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The ancestral selection graph, conditioned on the allelic types in the sample, is used to obtain a limiting gene
genealogical process under strong selection. In an equilibrium, two-allele system with strong selection, neutral gene
genealogies are predicted for random samples and for samples containing at most one unfavorable allele. Samples
containing more than one unfavorable allele have gene genealogies that differ greatly from neutral predictions. However,
they are related to neutral gene genealogies via the well-known Ewens sampling formula. Simulations show rapid
convergence to limiting analytical predictions as the strength of selection increases. These results extend the idea of a soft
selective sweep to deleterious alleles and have implications for the interpretation of polymorphism among disease-
causing alleles in humans.

Introduction

Hermisson and Pennings recently put forward the idea
of a ‘‘soft selective sweep’’ and also studied the properties
of these interesting events (Hermisson and Pennings 2005;
Pennings and Hermisson 2006a, 2006b). A soft sweep is the
fixation of a positively selected allele in which multiple in-
dependent copies of the allele contribute to the sweep.
These may be different copies of a single mutant allele pres-
ent at a time when selection starts to act (a soft sweep via
standing variation), or they may be independently derived
copies that appear during the fixation event (a soft sweep
via recurrent mutation). In this article, a new kind of soft
sweep by recurrent mutation is considered, one in which
the allele is ‘‘disfavored’’ and thus does not sweep to fix-
ation. Its appearance in appreciable frequency in the pop-
ulation is a random event in opposition to selection. There is
considerable debate over explanations of the diversity of
alleles responsible for human diseases (Slatkin and Rannala
1997; Terwilliger and Weiss 1998; Reich and Lander 2001;
Pritchard and Cox 2002; Di Rienzo 2006). The results pre-
sented here emphasize the importance of stochastic effects
in determining allele frequencies.

Strong selection against one allele and in favor of
another is modeled here using a coalescent approach
(Kingman 1982a, 1982b; Hudson 1983; Tajima 1983).
In general, it has proven difficult to incorporate selection into
the coalescent and still maintain the analytical tractability
and ease of application of the model. This is because dif-
ferent selected alleles have different rates of coalescence—
they are not ‘‘exchangeable’’ (Cannings 1974; Kingman
1982c; Aldous 1985)—and because the frequencies of al-
leles change over time by selection, mutation, and drift.
One approach to the coalescent with selection is to condition
rates of coalescence on allele frequencies and model changes
in allele frequencies explicitly (Kaplan et al. 1988; Barton
et al. 2004). A second approach, called the ancestral selec-
tion graph, was proposed by Krone and Neuhauser (1997)
and provides the framework for the work presented here.

The ancestral selection graph arises via an augmenta-
tion of the typical forward-time models of population
genetics, the same models that yield the standard

Wright–Fisher diffusion (Ewens 2004). The augmented
model is built in two layers. For the first layer, an exchange-
able forward-time population process (obtained by imagin-
ing that the population is composed entirely of the fittest
genotype) is run for an infinitely long time to produce a large
graph. This graph contains all the ancestor–descendant re-
lationships, birth and death events, etc., that occurred in the
population. For the second layer, a small fraction of birth
events are marked as being available only to the fittest ge-
notype. Selection is enforced in a second run through the
graph, in which allelic states are assigned and their fates
are followed forward in time. Less-fit alleles are barred
from using the marked birth events. The properties of
the original model are preserved, but the inclusion of an
exchangeable process in the two-layer model greatly facil-
itates the study of gene genealogies.

Although the population model behind the ancestral
selection graph has been generalized considerably
(Neuhauser and Krone 1997; Neuhauser 1999; Fearnhead
2006), for simplicity, the present work is based on the orig-
inal formulation of Krone and Neuhauser (1997). Two
alleles, A1 and A2, experience mutations with probability
u per generation, and allele A2 has fitness 1 þ s relative
to A1. The standard diffusion assumptions are made: time
is measured in proportion to N generations and N tends to
infinity, whereas u and s tend to zero, such that the dynam-
ics depend on scaled mutation and selection parameters h
and r. There is no recombination within the locus. Krone
and Neuhauser (1997) assumed a haploid Moran model
of reproduction (Moran 1958, 1962), in which h 5 Nu
and r 5 Ns, but the ancestral selection graph should hold
for any model that has the standard diffusion as its limit. It
may be assumed, without loss of generality, that A2 is the
fitter of the two alleles (r . 0).

One small modification is made, which is to allow for
asymmetric mutation in the following way. When a muta-
tion occurs, it has probability a1 of producing an A1 allele
and probability a2 5 1 – a1 of producing an A2 allele. Any
asymmetric, two-allele model can be represented in this
way, and such ‘‘parent-independent’’ mutation generalizes
readily to multiple alleles; for example, see Stephens and
Donnelly (2003). Note that this means some mutation
events are ‘‘empty’’ (Baake and Bialowons 2008), in the
sense that they do not change the allelic type. This further
augmentation of the model allows for a simplification
(Fearnhead 2002) that will be important in what follows.

When run for a long time, which is from an essentially
infinite time in the past to the present, this two-allele
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population process will reach a statistical equilibrium. Here,
the present time is defined as time t5 0 and the past as times
t . 0. Analysis of this model, or its two-layer counterpart,
shows that the frequency of A1 in the population at equilib-
rium, at time t 5 0, has distribution

hðxÞ5Bxha1 � 1ð1 � xÞha2 � 1
e� rx; ð1Þ

where the constant B is defined such that
R 1

0
hðxÞdx51

(Wright 1931, 1949; Kimura 1955). The Moran model der-
ivation of equation (1) can be found in Moran (1962,
p. 134), where B is expressed in terms of a confluent hyper-
geometric function; see Slater (1960) or Abramowitz and
Stegun (1964, Chapter. 13).

A sample of size n, taken from the population at the
present time zero, contains n1 copies of allele A1 and n2 5
n – n1 copies of allele A2 with probabilityZ 1

0

xn1ð1 � xÞn2hðxÞdx; ð2Þ

which can also be expressed in terms of confluent hypergeo-
metric functions. For ease of analysis and explanation below,
the sample is assumed to be ordered. One possible ordering
is that samples 1 through n1 are of allelic typeA1 and samples

n1 þ 1 through n are of type A2. There are
�
n
n1

�
possible

orderings of such a sample, and every one of these has
the same probability; the probability of the corresponding

unordered sample is
�
n
n1

�
times equation (2).

Crucially for the ancestral selection graph, equation
(2) also holds at any time t in the past when there are n lin-
eages ancestral to a present-day sample, subject to certain
conditions which can be found in Donnelly and Kurtz
(1999). Intuitively, this follows from the fact that the pop-
ulation has been evolving for an infinite length of time even
before t and because present-day samples are taken at ran-
dom with respect to genetic variation or any events that
have occurred in the population.

The ancestral selection graph is obtained by following
a random sample of genetic lineages from the present back
into the past under the two-layer population model. Initially,
the allelic types of the samples are not specified, and an ances-
tral graph is obtained by tracing back through the exchange-
able population process. This proceeds from time zero back to
the ultimate ancestor of the sample, which is reached the first
time the entire sample is descended from a single lineage
(Krone and Neuhauser 1997). Each ancestral lineage experi-
ences mutations at rate h/2, each pair of lineages coalesces
with rate 1, and each lineage ‘‘branches’’ with rate r/2.

Branching events correspond to the marked birth
events described above. When a branching event occurs,
the lineage that experiences it splits into two lineages. Thus,
the number of ancestral lineages can increase as they are
followed back in time. Branching events capture the effect
of selection in favor of A2. They must be included in the
graph in order to have an ancestral process in which line-
ages are initially exchangeable. They are resolved in the
second run through the graph, with allelic states specified,
such that the gene genealogy of the sample is a bifurcating
tree andA2 enjoys a higher fitness thanA1. In order to resolve

branching events and retrieve the gene genealogy of the sam-
ple, one of the two lineages emanating from each branching
event is labeled the ‘‘incoming branch’’ and the other is la-
beled the ‘‘continuing branch’’ (Krone and Neuhauser 1997).
Only one of these will be included in the gene genealogy of
the sample. There are four possible values for the allelic
states (I, C) of the incoming and continuing branches—
(A1, A1), (A1, A2), (A2, A1), and (A2, A2)—but these are
not specified in the initial construction of the graph.

When the ultimate ancestor is reached, its type is drawn
from the distribution h(x) and the lineages are traced forward
in time to the present-day sample, changing type as needed
when mutation events are encountered. Branching events are
resolved as follows. If I 5 A2, then the incoming branch
replaces the continuing branch, and the allelic state of the
descendent lineage isA2. If I5A1, then the incoming branch
does not replace the continuing branch. Instead, the descen-
dent lineage inherits the state and ancestry of the continuing
branch. Nonancestral lineages are discarded, and the result is
a sample drawn from the joint distribution of allelic states
and gene genealogies (Krone and Neuhauser 1997).

The utility of the ancestral selection graph is not that it
generates samples with allelic states in proportion to their
probabilities, this is known and given by equation (2), but
rather that it provides a tool for investigating the properties
of gene genealogies under selection. However, the presence
of branching events makes analysis and simulation difficult.
Fortunately, the ancestral selection graph can also be used
to model the ancestry of a sample conditional on allelic
types (Slade 2000a, 2000b), and in this case, the problem
of multiplying ancestral lineages is not so severe. Following
the work of Slade (2000b), Fearnhead (2002), Stephens and
Donnelly (2003), and Baake and Bialowons (2008), it is
possible to describe a conditional ancestral selection graph
in which branching events are minimized and in which
superfluous lineages can be discarded upon mutation.

In this work, the conditional ancestral selection graph is
used to investigate the analytical properties of gene geneal-
ogies of samples of known allelic type in the case when se-
lection is very strong. This case has not yet been considered in
the literature, likely due to the explosion of lineages which
occurs in the unconditional ancestral selection graph when
the selection parameter r is very large. In addition, simula-
tions show a relatively small effect of selection on gene ge-
nealogies of random samples (Golding 1997; Neuhauser and
Krone 1997; Przeworski et al. 1999) and of samples of known
allelic type when selection is moderate (Slade 2000a, 2000b),
so it is of interest to investigate a case where selection should
have a dramatic effect on the gene genealogy.

In the limit r/N, the ancestry of a random sample or
a sample containing at most one deleterious allele (A1) is
shown to be neutral. In contrast, genealogies of samples con-
taining more than one strongly deleterious allele are very
different than neutral genealogies. Their structure can be de-
scribed and is identical to that of a soft selective sweep. That
is, the distribution of the number of independently derived,
deleterious mutant alleles in the sample is given by the
Ewens sampling formula (Ewens 1972). Interestingly, this
is identical to the result for a different limiting model, of
strong mutation–selection balance (Hartl and Campbell
1982; Sawyer 1983), that Reich and Lander (2001) used
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in their interpretation of allelic diversity of human disease.
Simulations show a rapid approach to limiting analytical
predictions, occurring between about r 5 1 and r 5 100.

Methods and Results

The notion of ‘‘real’’ and ‘‘virtual’’ lineages (Krone
and Neuhauser 1997) is important in describing a condi-
tional ancestral selection graph in which the size of the
graph is minimized. Each lineage in the conditional ances-
tral process carries an allelic type. Thus, in contrast to the
unconditional graph, it is possible to resolve branching
events when they occur and to know which lineages are
ancestral to the sample and which are not. Real lineages
are ones that are ancestral to the sample. However, each
branching event introduces a virtual lineage, and in general,
the gene genealogy of the sample depends on the numbers
and types of all real and virtual lineages. The size of the
graph can be reduced by recognizing that some virtual lin-
eages, in fact, do not affect the gene genealogy.

The conditional ancestral selection graph is derived
from the fundamental recursive equation (Krone and
Neuhauser 1997; Slade 2000a; Fearnhead 2002) for the prob-
ability that an ordered set of lineages is composed of n1 real
and v1 virtual lineages of allelic type A1 and n2 real and v2

virtual lineages of allelic type A2. This state is denoted
(n1, n2, v1, v2), so that the sample itself would be represented
as (n1, n2, 0, 0). The basic approach is to condition on the first
step back in the ancestry of n5 n1 þ n2 þ v1 þ v2 lineages in
the exchangeable process (the first layer of the ancestral se-
lection graph) and to consider which patterns of ancestral
states would produce the configuration (n1, n2, v1, v2) given
each possible event. Equation (A1) in the Appendix gives the
basic recursion. It is a straightforward application of ideas
that are discussed in detail elsewhere (Krone and Neuhauser
1997; Slade 2000b; Fearnhead 2002; Stephens and Donnelly
2003; Baake and Bialowons 2008), but the Appendix also
includes a discussion of each term.

The probabilities in equation (A1) can be computed by
a simple extension of equation (2),

pðn1; n2; v1; v2Þ5
Z 1

0

xn1 þ v1ð1 � xÞn2 þ v2hðxÞdx: ð3Þ

Thus, although recursive equations like equation (A1) may
be used to compute sample probabilities or likelihoods
(Griffiths and Tavaré 1994a, 1994b), the interest in equa-
tion (A1) here is that it offers a way to study gene geneal-
ogies. Equation (A1) is conditioned on allelic types but is
derived from the exchangeable ancestral process with total
rate equal to (nþ v) (hþ rþ nþ v – 1)/2, where n5 n1 þ
n2 and v5 v1 þ v2. A reduced conditional ancestral process
is possible because two kinds of events allow a virtual lin-
eage to be discarded and may be filtered out of the process
(Slade 2000b; Fearnhead 2002). Baake and Bialowons
(2008) provide an illuminating discussion of these simpli-
fications and their interpretations.

Slade (2000b) found that if a branching event occurs in
which the incoming branch has type I5A2 and the ancestral
lineages not involved in the event all have the correct allelic
types to produce the configuration (n1, n2, v1, v2), then it is
unnecessary to create a new virtual lineage with state C. In

particular, both C5 A1 and C5 A2 would yield the correct
allelic types of the descendent lineages. Algebraically, these
two possibilities can be collected and the simplification
p(n1, n2, v1 þ 1, v2) þ p(n1, n2, v1, v2 þ 1) 5 p(n1, n2, v1,
v2) may be applied in lines six and eight of equation (A1).

Fearnhead (2002) showed, similarly, that when a mu-
tation event occurs on a virtual lineage, that lineage may be
discarded. This follows from the assumption of parent-
independent mutation, in which the parental allele may be of
either type. Algebraically, p(n1, n2, v1, v2) þ p(n1, n2, v1 – 1,
v2 þ 1) 5 p(n1, n2, v1 – 1, v2) and p(n1, n2, v1 þ 1, v2 – 1) þ
p(n1, n2, v1, v2) 5 p(n1, n2, v1, v2 – 1), which may be applied
in lines three and four, respectively, of equation (A1). Note
that the corresponding algebraic simplifications will not be
used in the first two lines of equation (A1) because the spe-
cific objects of study here are the allelic states of, and rela-
tionships among, the real lineages ancestral to the sample.

An ancestral process conditional on the allelic types is
obtained by implementing these simplifications in equation
(A1), collecting all the terms involving p(n1, n2, v1, v2) on
the left-hand side, then dividing both sides by the result.
The ancestral process thus obtained is akin to the one de-
scribed by Stephens and Donnelly (2003) but minimizes
the number of virtual branches that need to be added to
the graph. The total rate of events is given by

kn;v 5

�
n þ v

2

�
þ h

2
ða2n1 þ a1n2 þ v1 þ v2Þ

þ r
2
ðn1 þ v1Þ; ð4Þ

in which n5ðn1; n2Þ and v5ðv1; v2Þ and again n 5 n1 þ n2

and v 5 v1 þ v2. The result of these manipulations to
equation (A1) is

1¼

n1

2

� �
kn;v

pðn1 �1;n2;v1;v2Þ
pðn1;n2;v1;v2Þ

þ

n2

2

� �
kn;v

pðn1;n2 �1;v1;v2Þ
pðn1;n2;v1;v2Þ

þ
h
2
a1n1

kn;v

pðn1 �1;n2 þ1;v1;v2Þ
pðn1;n2;v1;v2Þ

þ
h
2
a2n2

kn;v

pðn1 þ1;n2 �1;v1;v2Þ
pðn1;n2;v1;v2Þ

þ
r
2
ðn1 þn2 þv1Þ

kn;v

pðn1;n2;v1 þ1;v2Þ
pðn1;n2;v1;v2Þ

þ

v1

2

� �
h
2
a1v1 þn1v1 þkn;v

pðn1;n2;v1 �1;v2Þ
pðn1;n2;v1;v2Þ

:

ð5Þ
The six terms on the right-hand side above are the proba-
bilities of coalescence between two real A1 lineages, coa-
lescence between two real A2 lineages, an A1 / A2

mutation event on a real lineage, an A2 / A1 mutation
event on a real lineage, a branching event on any lineage
in which the ancestor is always a virtual A1 lineage, and
loss of a virtual A1 lineage by mutation or coalescence.
The conditional ancestral process is a Markov jump chain
which remains in state ðn;vÞ for an exponentially distrib-
uted length of time, with mean 1

�
kn;v, and then jumps to

a new state according to these six probabilities. This is
a straightforward generalization of the algorithms in Fearn-
head (2002) and Baake and Bialowons (2008) to samples of
size larger than one. Note that no virtual A2 lineages are
produced (Slade 2000b). Because the sample also begins
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without any virtual lineages, v2 will always be zero. There-
fore, it is typically omitted in equations below.

The only case in which equation (5) leads easily to an-
alytical results is when r5 0. In this neutral case, no virtual
lineages of either type are produced, and the sample may
be represented simply by (n1, n2). For small samples, the
Markov jump chain gives simple systems of equations that
can be solved for quantities of interest. For example,
the expected times to common ancestry for the three pos-
sible samples of size two can be shown to be

E½Tð2;0Þ�5 1 � ha2

ha1 þ 1

1

h þ 1
;

E½Tð1;1Þ�5 1 þ 1

h þ 1
;

E½Tð0;2Þ�5 1 � ha1

ha2 þ 1

1

h þ 1
:

ð6Þ

The expected time to common ancestry for a sample of one
A1 allele and one A2 allele, (1, 1), is greater than the standard
neutral prediction of one because at least one mutation must
occur before the two lineages can coalesce. The expected
intraallelic coalescence times are, correspondingly, less
than one. It can be checked that a random sample has ex-
actly the neutral expectation of one by averaging the above
formulas, weighted by the probabilities of each type of
(ordered) sample from equation (2).

Gene Genealogies under Strong Selection

The transition probabilities in the conditional ancestral
process described above, and the ones given by equation
(A1) in the Appendix, depend on ratios of sampling prob-
abilities. As noted by Stephens and Donnelly (2003), some
time may be saved in performing simulations because the
constant B in equation (1) cancels in these ratios and, thus,
does not need to be calculated. Further, the presence of
these ratios changes the probabilities of events substantially
when selection is strong because unfit (A1) alleles are un-
likely to be sampled. For example, the rate of branching is
reduced in equation (5) because the ratio p(n1, n2, v1 þ 1)/
p(n1, n2, v1) becomes very small when r is large. Fairly sim-
ple expressions for these ratios are available when r
is large, and this makes it possible to describe a limiting
r / N conditional ancestral process.

The analysis follows from a uniform asymptotic (large
r) expansion of Kummer’s confluent hypergeometric func-
tion, which here is denoted 1F1[a;b; – r]. Specifically, if
a . 0, b . 0, and r . 0, which will all be true here, then
from equations 3.1.2 and 4.1.2 in Slater (1960),Z 1

0

xa� 1ð1 � xÞb� a� 1
e�rxdx

5
CðaÞCðb � aÞ

CðbÞ 1F1½a; b; � r� ð7Þ

5CðaÞr� a

 XL� 1

n5 0

ðaÞnð1 þ a � bÞnr� n

n!
þ Oðr�LÞ

!
;

ð8Þ

in which (a)n 5 a(a þ 1) . . . (a þ n – 1) denotes the as-
cending factorial, with (a)0 5 1.

For two sample configurations (n1#; n2#; v1#) and (n1, n2,
v1), let a5a1 þ n1#þ v1#, b5hþ n1#þ n2#þ v1#, c 5 ha1 þ
n1 þ v1, and d 5 h þ n1 þ n2 þ v1. Equation (8) gives

pðn1#; n2#; v1#Þ
pðn1; n2; v1Þ

5

R 1

0
xa� 1ð1 � xÞb� a� 1

e�rxdxR 1

0
xc� 1ð1 � xÞd� c� 1

e�rxdx
ð9Þ

5
Cðha1 þ n1# þ v1#Þ
Cðha1 þ n1 þ v1Þ

rðn1 þ v1Þ�ðn#1 þ v#
1Þð1 þ Oðr� 1ÞÞ:

ð10Þ

Therefore, each additional A1 allele, either real or virtual,
decreases the sampling probability by a factor of order r.

The rate kðn;vÞ in equation (4) is the total rate of events
in the conditional ancestral process, which occurs on a time
scale proportional to N generations. Examination of kðn;vÞ
shows that the limiting conditional ancestral process for
the present-day sample (n1, n2, 0) must be analyzed sepa-
rately for n1 . 0 and for n1 5 0. In the first case, when there
is at least one deleterious allele in the sample, the total rate
of events depends linearly on r. Then, when r is large, the
waiting time to an event will be of order r�1. In contrast,
when n1 5 0, so that the sample contains only fit alleles, the
total rate of events is kn;v5n2

�
n2 � 1

��
2 þ ha1n2

�
2. In this

case, the waiting time to an event does not depend on r.
Instead, it is of order 1 when r is large. This leads to a ‘‘sep-
aration of time scales’’ that is key to the analysis of equation
(5) for large r.

Separation of Times Scales: Fast Processes

In the first case, when n1 . 0 (and v1 5 0), equation
(10) allows for the following simplification of equation (5).
Taking the limit of equation (5) as r / N, or ignoring
terms of order r�1 and smaller, and simplifying give

15
n1 � 1

ha1 þ n1 � 1
þ ha1

ha1 þ n1 � 1
: ð11Þ

The two terms on the right are the probability of a coalescent
event between two A1 lineages and the probability of a mu-
tation event from A1 to A2. The probabilities of all other
events are of order r�1 or smaller because they either lead
to the production of an additional unfit allele or simply be-
cause kn;v is of order r. Note that in this (n1 . 0) limiting
process, all the lineages are real, no virtual lineages are pro-
duced, and no events occur among the A2 lineages, if there
are any in the sample.

The two probabilities in equation (11) are identical in
form to those of a fundamental stochastic process in pop-
ulation genetics, namely the process of tracing the ancestry
of a sample under the infinite-alleles mutation model that
gives the Ewens sampling formula (Ewens 1972). Note that
whichever event occurs above, the number of A1 lineages
decreases by one. Then equation (11) may be reapplied with
n1 / n1 – 1, and so on, continuing until no A1 lineages
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remain. Counting the number, K, of (A1 / A2) mutations
leads to

PðK5 kjn1Þ5
S
ðn1Þ
k ðha1Þk

ðha1Þn1

ð12Þ

for the probability that the n1, A1 alleles in the sample are
descended from k A2 alleles, where S

ðn1Þ
k is an unsigned

Stirling number of the first kind. Equation (12) is identical
to the probability function for the number of alleles in the
Ewens sampling formula (Ewens 1972). The full Ewens
sampling formula, with mutation parameter ha1, gives the
probability function for the numbers of A1 descendants in
the sample of each of these k ancestral A2 alleles. As men-
tioned above, this result is identical to the result for soft se-
lective sweeps; for example, see Pennings and Hermisson
(2006a).

Again, the amount of time this takes will be of order
r�1, which is negligible on the coalescent time scale of the
ancestral selection graph, where one unit of time is propor-
tional to N generations (N2/2 steps in the discrete Moran
model). Thus, a sample containing n1 copies of A1, where
n1 . 0 and n2 copies of A2 will quickly be converted into an
ancestral sample ofKþ n2 realA2 lineages, whereK is a ran-
dom variable with 1 , K, n1 and the probability function
P(K 5 k|n1) above.

Separation of Times Scales: Slow Processes

Of course, the above is only part of the ancestry of the
sample. It is still necessary to trace the ancestry of the re-
sulting k þ n2 real A2 lineages back to their most recent
common ancestor. For an ancestral sample of this sort,
or for a present-day sample containing only fit alleles, a dif-
ferent limiting process arises. Without loss of generality, k
may be omitted for simplicity, and the sample may be rep-
resented as (n1 5 0, n2 . 0, v1 5 0). In this case, using
equations (10) and (5) and taking the limit, or ignoring
terms of order r�1 and smaller, gives

15
n2 � 1

ha1 þ n2 � 1
þ ha1

ha1 þ n2 � 1
:

The first term on the right is the probability of a coalescent
event between two A2 lineages, but now the second term
corresponds to the fifth term on the right-hand side of equa-
tion (5) and is the probability of a branching event, in par-
ticular the production of a single virtual A1 lineage.

The creation of this virtual A1 lineage induces a third
case, similar to the case n1 . 0 above, but in which a dif-
ferent type of ‘‘fast’’ event is possible: the annihilation of
the virtual lineage by mutation. When the ancestral config-
uration is (n1 5 0, n2, v1 5 1), the total rate of events is
again of order r. An analysis like those above shows that
the last term in equation (5) is 1 þ O(r�1), and all other
terms are O(r�1). In the limit r / N, the virtual lineage
is annihilated with probability equal to one, and this hap-
pens in a negligible amount of time. The sample thus reverts
immediately to state (n1 5 0, n2, v1 5 0) and the above
‘‘slow’’ process resumes.

This shows that a present-day sample or ancestral con-
figuration comprised only of n2 copies of the fit allele, A2,
undergoes a filtered ancestral process in which branching
events occur, but the resulting virtual A1 lineages are in-
stantly removed. Eventually, with probability equal to
one in the limit r / N, a coalescent event will occur be-
tween two of the n2 A2 alleles. The waiting time to this event
is exponentially distributed with rate equal to the total rate
of events times the probability that the event is a coalescent
event or��

n2

2

�
þ ha1

2
n2

�
n2 � 1

ha1 þ n2 � 1
5

�
n2

2

�
:

Therefore, the ancestry of a sample containing only fit al-
leles is given by the standard neutral coalescent. The ances-
try of a random sample should also be neutral because the
probability that a random sample contains any A1 alleles is
of order r�1.

Comparing Analytical Predictions to Simulations

In the limiting ancestral process, analytical predictions
can be made for any quantity of interest simply by condi-
tioning on K, the number of A2 ancestors of the n1 copies of
allele A1 in the sample. For example, the total length of the
gene genealogy of the sample (n1, n2) is given by

E½Ttotal�5 2
Xn1

k5 1

PðK5 kjn1Þ
Xn2 þ k� 1

j5 1

1

j
; ð13Þ

which can be recognized as Watterson’s (1975) expected
value averaged over all possible ancestral samples. Because
1 � K � n1, the expected length of the gene genealogy
above is less than or equal to the neutral expectation
for a sample of size n 5 n1 þ n2. Due to equation (12),
it will be greatest when h is large, so that K is equal to
n1 with high probability. When h is small, E[Ttotal] will
be close to the neutral expected value for a sample of size
n 5 1 þ n2.

Further, let Ti be the time during which there are i lin-
eages ancestral to the sample. Under the standard neutral
coalescent, Ti has expectation 2/(i(i – 1)), and i ranges from
2 to n. Under the limiting conditional ancestral selection
graph, the expected value is

E½Ti�5
2

iði � 1Þ
Xn1

k5maxð1;i� n2Þ
PðK5 kjn1Þ; ð14Þ

given that the starting sample is (n1, n2). Equation (14) is the
usual expectation, multiplied by the probability that the
sample includes a period during which there are i lineages.
Note that for i such that 2 � i� n2, the expected value of Ti
for any sample is given exactly by the neutral expected
value. For samples in which n1 . 0, the expected value
of Tn2þ1 is also given by the neutral expected value because
there must be at least one A2 ancestor of the n1 A1 alleles. On
the other hand, the expected value of Ti may be much small-
er than the neutral expected value for values of i such that
n2 þ 1 , i� n1 þ n2 because the fast coalescence/mutation
process described above may cause some coalescent
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intervals to be skipped with high probability. That is, given
a value of K5 k, Ti will be equal to zero for n2 þ k, i� n1

þ n2.
The process described by equation (5) is straightfor-

ward to simulate. The simulations presented below were
done in Mathematica (Wolfram 1999), version 5.2. The
Mathematica notebook used to generate the results is avail-
able from the author upon request. A single simulation run
begins with a sample (n1, n2, 0) and ends in a random con-
figuration, either (1, 0, v1) or (0, 1, v1), in which there is only
one real lineage, which is the most recent common ancestor
of the sample. Exponential waiting times with means
1
�
kðn;vÞ are generated conditional upon each configuration

of ancestral lineages encountered, and transitions are imple-
mented stochastically according to the probabilities in
equation (5). This algorithm is very similar to that of Ste-
phens and Donnelly (2003), the only difference being that
the simplifications due to Slade (2000b) and Fearnhead
(2002) have been implemented here but were not used in
Stephens and Donnelly (2003).

The two main aims of the simulations are to assess the
convergence of various quantities to the limiting r / N
predictions, such as equations (13) and (14) above, and to
illustrate how conditional gene genealogies depend on r.
The program was also tested against available analytical re-
sults. In particular, with r 5 0, the average pairwise coa-
lescence times become closer and closer to the predictions
of equation (6) as the number of replicates increases (results
not shown). Further, when r is very large, the simulation
conforms to limiting (r/N) analytical predictions. Sim-
ulation results change monotonically between these two ex-
tremes, but no analytical predictions are available for
arbitrary r.

Results are presented for samples of size 10, for three
different sampling configurations: a sample containing only
A1 alleles (10, 0), a sample split evenly between A1 and A2

alleles (5, 5), and a sample containing only A2 alleles (0,
10). In all cases, h 5 1 and a1 5 a2 5 0.5, and 200,000
replicates were done to produce each result. The exception
to this is figure 4C, which required a larger number of rep-
licates. In this case, 1 million replicates were done for each

combination of parameters. The average values of four
quantities were computed for 17 values of r, from 10�3

to 105, evenly spaced on a log scale. The speed of these
simulations is greatly improved by tabling values of equa-
tion (7) for each value of r (and h, a1, a2). The 17 million
replicates that produced figure 4C took 22 h on a Macintosh
1.5 GHz PowerPC G4.

Simulation Results

Figure 1 shows the average total length of the gene
genealogy of the sample, that is, the sum of the lengths
of all the real branches in the ancestry, back to the most
recent common ancestor of the sample. On the left, as r
decreases, the values converge on neutral expectations.
In this case, because of the dependence on mutation and
consistent with equation (6), the value for the sample (5,
5) is larger than the values for the samples (10, 0) and
(0, 10). On the right, the values fit the limiting r/N pre-
dictions well, which in this case are given by 1.82, 4.82, and
5.66 for samples (10, 0), (5, 5), and (0, 10), respectively.
The most rapid change in values occurs between r 5 1
and r 5 100. When r , 0.1, the behavior is very close
to that of the neutral model, and when r . 1000, the be-
havior is very close to that of the limiting r / N model.
Interestingly, these ‘‘cutoffs’’ of r appear insensitive to the
value of h (results not shown).

Figure 2 shows the average fraction of the gene gene-
alogy made up of lineages of type A1. For each simulation
replicate, the total length of real A1 lineages was computed
and divided by the total length of all real (A1 þ A2) lineages
for that replicate. These values were averaged over all sim-
ulation replicates. On the left, when r is small, the value for
the sample (5, 5) is close to one-half because mutation is
symmetric and the sample configuration is also symmetric.
The unbalanced samples (10, 0) and (0, 10) have values
close to 1 and 0, respectively, when r is small. Note that,
when h becomes large, the effect of the sample

FIG. 1.—The average total length of the gene genealogy of a sample
of size 10, for three different allelic configurations, (n1, n2), and over
a broad range of the scaled selection parameter r. In all cases, h 5 1.0,
a1 5 a2 5 0.5, and for each point, the average is taken over 200,000
simulation replicates.

FIG. 2.—The average value of the fraction of the gene genealogy
comprised of A1 allelic lineages for a sample of size 10, for three different
allelic configurations, (n1, n2), as a function of the scaled selection
parameter r. In all cases, h5 1.0, a1 5 a2 5 0.5, and results are averaged
over 200,000 simulation replicates.
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configuration disappears and the values for all three sam-
ples converge on one-half or on a1 if mutation is asymmet-
ric (results not shown).

On the right in Figure 2, when r is large, the average
fraction of A1 lineages decreases to zero for any sample that
contains at least one A2 allele, in this case samples (5, 5) and
(0, 10). This illustrates that any A1 alleles in the sample will
disappear rapidly as a result of the fast process described
above as they coalesce or get converted to A2 alleles by mu-
tation. In the special case that only A1 alleles are sampled,
there is a chance, equal to P(K5 1|n1) in the limit, that all n1

copies will coalesce before the first A1 / A2 mutation
event. If this occurs, then the entire gene genealogy will
be composed of A1 lineages, and the fraction will be equal
to one, even though the total length of the tree may be very
small. If K. 1, the fraction of A1 lineages will be negligible
for the reason just discussed. Thus, the average fraction for
the sample (10, 0) converges on P(K5 1|n1 5 10) � 0.28 as
r increases in Figure 2.

Figure 3 shows the average ratio of virtual branches to
real branches in the ancestry of the sample back to the most
recent common ancestor. As in Figure 2, the ratio is taken
for each replicate and then averaged across replicates. For
any sample, the largest numbers of virtual branches are gen-
erated when r is slightly less than 10. The total time of vir-
tual branches is very small when r is either small or large.
The intuition behind this is clear when r is small: selection
is weak and few branching events occur. On the other hand,
when r is large, virtual A1 branches will be created but then
will be annihilated quickly by mutation. There is also
a strong effect of sample type on the total length of virtual
branches, with samples containing more copies of A2 hav-
ing smaller numbers of virtual branches. Figure 3 demon-
strates that the conditional ancestral selection graph, with
transitions given by equation (5), does not suffer from
the explosion of virtual lineages that plagues the uncondi-
tional ancestral selection graph. For these samples and pa-
rameter values, virtual branches never outnumber real
branches, at least on average.

Figure 4 shows how the average time during which
there are i lineages ancestral to the sample (2 � i � n)
compares to the neutral expectation for a random sample,
E[Ti] 5 2/(i(i – 1)). Thus, the plots are similar to skyline
plots (Strimmer and Pybus 2001), except that the horizontal
axis here is the number of ancestral lineages (i) rather than
time before the present. Values close to 1 indicate coales-
cence times close to neutral expectations. The samples and
parameter values are the same as in figures 1–3. Each line
shows the results for a single value of r, and again, there are
17 of these ranging from 10�3 to 105. The different curves
for small r are difficult to distinguish, as are those for large
r. Thus, figure 4 displays the same sharp transition between
the behaviors for small and large r seen in figures 1–3. For
reference, curves that fall in the steepest part of the transi-
tion are labeled by their r values.

FIG. 3.—The average value of the ratio of the total length of virtual
branches to the total length of the gene genealogy (i.e., real branches) for
a sample of size 10, for three different allelic configurations, (n1, n2), and
over a broad range of the scaled selection parameter r. In all cases, h 5

1.0, a1 5 a2 5 0.5, and the average is taken over 200,000 simulation
replicates.

FIG. 4.—The ratio of the average time during which there are i
ancestral lineages to the expected value of the same quantity under the
standard neutral coalescent. The parameters are the same as in figures 1–3,
but the results for the three different allelic configurations, (n1, n2), are
presented separately in panels (A), (B), and (C). To obtain smooth curves
in (C), 1 million simulation replicates were performed for each point.
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The bundle of lines at the top in figure 4A displays the
behavior under neutrality but conditional on the sample be-
ing of one allelic type (A1) and with h5 1. Thus, the bundle
of lines sits below one. As might be expected, a sample of
all A2 displays the same behavior when r is small. This is
shown in figure 4C, but in this case, the bundle of lines is at
the bottom of the plot rather than at the top. Thus, increasing
r has the opposite effect on relative coalescence times for
the sample (0, 10) as it does for the sample (10, 0). In the
case of (0, 10), shown in figure 4C, increasing r leads to
more and more neutral looking gene genealogies, for the
reasons discussed above. In the case of (10, 0), shown in
figure 4A, increasing r leads to very short times for first
10 – K coalescent intervals looking back (i 5 10, . . .,
K þ 1), where K is the random variable with distribution
given by equation (12). The bundle of lines at the bottom
of figure 4A sits right on top of the limiting predictions ob-
tained from equation (14).

Figure 4B shows the behavior for an evenly split sam-
ple. In this case, the bundle of lines for small r tends to lie
above one, especially for the more ancient coalescent inter-
vals (small i), because the sample requires at least one mu-
tation before the most recent common ancestor can be
reached. As r increases, the average coalescence times con-
verge on the limiting predictions of equation (14). In this
case, the n1 5 5 copies of A1 in the sample coalesce
(and mutate) rapidly into K lineages of type A2, then the
subsequent ancestry of the remaining n2 þ K lineages is
neutral. As K � 1, there is at least one A2 ancestor of
the five A1 alleles, so the times Ti are given by the neutral
model for i 5 2, 3, 4, 5, and 6.

Discussion

The ancestral selection graph is a mathematical tool
for studying gene genealogies of alleles under selection.
Due to the complicated nature of ancestral processes with
selection, few analytical results are available. Krone and
Neuhauser (1997) proved that the ancestral selection graph
collapses to the neutral coalescent when h5 0 or r5 0, and
Neuhauser and Krone (1997) obtained the same result when
h/N for a given r. Here, using the conditional ancestral
selection graph, it was shown that neutral gene genealogies
also dominate when r/N. However, gene genealogies of
samples which happen to contain some number of delete-
rious alleles are very different than neutral genealogies.
Their ancestries consist of a two-phase process, in which
the deleterious (A1) alleles in the sample quickly coalesce
and mutate into a random number of advantageous (A2) al-
leles, and then the ancestry of those alleles and the rest of
the sample is given by the neutral coalescent process. In-
terestingly, the Ewens sampling formula describes the re-
sult of the fast process.

As mentioned above, the results presented here are
fundamentally similar to those for soft selective sweeps
by recurrent mutation. Pennings and Hermisson (2006a) de-
scribe how the Ewens sampling formula gives the probabil-
ity function for the number of independent ancestral alleles
of a sample of size n taken at the end of the sweep. Pennings
and Hermisson (2006a) assumed that each copy of the ad-

vantageous allele arises uniquely via one-way mutation
from the background allele and that the allele-frequency tra-
jectory of the advantageous allele follows the standard pre-
diction for strong positive selection. However, they argue
that the result should not depend on the shape of the allele-
frequency trajectory as long as the sweep occurs quickly.

It is not surprising that the same result should be
found, as it was here, for a strongly deleterious allele that
happens to reach a large enough frequency to be observed
in a sample. Such an allele would have arrived at high fre-
quency by a sweep-like process (see further discussion be-
low). Given the starting and ending frequency of an allele,
some properties of the trajectory do not depend on whether
the allele is advantageous or deleterious, but only on the
absolute value of selection parameter, see Sections 4.6
and 5.4 in Ewens (2004). The comparison of the present
results to those of Pennings and Hermisson (2006a) is of
value because it shows that deleterious alleles which are
observed in a sample are no more or less likely to be derived
from independent mutations than advantageous alleles
which have undergone a sweep.

The results presented here also have implications for
the interpretation of allelic diversity at human disease loci
and make a contribution to ongoing modeling efforts in that
area (Di Rienzo 2006). Hartl and Campbell (1982) studied
a model of classical mutation–selection balance, in which
the frequency of alleles that cause a simple Mendelian dis-
order is held constant over time by strong mutation and se-
lection and found an identical role for the Ewens sampling
formula as that discovered here. Their model exists in the
limit as N/N with h/N and r/N but h/r constant
(Sawyer 1983), meaning that mutation is a strong force that
keeps the deleterious allele at an appreciable frequency in
the population despite strong deleterious selection.

Pritchard (2001) considered similar ideas in the con-
text of complex diseases, where selection on particular al-
leles that cause susceptibility is expected to be weaker. He
discussed the importance of the mutation–selection–drift
equilibrium (eq.1) in interpreting the diversity of alleles
at each locus that contributes to a complex disease. Again,
equation (1) holds in the limit as N/N with h and r con-
stant. Pritchard (2001) used simulations to study patterns of
allelic diversity and estimated that the scaled rate of muta-
tion to deleterious alleles—denoted ha1 here and bS in
Pritchard (2001)—is between about 0.1 and 5 for a typical
locus.

Using a completely different approach and set of as-
sumptions, Slatkin and Rannala (1997) also showed that the
diversity of alleles at a disease locus should follow the
Ewens sampling formula. In particular, Slatkin and Rannala
(1997) used a birth–death process, forward in time, in
which every copy of the allele reproduced independently.
Their mathematical analysis did not require the alleles to be
deleterious, but they focused on this case because they were
interested in applications to disease. The method and results
of Slatkin and Rannala (1997) should be valid over a fairly
broad range of parameter values, provided that the overall
frequency of the alleles is small.

Slatkinand Rannala (1997)alsopointedout that the stan-
dard homozygosity test (Watterson1978; Slatkin1994, 1996)
could be used to detect deviations from the model, including
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different rates of mutation to different alleles, differential se-
lection, differential penetrance, and changes in population
size (in particular, growth). They rejected the null model
for theBRCA1 locus, which is implicated in early-onset breast
cancer, and the factor VIII locus, which is associated with he-
mophilia A.They concluded that population growthcould ex-
plain the deviations at both loci. Beginning instead with the
model of Hartl and Campbell (1982), Reich and Lander
(2001) extended this conclusion about growth to a general ob-
servation among many loci: that diseases in higher frequen-
cies tend to have a simpler pattern of diversity, with one most
common allele. For further discussion, see Pritchard and Cox
(2002) and Di Rienzo (2006).

Taken together, the results of Hartl and Campbell
(1982), Slatkin and Rannala (1997), Pennings and Hermisson
(2006a), and those presented here support the broad appli-
cability of the Ewens sampling formula as a model of di-
versity among selectively equivalent alleles at a locus
without recombination. To illustrate some of the above ideas
and to get a sense of the domain of application (to delete-
rious/disease alleles) of the present model compared with
the model Hartl and Campbell (1982), consider figure 5.
The model of Slatkin and Rannala (1997) will not be con-
sidered in this context because its assumptions are implicit,
about the age and frequencies of alleles, rather than explicit,
about the parameters. Figure 5A shows three distributions
of x, the frequency of the deleterious allele A1, all of which
correspond to a disease whose average frequency in the
population is 1/2000, but among which there are very dif-
ferent levels of variation around this average. Note that h(x),
given in equation (1), may be interpreted as the relative
amount of time the population spends with the frequency
of A1 equal to x. A different but related way to think of
h(x) is that it represents the relative chance that the current
frequency of A1 in the population is equal to x.

The shape of h(x) depends on ha1, ha2, and r. It is L
shaped when both ha1 and ha2 are less than or equal to one
and has a nonzero mode if the mutation rate to the less-
frequent allele (here ha1) is greater than one. The solid
curve in Figure 5A corresponds to one set of parameters
used in the simulations presented above. Recall that when
r5 1000, as for the solid curve, the simulation results were
very close the limiting predictions for strong selection, here
meaning r/N for a given h. It is clear that, for this solid

curve, the population is not particularly likely to have an x
close to its expected value of 1/2000 and that much of the
time the frequency of A1 is close to zero. On the other hand,
as h and r increase, but h/r remains constant, the distribution
becomes more and more concentrated on the expected value.
The finely dashed curve in figure 5A represents a case in
which the model of Hartl and Campbell (1982) would be
appropriate. Amazingly, despite quite different assumptions,
both models predict the same sampling distribution of alleles.

Figure 5B displays the same solid curve that appears in
figure 5A, but over a wider range of x. Again, in this case,
there is only a 1/2000 chance of sampling a deleterious
allele. Also included in figure 5B is the distribution of x,
conditional on observing five deleterious alleles in a random
sample of size 100. The general formula for this posterior
distribution of allele frequencies is

h�ðxÞ5 xn1ð1 � xÞn2hðxÞ
pðn1; n2Þ

: ð15Þ

The dashed curve in figure 5B shows that if such a sample is
observed, in which the frequency of A1 is 5% rather than the
expected 0.05%, then the population is likely to be in a very
uncommon state, where x is far off in the tail of its predicted
distribution h(x). Because the population must spend most
of its time with values of x in the bulk of h(x), it follows that
the frequency of A1 only recently rose to such a high level.
In keeping with the suggestion of Pennings and Hermisson
(2006a)—that the Ewens sampling formula for soft sweeps
should hold regardless of the sign of the selection coeffi-
cient and of the exact trajectory of the allele frequency—the
conditional gene genealogy of a sample containing some
number of deleterious alleles resembles closely that of
a positive selective sweep that has gone only part way
to completion. This highlights the possibility that some hu-
man diseases may be at higher frequencies than expected
based on mutation rates and selection coefficients, simply
stochastically.
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FIG. 5.—(A) Plots of h(x), given in equation (1), for three different sets of parameters. In all three cases, the average frequency of the deleterious
allele is equal to 1/2000. (B) Plots of h(x) and h*(x), given in equation (15) and conditional on observing n1 5 5 and n2 5 95 in a sample of size 100,
when h 5 1, r 5 1000, and a1 5 a2 5 0.5; these are the same parameter values as for the solid curve in (A).
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Appendix

In the following equation, the probability of the or-
dered sample (n1, n2, v1, v2) is computed by conditioning
on the first step in the exchangeable ancestral process which
underlies the ancestral selection graph (see text). The total
rate of events is (n þ v) (h þ r þ n þ v – 1)/2. Fourteen
different kinds of events are distinguished, based on
whether they are mutation, coalescent, or branching events
and on which lineages they affect. This is a special case of
the general, multiallele processes described in Fearnhead
(2002) and Stephens and Donnelly (2003). Similar equa-
tions, for unordered samples, can be found in Krone and
Neuhauser (1997) and Slade (2000a).

Each term on the right-hand side of equation (A1) has
the formP{Event}P{Data|Event}, where Data means the or-
dered sample (n1, n2, v1, v2), and the sum is taken only over
Events that have a nonzero probability of producing the data.
In particular, coalescent events between lineages whose al-
lelic types in the data are different are omitted from equation
(A1), as are mutation events in which the descendent lineage
is not of the allelic type required by the data. There are four
kinds of events among the 14 terms on the right-hand side of
equation (A1): mutation events in which the descendant lin-
eage is of the correct allelic type (terms 1–4), branching

events in which the descendent lineage must be of allelic type
A1 (terms 5 and 7), branching events in which the descendent
lineage must be of allelic type A2 (terms 6 and 8), and coa-
lescent events in which both descendent lineages must be of
the same allelic type (terms 9–14).

The probabilities of each event are given by the frac-
tions in each term and are computed in the usual way as the
rate of each particular event divided by the total rate of
events in the unconditional, exchangeable process. At
the time of the first event, the lineages in the graph are a ran-
dom sample from the equilibrium population (Donnelly and
Kurtz 1999). The probabilities of the data given each event
are computed by considering what type of ancestral sample
would yield the data. For example, the lineages not in-

volved in the event must simply have the same allelic state
that they do in the data.

For mutation events, the ancestral sample would yield
the data if it were identical to the data (in which case it is an
empty mutation event) or if it contained one fewer allele of
the type required for the mutant lineage by the data and one
more of the other allelic type (in which case the mutation
converts the lineage to the correct allelic type). In the case
of branching events, all four possibilities for the allelic
states of the incoming and continuing branches must be
considered. For branching events in which the descendent

p
�
n1; n2; v1; v2

�
5

n1ha1

ðn þ vÞðh þ r þ n þ v � 1Þ ðpðn1; n2; v1; v2Þ þ pðn1 � 1; n2 þ 1; v1; v2ÞÞ

þ n2ha2

ðn þ vÞðh þ r þ n þ v � 1Þ ðpðn1 þ 1; n2 � 1; v1; v2Þ þ pðn1; n2; v1; v2ÞÞ

þ v1ha1

ðn þ vÞðh þ r þ n þ v � 1Þ ðpðn1; n2; v1; v2Þ þ pðn1; n2; v1 � 1; v2 þ 1ÞÞ

þ v2ha2

ðn þ vÞðh þ r þ n þ v � 1Þ ðpðn1; n2; v1 þ 1; v2 � 1Þ þ pðn1; n2; v1; v2ÞÞ

þ n1r
ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2; v1 þ 1; v2Þ

þ n2r
ðn þ vÞðh þ r þ n þ v � 1Þ ð2pðn1; n2; v1 þ 1; v2Þ þ pðn1; n2; v1; v2 þ 1ÞÞ

þ v1r
ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2; v1 þ 1; v2Þ

þ v2r
ðn þ vÞðh þ r þ n þ v � 1Þ ð2pðn1; n2; v1 þ 1; v2Þ þ pðn1; n2; v1; v2 þ 1ÞÞ

þ n1ðn1 � 1Þ
ðn þ vÞðh þ r þ n þ v � 1Þ pðn1 � 1; n2; v1; v2Þ

þ n2ðn2 � 1Þ
ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2 � 1; v1; v2Þ

þ n1v1

ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2; v1 � 1; v2Þ

þ n2v2

ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2; v1; v2 � 1Þ

þ v1ðv1 � 1Þ
ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2; v1 � 1; v2Þ

þ v2ðv2 � 1Þ
ðn þ vÞðh þ r þ n þ v � 1Þ pðn1; n2; v1; v2 � 1Þ

: ðA1Þ
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lineage must be of allelic type A1, only an ancestral sample
in which the incoming (virtual) branch has allelic type A1

(and the remaining lineages have the types required by the
data) would yield the data. For branching events in which
the descendent lineage must be of allelic type A2, three
cases of (I, C) could produce the data: (A1, A2), (A2, A1),
and (A2, A2). In the first two cases, the ancestral sample pos-
sesses one additional (virtual) lineage of type A1 relative to
the data; hence, these are grouped together in equation
(A1), whereas in the third case the ancestral sample pos-
sesses one additional (virtual) lineage of type A2. Finally,
coalescent events in which both descendent lineages are of
the same allelic type will yield the data if the coalesced an-
cestral lineage is of the correct allelic type, so that ancestral
sample contains one fewer of that allelic type than the de-
scendent sample does.
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