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Editorial

Coalescent theory has many new branches
1. Initial development of coalescent theory

Coalescent theory and the story of its unfolding have become
part of the canon of population genetics. This is not a signal that
the field is in decline, but amark of the enduring value of the gene-
genealogical way of thinking. Within both the biological and the
mathematical literature of coalescent theory, novel extensions and
wholly new developments continue to appear. This special issue of
the journal presents a snapshot of coalescent theory’s leading edge,
now roughly thirty years after the birth the field.

Coalescent theory begins by imagining the ancestry of a sample
of size n at a single genetic locus without recombination. This
ancestry is comprised of exactly n − 1 coalescent events wherein
pairs of genetic lineages join together backward in time. The result
is called the gene genealogy of the sample. At the (n − 1)th
coalescent event, the most recent common ancestor of the entire
sample has been reached, and the process is stopped because the
fundamental aim of coalescent theory is to understand genetic
variation within samples. All genetic variation in a sample must be
the result ofmutations that occurred on these branches of the gene
genealogy, between the present and the time of the most recent
common ancestor.

Kingman (1982a,c,b) described his n-coalescent using the
discrete-time, haploid, exchangeable population model of Can-
nings (1974), with its now familiar distribution of ‘‘offspring num-
bers’’. In a population of size N , if νi denotes the number of
offspring of individual i in some generation, then the overall out-
come of reproduction in that generation is the vector (ν1, . . . , νN).
These offspring numbers are exchangeable random variables in
that they are identically distributed and have only a mild sort of
non-independence, specifically that

N
i=1 νi = N . Making the

further assumptions thatN is constant over time and that the geno-
types of individuals do not affect the distribution of offspring num-
bers, we have the basic ingredients of Kingman’s model and many
of its later extensions.

From a more biological point of view, in addition to this
explicit statement of constant population size,wemust recognize a
number of other assumptions. First, the organisms are haploid. The
oft-stated view that the coalescent holds for diploid populations
if N is replaced by 2N comes from the analysis of the diploid,
monecious Wright–Fisher model (Fisher, 1930; Wright, 1931)
which is, in essence, a haploidmodel. Second, there is no selection;
all genetic variation is assumed to be neutral. Third, there is no
geographic structure. For haploids, this means that the locations
of individuals (and resulting population densities, etc.) have no
effect on their numbers of offspring. The same restriction applies
to diploids, but for diploids it must also be true that geographic
distance poses no barrier to mating. All three caveats are aspects
of the fundamental assumption behind exchangeability—namely
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that there is no population structure whatsoever—and one could
go on to consider the consequences for other biologically relevant
phenomena such as age structure and assortative mating.

The standard neutral coalescent process, or the Kingman
coalescent, describes the genetic ancestry of a sample of size n from
such a population provided that the second and higher moments
of the offspring-number distribution are not too great and that
the population size is sufficiently large. The latter assumption
is commonly stated as n ≪ N . Formally, a limiting process is
described forn finite andN → ∞, with time rescaled in proportion
toN . Under Cannings’ model, time is rescaled so that it ismeasured
in units of N/σ 2 generations. When this is done, each pair of
ancestral lineages coalesces independently with rate equal to 1.
Therefore, we have the following.

(a) The time during which there are i lineages ancestral to the
sample follows an exponential distribution,

f (t) =


i
2


e−


i
2


t
. (1)

(b) When a coalescent event occurs, it is equally likely to involve
any one of the


i
2


pairs of lineages.

Although the setting of Kingman’s proof excludesmuch of what
captivates biologists, by using a different approach, it can be shown
that the standard neutral coalescent process holds rather more
broadly, in the face of substantial population structure (Möhle,
1998a,b,c). This robustness occurs when N is large because many
types of structure, including dioecy, partial selfing, age structure,
and some instances of geographic subdivision, exert their influence
over time scales much shorter than N generations. Thus, a variety
of more complicated population models map onto the Kingman
coalescent. In view of this, Sjödin et al. (2005) suggested that the
term ‘‘coalescent effective population size’’ be used whenever (a)
and (b) hold in the limit N → ∞ with time measured in units of
Ne ≡ N/c , for some constant c which will depend on the details of
the model.

Felsenstein (1989) once reviewed the edited volume by Feld-
man (1989) using the provocative title ‘‘Mathematics vs. Evolu-
tion’’. His point was that we should see the value of mathematical
rigor for what is it, and not be swayed by the notion that a work
filled with symbols and abstruse logic must be important. It is
worthwhile recognizing and reflecting upon the tension between
the mathematician’s incessant drive toward rigorous generaliza-
tion and the biologist’s comfort with exceedingly concrete models
and results. Doing so leads to a greater appreciation of coalescent
theory.With its explicit focus on the sampling properties of genetic
data, it provides an enduring and fruitful point of contact between
mathematics and biology.
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The paper by Sjödin et al. (2005) is a good example. In a
large and confusing literature following Wright (1931, 1938),
the idea of effective population size was to map a given
complicated populationmodel onto the simple diploid, monecious
Wright–Fisher model. Unfortunately, there is no natural way to
do this mathematically. The idea is even of limited heuristic
value because the diploid, monecious Wright–Fisher model is
not realistic for any organism. The truth is that many different
population models map onto the Kingman coalescent in the limit
N → ∞. It might seem backwards, but the notion of the
(coalescent) effective size is what justifies the heuristic use of the
diploid, monecious Wright–Fisher model in obtaining results of
broader applicability. Provided that the population size is not too
small, Sjödin et al. (2005) emphasize the powerful statement that,
when the coalescent effective size exists in the limit, the sampling
properties of genetic data in all their complexity are given by the
standard neutral coalescent.

Coalescent processes have immediate, tangible application in
several areas of science. For example, (a) and (b) arise in the theory
of stochastic coalescence of water droplets in clouds (Marcus,
1968). In population genetics, their application is more indirect,
and arises by reversing time in the standard modes of population
genetics. Here, the initial objects of study are populations of
individuals or genetic loci evolving in a type space, forward in time,
according to some set of rules. Types are commonly genotypes,
and the rules typically describe the processes of mutation
and population-level reproduction. The Kingman coalescent and
closely related extensions are backward-time dual processes of the
standard diffusion models of population genetics (Donnelly and
Kurtz, 1999; Möhle, 1999).

It was from this point of view that Kingman originally sought to
discover the genealogical process underlying the sampling struc-
ture of selectively neutral alleles in one particular model: the
step-wise mutation model (Ohta and Kimura, 1973; Moran, 1975;
Kingman, 2000). Here, the type space is the integers, on which
the individuals perform a random walk. The gene genealogy, with
its branches of common ancestry, emerges as a description of the
non-independence of thesewalkers,who do not become evermore
dispersed but rather wander around together in a clump. Interest-
ingly, we can see the great-grandchild of Kingman’s approach in
the recent work of Bolthausen and Sznitman (1998), Brunet et al.
(2006, 2007), Berestycki et al. (2012), and others, which incorpo-
rates directional selection on these wandering distributions, and
holds the promise of novel practical methods for the analysis of
sequence data (Neher and Hallatschek, 2013).

Given the intimate relationship between the forward-time
models of population genetics and the standard neutral coalescent,
there were many precursors to Kingman’s insights. One may see
the coalescent embedded, for example, in the work of Felsenstein
(1971), who used what amounts to Cannings’ exchangeable model
to study the loss of genetic diversity in a population without
mutation; in the recursive equations of Karlin and McGregor
(1972), who gave a proof of the Ewens sampling formula (Ewens,
1972); and in the analyses of Watterson (1975), who exploited the
conditional independence of mutations given patterns of ancestry
to obtain the generating function of the number of polymorphic
sites in a sample. However, in none of these works was attention
to gene genealogies overt.

The explicit focus on ancestral genetic relationships as key
features of population genetic processes is due to Malécot (1946,
1948). It was in this tradition that Hudson (1983b) and Tajima
(1983) took gene genealogies as objects worthy of study, and
introduced the standard neutral coalescent process to biologists.
Both Hudson (1983b) and Tajima (1983) obtained the coalescent
process starting from the diploid, moneciousWright–Fishermodel
which, as noted above, is unnecessarily restrictive but nonetheless
leads to many general results. The subsequent flurry of work in
the remainder of the 1980s established the fundamental results
for standard neutral gene genealogies, for example the relationship
between gene trees and species trees (Pamilo and Nei, 1988), and
extended coalescent models to include many biologically relevant
phenomena, such as recombination (Hudson, 1983a; Kaplan and
Hudson, 1985), selection (Hudson and Kaplan, 1988; Kaplan et al.,
1988), and population subdivision andmigration (Takahata, 1988).

2. New contributions presented in this special issue

The extensions to the standard neutral coalescent mentioned
at the close of Section 1 are described in detail, along with many
subsequent developments, in Hein et al. (2005) and Wakeley
(2008), yet almost nothing of what follows in this special issue
can be found in those texts. Several novel lines of research have
gained prominence in the intervening years, and the time is ripe
for a snapshot of the state of coalescent theory. In sketching
backgrounds and emphasizing new results, the contributions
speak for themselves. Here, we will consider the major unifying
themes.

Following the work of Pitman (1999), Sagitov (1999), Donnelly
andKurtz (1999), and Schweinsberg (2000), research on coalescent
processes with multiple mergers of ancestral lines has expanded
greatly. The robustness of the Kingman coalescent breaks down
under large deviations in the higher moments of the offspring-
number distribution. No longer does each pair of ancestral lineages
coalesce with rate equal to 1. Instead, mergers involving any num-
bers of lineagesmay occur.Models inwhich atmost one such event
occurs at any given time are known as Λ-coalescents (Pitman,
1999), and models in which multiple coalescent events may occur
simultaneously are called Ξ-coalescents (Schweinsberg, 2000). A
number of articles in this volume make novel contributions to this
thriving literature.

Huillet and Möhle (2013, pages 5–14) study the (N → ∞) con-
vergence properties of extendedMoranmodels of reproduction, in
which the single individual who reproduces may have an arbitrary
number of offspring. In the original model of Moran (1958, 1962),
the parent always has two offspring. However, if the number of off-
spring may be large, in particular of order N , then a wide range of
generalized coalescent processes arises. In fact, any Λ-coalescent
may arise. These models differ dramatically in their predictions
from the Kingman coalescent, and they may be used to interpret
data which cannot be explained under the standard neutral model.

Biologists are interested in coalescent theory because it pro-
vides a framework for the analysis of DNA sequence data. Stein-
rücken et al. (2013a, pages 15–24) describe a method of inferring
the parameters of a flexible class of coalescent processeswithmul-
tiple mergers, a subset of Λ-coalescents called Beta-coalescents.
Theirmethod uses importance sampling, after the classic approach
of Griffiths and Tavaré (1994a,b). They apply their method to data
from Pacific oysters and Atlantic cod, both of which have a tremen-
dous capacity for reproduction and thus may violate the assump-
tions behind the Kingman coalescent.

Natural selection is a defining feature of evolutionary change,
yet much of the simplicity of the Kingman coalescent derives from
its assumption of neutrality. Two main approaches to selection
have been taken in coalescent theory, the approach of Kaplan et al.
(1988), which conditions on the trajectories of alleles, and the
ancestral selection graph approach of Krone andNeuhauser (1997),
which allows ancestral lineages to branch as they are followed
backward in time. The next two articles in this volume make
progress on the ongoing challenge of extending and applying these
approaches.

Analytical results from either approach have been rare. In
particular, the ancestral selection graph has appeared intractable
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under strong selection due to high rates of branching. Pokalyuk and
Pfaffelhuber (2013, pages 25–33) confront this problem directly,
using the ancestral selection graph to give a novel proof of the
fixation time of a favorable allele when selection is strong. This
fixation time has been employed in descriptions of the haplotype
structure at genetic loci which have undergone selective sweeps
and in the development ofmethods to detect these loci in genome-
wide scans for selection (Kim and Nielsen, 2004; Pennings and
Hermisson, 2006).

A major challenge of population genetics is to distinguish
among the great variety of forms that natural selection may take.
Taylor (2013, pages 34–50) adapts the approach of Hudson and Ka-
plan (1988) and Barton et al. (2004) to study the effect of fluctu-
ating selection on a linked neutral site. Notably, the form of the
diffusion approximation in this case differs from that of the stan-
dardmodels of population genetics (Gillespie, 1991). Taylor’s anal-
ysis identifies differential signatures of linked genetic variation
between subtly different kinds of diversifying selection, suggest-
ing ways in which genomic data might be used to distinguish the
varieties of selection.

The robustness of the standard neutral coalescent justifies its
use as a prior model for the interpretation and analysis of genetic
data in a variety of statistical settings. For example, the meth-
ods of Griffiths and Tavaré (1994a,b) are importance-sampling
methods in which the proposal distribution is the unconditional
coalescent process (Felsenstein et al., 1999). Stephens and Don-
nelly (2000) used coalescent arguments to devise a more efficient
proposal distribution, specifically taking the data into account.
The popular program PHASE, which reconstructs haplotypes from
diploid SNP genotypes, employs a similar conditional sampling dis-
tribution (Stephens et al., 2001). Two articles develop new applica-
tions of the standard neutral coalescent, using the model as a prior
in a statistical setting.

Steinrücken et al. (2013b, pages 51–61) combine two sets
of insights to develop conditional sampling distributions of
haplotypes in a model with migration and recombination. On
the one hand, they employ an improved version of the methods
of Fearnhead and Donnelly (2001) and Li and Stephens (2003)
for sampling entire haplotypes in the face of recombination. On
the other hand, they use the simplifying approximation of the
sequentiallyMarkov coalescent (Wiuf andHein, 1999;McVean and
Cardin, 2005), which models coalescence and recombination as
point processes along a sequence. By combining these approaches,
Steinrücken, Paul, and Song obtain a tractable (approximate)
method of computing likelihoods for the inference of migration
rates from DNA sequence data.

Huang et al. (2013, pages 62–74) consider the problem of
genotype imputation using a two-population version of the
standard neutral coalescent as a prior. Under a model with no
migration and no recombination, and focusing on a sample of
three sequences, they are able to obtain analytical expressions that
assess the accuracy of imputed genotypes. Genotype imputation
is proving to be an important tool in genome-wide association
studies that use low-coverage sequencing to identify the genes
affecting complex traits and diseases (Li et al., 2009).

Recombination is a conceptually straightforward but nonethe-
less complicating factor which has run through coalescent theory
since the beginning (Hudson, 1983a). The articles by Taylor (2013,
pages 34–50) and by Steinrücken et al. (2013b, pages 51–61) men-
tioned above deal directly with recombination. They illustrate, re-
spectively, the two major concerns: (1) the effect of selection on
linked sites, and (2) the background, neutral correlation of gene
genealogies along the genome. The two articles by Barton et al.
(2013a,b, pages 75–89 and pages 105–119), discussed below, like-
wise address the influence of recombination in these two contexts.

Geographic population structure has been a major theme in
the expansion of coalescent theory beyond the simple Kingman
coalescent. In contrast to recombination, it is not clear how one
should model geographic structure. A main line of division in
the theory has been between models with discrete subpopula-
tions (Wright, 1931) and models in which individuals occupy
continuous habitats (Wright, 1943; Malécot, 1948). However, rel-
atively little is known about the dynamics of genetically meaning-
ful movement of individuals in nature. Like selection, geographic
structure negates the simplifying assumption of exchangeability in
the Kingman coalescent, and hence similarly has been the source
of many formidable problems. In addition to the articles by Stein-
rücken et al. (2013b, pages 51–61) and by Huang et al. (2013,
pages 62–74), the final three articles in this volume address issues
of geographical structure.

Barton et al. (2013a, pages 75–89) study coalescent processes
that arise when a selectively favorable allele spreads quickly
across a continuously distributed population. In one dimension,
the process is similar to selection in the stepwise mutation
model mentioned above, which yields a Bolthausen–Sznitman co-
alescent, but here allelic state is replaced by geographic loca-
tion. Testing quasi-deterministic approximations to coalescence
and recombination during sweeps in two dimensions, Barton,
Etheridge, Kelleher, and Véber uncover a non-diffusive jump pro-
cess for the locations of ancestral lineages inside the leading edge
of the sweep.

Heuer and Sturm (2013, pages 90–104) prove a novel robust-
ness result. For a spatial Λ-coalescent with migration between
neighboring populations on a two-dimensional lattice, they show
that the Kingman coalescent holds in the limit of a large number of
populations as long as the samples are taken from sufficiently far
apart. In other samples, nearby lineages will coalesce quickly, after
which those that remain may be far enough apart for the Kingman
coalescent to apply. Examining genetic pseudo-data in simulations,
Heuer and Sturm show that this two-phase model may be useful
even when the Kingman coalescent is not a good approximation.

Barton et al. (2013b, pages 105–119) capitalize on this separa-
tion of times scales to investigate the utility of two different types
of data—allele frequencies versus haplotype blocks—in estimating
the parameters of populations living in two-dimensional habitats.
They consider both discrete-habitat and continuous-habitat mod-
els without selection, and make extensive use of an approach em-
bodied in a classic formula of Wright and Malécot, which gives the
generating function of pairwise coalescence times. The two types
of data contain different sorts of information about the coalescent
process in subdivided populations, and correspondingly each al-
lows inferences only about a subset of the parameters.

To summarize, the articles in this special issue display the
current broad range of coalescent theory. They present novel
analyses motivated by the interpretation of genetic data, and with
the attention to inference that is so important to this field. The
issues addressed fall under four major headings: (1) coalescent
processes with multiple mergers of ancestral lines, (2) the effects
of natural selection, (3) coalescents as prior models in statistical
inference, and (4) the analysis of geographically structured
populations. Yet, despite the attempts of this introduction, they
cannot be assigned seamlessly to categories, because they span
them in multiple interesting ways. Though it has been said
many times, the future still holds great promise that burgeoning
genetic data can be combined with quantitative analyses to take
our understanding of population genetics and evolution in new
directions.
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