent to the gamma dis- 
tribution parameter a. Under the gamma model, the 
coefficient of variation of rates among sites is e~- 1/2. 
Because the magnitude of underestimation of the 
variance of the number of changes per site is greater 
than that of the mean, the coefficient variation is 
also underestimated. This biases estimates of a to- 
ward larger values. 

Distinguishing Between Variable-Rate Models 

in substitution rate among sites, values of the test 
statistic are, on average, less than zero. When there 
are two rates, significant values o f f  are obtained 
only in cases B, C, and D. When the total amount of 
change is small (case A), significant values o f f  are 
rare. The greater effect of parsimony on the vari- 
ance than on the mean decreases our power to de- 
tect variation in substitution rate when it is present, 
making this a conservative test. When rates are 
gamma distributed, uniformity among sites can be 
rejected in every case. Under the gamma distrib- 
uted-rates model, the inferred distribution of the 
numbers of changes per site is sufficiently spread 
out to allow rate uniformity to be rejected even 
when the total amount of change is small. 

In principal, we should be able to distinguish be- 
tween the two-rate model and the gamma distrib- 
uted-rates model. Figure 5a shows the fraction of 
times the two-rate Poisson mixture and the negative 
binomial fit the simulated data when sites' actual 
rates follow the two-rate model. When there are 
only two rates, the negative binomial fits the data 
well for all cases. This is, in part, a consequence of 
the underestimation of the numbers of changes per 
site but is also consistent with the statement of Bliss 
and Fisher (1958) that data from a mixture of Pois- 
son distributions with similar rates should conform 
to a negative binomial. Figure 5b shows the fraction 
of times the two distributions fit the simulated data 
when rates are gamma distributed across sites. 
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Fig. 2. Average values of the test statisticffor each case A, B, C, and D under (a) the one-rate model, (h) the two-rate model, and 
(e) the gamma distributed-rates model. Values of f greater than or equal to 2.326 are significant at the 1% level and cause the rejection 
of the hypothesis of rate uniformity. 
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Fig. 3. Comparison of the actual and inferred values of (a) the 
fast rate, (h) the slow rate, (c) the ratio of fast to slow, and (d) the 
fraction of sites that are fast over 100 replicates for each case B, 
C, and D when the actual distribution of rates follows the two- 
rate model. 
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els. F igure  5 also shows  that  the appropr ia te  vari- 

A B C D A B C D 

Case Case 

Fig. 4. Comparison of the actual and inferred values of the 
negative binomial parameters P and c~ over 100 replicates for 
each case A, B, C, and D when the actual distribution of rates 
follows the gamma model. 

able-rate dis tr ibut ion near ly  a lways  fits da ta  gener-  
a ted under  each  o f  the two  models .  

Identifying Fast Sites 

In  the two-ra te  model ,  25% o f  the sites change  at a 
ra te  that  is 10 t imes grea ter  than  the rate  at the o ther  
75% o f  the sites, making  the mean ing  o f  " f a s t "  
clear. To be  cons is ten t  be tween  the two  variable-  
rate models ,  w h e n  sites ra tes  were  g a m m a  distrib- 
u ted  I def ined a site as fast  if its ra te  fell in the  top  
25% of  the distr ibution.  Figure  6 shows ,  for  bo th  
models ,  the f rac t ion  o f  fast  sites co r rec t ly  identif ied 
as fast  and the f rac t ion  o f  slow sites mis taken ly  
identified as fast. I t  appears  that  fast  sites are  more  
easily identified w h e n  rates  are g a m m a  dis t r ibuted 
across  sites (except ing case  A). Our  ability to iden- 
tify fast  sites is only  fair unde r  the two-ra te  mode l  
and the specific pa r ame te r  values  used  here.  S low 
sites, though ,  are  in f requent ly  mi s t aken  as fast ;  
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Fig. 5. The fraction of times that the two-rate Poisson mixture 
and the negative binomial distribution fit data simulated under (a) 
the two-rate model and (b) the gamma distributed-rates model. A 
model is considered to fit the data if its chi-square value is not 
significant at the 1% level. 
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Fig. 6. The proportion of fast sites that are correctly identified 
as fast and of slow sites mistaken as fast when data are generated 
under (a) the two-rate model and (b) the gamma distributed-rates 
model. 

nearly all the sites identified as fast do have ele- 
vated rates. In Fig. 6, for each case, the heights of  
the two bars represent  the relative number of truly 
fast and slow sites among sites that are identified as 
being fast. For  example,  in case C in the two-rate 
model the proport ion of  truly fast sites among sites 
identified as fast is 0.98. 

Rate Variation in Hypervar iable  Region I 
DiRienzo and Wilson (1991), Hora i  and Ha- 

yasaka (1990), and Vigilant (1990) report  88, 101, 
and 135 human mtDNA control  region sequences,  
respectively.  I will refer  to these as data sets 1, 2, 
and 3, in the order  above.  These data sets share a 
250-bp segment of  hypervariable  region 1 corre-  
sponding to sites 16,130-16,379 in the s tandard 
numbering system of  Anderson et al. (1981). Table 
2 shows the results of  applying the method to each 
of these data sets separately and combined into one 
large set of  322 sequences.  (The reference sequence 
is the same in all three data sets.) As expected,  the 
mean number  of  changes per  site obse rved  in- 
creases with the size of  the data set. Consistent with 
the simulation results, values of the test statistic f 
increase with the overall amount  of  change in the 
sequences.  All of  the values o f f  shown are signifi- 
cant at the 1% level. We can clearly reject the null 
hypothesis  that all sites in hypervariable region 1 
change at the same rate. 

Table 2 shows the estimates of  the parameters  of 
the two-rate Poisson mixture and the negative bino- 
mial for each of the three data sets and for all data 
combined. Looking first at the two-rate model, the 
ratio of  the fast rate to the slow rate is approxi- 
mately 12. About 16% of  these sites change accord- 
ing to the fast rate and 84% according to the slow 
rate. However ,  only when the three data sets are 
analyzed separately can the distribution of  the num- 
ber of  changes per site be explained using the two- 

rate model. When the data sets are combined,  a 
mixture of two Poisson distributions does not fit the 
data (X 2 = 60.1, df = 6; P < 0.001). In contrast ,  the 
gamma distributed-rates model is always sufficient 
to explain the observed numbers of  changes per 
site. Estimates of  the parameters  of  the negative 
binomial distribution suggest that the coefficient of  
variation in rate among sites is approximately 1.5. 
Further,  the simulation results presented above in- 
dicate that this is an underest imate of  the actual 
amount  of  variation. That  is, the estimates of  ~ in 
Table 2 are probably too large. Consistent  with the 
simulation results, estimates of  P are roughly pro- 
portional to the overall amounts of  change in the 
data sets. 

Table 3 lists the sites identified as being fast in 
the combined data set. I chose a cutoff  point such 
that sites with rates in the upper  10% of  the gamma 
distribution, with oL equals 0.47, are considered fast. 
Given that P equals 3.45, this corresponds to a cut- 
off  point for the number of changes at a site of  about 
4.5. Sites which have  undergone  f ive or  more  
changes, then, are called fast and the rest are called 
slow. Twenty-nine sites were identified as fast using 
this method. The means of the expected number  of  
changes per site for sites below and above the fast/ 
slow cutoff  are 1.0 and 7.4, respectively.  In other 
words,  the rate of substitution at fast sites is, on 
average, 7.4 times the rate of  substitution at slow 
sites. Sites are listed in Table 3 in decreasing order  
of the number  of  changes they have exper ienced to 
give some idea of  the variation in rate among these 
" f a s t "  sites. 

Lastly,  in relating inferences about rate variation 
to the structural and functional features of hyper-  
variable region 1, we would like to know whether  
the variability among sites is clustered along the 
sequence. To address this, I calculated the coeffi- 
cient of  correlation for the number  of  changes at 
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Table 2. 
per site 

Estimated parameters for the three mtDNA data sets individually and combined: 2 is the inferred mean number of changes 

~ f hi h2 XllX2 ~ a P 

Data set 1: 0.464 6.62 1.85 0.16 11.6 0.18 0.44 1.05 
Data set 2: 0.624 12.05 3.72 0.34 10.9 0.08 0.60 1.04 
Data set 3: 0.844 18.94 3.76 0.31 12.1 0.16 0.45 1.85 
All data: 1.640 53.96 7.27 a 0.53 a 13.7 a 0.16 a 0.47 3.45 

a When the data sets are combined, the two-rate model no longer fits the data 

Table 3. "Fas t"  sites identified within hypervariable region 1: 
position numbers are according to the standard numbering sys- 
tem of Anderson et al. (1981) 

Number of changes Position(s) 

19 16,223, 16,362 
17 16,311 
13 16,189 
11 16,294 
9 16,172 
8 16,291, 16,304 
7 16,187, 16,234, 16,355 
6 16,209, 16,256, 16,266, 16,274 

16,290, 16,293, 16,319 
5 16,136, 16,145, 16,184, 16,186 

16,188, 16,214, 16,217, 16,243 
16,278, 16,298, 16,320 

sites separated by different distances. If there is 
clustering, we would expect there to be a gradual 
decrease in the value of the correlation coefficient 
from one for the correlation of a site with itself to 
zero for the correlation of two sites separated by 
some number of other sites. Figure 7 shows the 
result. The correlation coefficient immediately 
drops to near zero for adjacent sites and then varies 
around zero for sites separated by greater dis- 
tances. Standard significance tests of the correla- 
tion coefficient cannot be applied here since pairs of 
sites are not independent. However, it appears that 
there is no clustering of variability in hypervariable 
region 1. 

Substitution Bias and Base Composition 
The assumptions of Jukes-Cantor substitution 

and uniform base composition made in the simula- 
tions presented above are unrealistic for mtDNA. 
In the 250-bp segment analyzed here, transitions 
between pyrimidines (CT) are nearly three times as 
abundant as transitions between purines (AG), 
t ransvers ions  make up only about 5% of all 
changes, and the base composition is 0.35:0.09: 
0.37:0.19 (A:G:C:T). In addition, the inferred num- 
bers of G-to-A and T-to-C changes are roughly 
equivalent to the inferred numbers of A-to-G and 
C-to-T changes, respectively, so that, per base, G 

1.2- 
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.2 

0.0 

- . 2  

-2 0 
i i , , i i i i i J i 

2 4 6 8 10 12 14 16 18 20 22 24 

distance 

Fig. 7. Graph of the correlation coefficient between the number 
of changes at sites separated by one, two, etc., base pairs. Dis- 
tances on the horizontal axis are offset by one: 0 corresponds to 
the correlation of a site with itself, 1 to the correlation between 
adjacent sites, 2 to the correlation between sites separated by 
one base pair, and so on. 

and T must change more rapidly than A and C. The 
possibility exists that the different rates of transi- 
tion among purines and pyrimidines and elevated 
G-to-A and T-to-C rates of change account for 
much of the variation observed in hypervariable re- 
gion 1. For instance, we might infer significant vari- 
ation in rate among sites if being a pyrimidine in the 
ancestral sequence predisposed a site to change 
many times (transversions being rare). Similarly, if 
a site in the ancestral sequence was a G and then 
changed to A in parallel several times, it might be 
identified as a fast site. 

To assess the magnitude of these effects, I did 
100 replicates of case C of the one-rate model, but 
where the base composition mentioned above was 
maintained, changes between pyrimidines were 
three times more likely than changes between pu- 
rines, and the transition bias was 15 to one. The 
resulting mean value of the test statistic f was 1.37 
with a standard deviation of 1.05. Compare this to 
the results for case C in Fig. 2a; biased substitution 
among nucleotides and skewed base composition 
do appear to mimic the effects of variation in sub- 
stitution rate among sites. We can control for these 
effects in the analysis of mtDNA sequences by ex- 
amining separately sites that are inferred to be A, 
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Fig .  8. D i s t r i b u t i o n s  o f  p a r a m e t e r  est i -  

m a t e s  f o r  d a t a  se t  3 o v e r  100 e q u a l l y  p a r -  

s i m o n i o u s  t r ee s .  T r e e s  w e r e  i n f e r r e d  us -  

ing  P A U P  ( S w o f f o r d  1990). 

G, C, and T in a hypothetical ancestral sequence 
and by considering only sites that have remained 
either purines or pyrimidines during their entire his- 
tory. Doing this does not affect our conclusions 
about substitution rate variation in hypervariable 
region 1. For sites that unambiguously show a C in 
the inferred ancestral sequence, the value of f is 
32.6, the two-rate model s.till does not fit the data, 
and the estimated value of oL is 0.42. For sites with 
a T, fequa ls  40.3 and a equals 0.53. Sites that are 
inferred to be A and G in the ancestral sequence and 
remain purines across the tree give similar param- 
eter estimates but the number of changes at these 
sites is small. 

Discussion 

The simulations presented here provide support for 
the use of the parsimony method for examining 
variation in substitution rate among sites in molec- 
ular sequences. When it exists and sequences have 
diverged appreciably, rate variation is easily de- 
tected using a simple test of homogeneity. The par- 
simony method does introduce clear and sometimes 
strong systematic errors, precluding an unbiased as- 
sessment of variation in rate. However, the direc- 
tion of these biases always causes inferred levels of 
variation to be less than actual levels, making the 
method conservative overall. Although the method 
remains useful, these errors are unavoidable as long 
as parsimony remains part of the analysis. The sim- 
ulations also show that at least some of the hyper- 
variable sites in a sequence can be identified with 
confidence. The method is sensitive to deviations 
from the assumptions used in these simulations. Bi- 
ased substitution among nucleotides and skewed 
base composition can mimic the effects of substitu- 
tion rate variation among sites. Keeping in mind 

both its advantages and flaws, we can continue to 
use the parsimony method until better ones are 
available. 

An important contribution in this regard has been 
made by Kelly (1991), who recently described a 
maximum likelihood approach to the analysis of 
variation in substitution rate among sites in DNA 
sequences. If the sequences are related by a star 
phylogeny, her procedure allows for a test of rate 
uniformity and the calculation of lower bounds for 
the mean and the variance of rates among sites. 
Assuming a distributional form for the rates, such 
as the gamma, the parameters of the distribution 
can be estimated. This approach also accommo- 
dates biased substitution rate among nucleotides 
and non-uniform base composition. Because the 
likelihood calculations are computationally very in- 
tensive, Kelly restricted many of her analyses to 
only pairs of species. When the assumption of a star 
phylogeny can be dropped and when the calcula- 
tions become more computationally feasible, this 
approach or one like it will replace biased methods 
such as the one used here. 

Application of the method examined here to se- 
quences from hypervariable region 1 of the control 
region of human mtDNA shows that substantial 
variation in substitution rate exists among sites in 
that region, that a gamma distributed-rates model 
can be used to quantify this variation, and that sites 
with highly elevated rates can be identified. The 
differences in substitution rate among nucleotides 
and base compositional biases present in mtDNA 
do not confound the analysis. The actual distribu- 
tion of rates among sites makes models that admit 
only two rates inappropriate. This becomes appar- 
ent only when a large number of sequences are ex- 
amined. Our power to reject inappropriate variable- 
rate models increases with the average number of 
changes per site. Lastly, variation does not appear 
to be clustered within hypervariable region 1. 
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U s i n g  v e r s i o n s  o f  the  p r o g r a m  P A U P  (Swof fo rd  
1991), b o t h  D i R i e n z o  and  W i l s o n  (1990) and  Vigi-  
l an t  e t  al .  (1991) f o u n d  at  l e a s t  100 equa l l y  p a r s i m o -  
n i o u s  t r e e s  fo r  t h e  d a t a  a n a l y z e d  h e r e .  L a t e r ,  
H e d g e s  et  al.  (1992) r e t r i e v e d  50,000 equa l l y  pars i -  
m o n i o u s  t r ee s  for  the  d a t a  o f  V ig i l an t  e t  al. (1991). 
S ince  the  p r e s e n t  s t u d y  is t r e e - b a s e d ,  it  is i m p o r t a n t  
to  u n d e r s t a n d  h o w  the  r e su l t s  o f  the  ana lys i s  v a r y  
f rom one  m i n i m u m  leng th  t r ee  to ano the r .  F i g u r e  8 
s h o w s  tha t  the  d i s t r i bu t i ons  o f  the  va r i ous  p a r a m e -  
t e r s  i m p o r t a n t  to  the  m e t h o d  a re  n e a r l y  iden t i ca l  
o v e r  100 equa l l y  p a r s i m o n i o u s  t r ees .  Resu l t s  a re  
s h o w n  on ly  for  d a t a  se t  3, bu t  the  c o n c l u s i o n s  a re  
the  s a m e  fo r  t he  o t h e r  t w o  d a t a  se ts .  Th is  t ree-  
b a s e d  m e t h o d  is u s e f u l  e v e n  t h o u g h  w e  c a n n o t  
p l a c e  m u c h  c o n f i d e n c e  in spec i f i c  r e c o n s t r u c t e d  to-  
p o l o g i e s . A l s o ,  the  p a r a m e t e r  va lue s  in F ig .  8 a re  
v e r y  s imi la r  to  t h o s e  in T a b l e  2. O u r  c o n c l u s i o n s  
a b o u t  r a t e  v a r i a t i o n  a r e  the  s a m e  w h e t h e r  m a x i m u m  
p a r s i m o n y  o r  n e i g h b o r - j o i n i n g  is u s e d  to  infer  t r ees .  

B e c a u s e  o f  the i r  r a p i d  evo lu t i on ,  s e q u e n c e s  f rom 
h y p e r v a r i a b l e  r eg ions  1 and  2 h a v e  b e c o m e  v e r y  
p o p u l a r  r e c e n t l y  for  a d d r e s s i n g  q u e s t i o n s  c o n c e r n -  
ing g e n e t i c  v a r i a t i o n  w i t h i n  s p e c i e s .  W i t h i n  hu-  
m a n s ,  t h e y  h a v e  b e e n  u s e d  to  infer  a s p e c t s  o f  his-  
t o r i ca l  b i o g e o g r a p h y  ( C a n n e t  al.  1987; D i R i e n z o  
and  W i l s o n  1990; Vig i l an t  e t  al.  1991), to  p e r f o r m  
m o l e c u l a r  c l o c k  a n a l y s e s  o f  h u m a n  or ig ins  (Vigi lan t  
e t  al.  1991; H a s e g a w a  and  H o r a i  1990), and  e v e n  to 
d e t e r m i n e  fami l ia l  r e l a t i o n s h i p s  (Or r ego  and  K ing  
1990). V a r i a t i o n  in subs t i t u t i on  r a t e  a m o n g  s i tes ,  
b e s t  d e s c r i b e d  w i th in  h y p e r v a r i a b l e  r eg ion  1 b y  the  
g a m m a  d i s t r i bu t i on ,  wil l  c e r t a in ly  af fec t  the  r e su l t s  
o f  t h e s e  and  o t h e r  a n a l y s e s .  W e  c l ea r l y  need  to  de-  
v e l o p  m e t h o d s  tha t  a r e  e i t he r  i n d e p e n d e n t  o f  r a t e  
v a r i a t i o n  o r  can  a c c o m m o d a t e  it na tu ra l ly .  
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