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Abstract

The genealogical process for a sample from a metapopulation, in which local populations
are connected by migration and can undergo extinction and subsequent recolonization, is
shown to have a relatively simple structure in the limit as the number of populations in the
metapopulation approaches infinity. The result, which is an approximation to the ancestral
behaviour of samples from a metapopulation with a large number of populations, is the
same as that previously described for other metapopulation models, namely that the
genealogical process is closely related to Kingman'’s unstructured coalescent. The present
work considers a more general class of models that includes two kinds of extinction and
recolonization, and the possibility that gamete production precedes extinction. In addition,
following other recent work, this result for a metapopulation divided into many popula-
tions is shown to hold both for finite population sizes and in the usual diffusion limit,
which assumes that population sizes are large. Examples illustrate when the usual diffu-
sion limit is appropriate and when it is not. Some shortcomings and extensions of the
model are considered, and the relevance of such models to understanding human history

is discussed.
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Introduction

The rise of bio-molecular technologies over the last few
decades has changed the field of biology quite dramatically.
Within those subfields of biology that seek historical
explanations for current patterns of biodiversity, as large
sections of population genetics and molecular ecology do,
the availability of molecular data has been a boon. Molecular
data are the closest thing to a transcript of history that
biologists are likely to obtain. They are currently being
gathered at an unprecedented pace, with the promise of a
future filled with powerful and unambiguous inferences.
These data necessarily provide indirect evidence of history.
They are like the results of a laboratory experiment but one
in which the experimental protocols are only sketchily known.
Thus, inferences about history made from molecular genetic
data, such as DNA sequence data, depend on a framework
of probabilistic models and statistical methods. The shift
that this represents within the field of population genetics,
from a forward-looking, classical view to a backward-looking,
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genealogical approach is discussed in an excellent review
by Ewens (1990).

The present work concerns one small part of this trans-
formation of biology, namely the search for metapopula-
tion models that include a sufficient amount of biological
realism and, through a connection to the well-characterized
coalescent process (Kingman 1982a,b; Hudson 1983; Tajima
1983), are amenable to popular computational methods
of statistical inference. As any issue of Molecular Ecology
or the recent book by Hanski & Gilpin (1997) will attest,
many species are subdivided into locally breeding popu-
lations that exhibit metapopulation dynamics. Populations
within a metapopulation may be connected by migration,
they may be subject to extinction and recolonization, and
they may grow or shrink over time. In addition, there may
be changes in the number of populations, and in the rates
of migration and of extinction/recolonization across the
metapopulation. Finally, selection might be acting on gen-
etic variation. In order to take advantage of the opportunities
offered by burgeoning molecular data sets. All of these
factors must be included in the developing structure for
historical inference.

The specific goals here are rather more modest than this.
In particular, it is shown that a result based on a separation
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of time-scale for subdivided populations — see Wakeley &
Aliacar (2001) and references therein —holds for metapopu-
lations with two kinds of recolonization and within which
gamete production can either precede or follow extinction.
The recent work of Lessard & Wakeley (2003) has shown
that this result holds both when the population sizes are
finite and under the usual diffusion approximation for a
subdivided population. The usual diffusion approxima-
tion for a subdivided population, which dates back to
Wright (1931), posits that population sizes approach infin-
ity while scaled parameters, e.g. Nm, remain finite. Instead,
the limiting ancestral process studied here exists in the
limit as the number of populations in the metapopulation
approaches infinity. The additional assumption of large
population size is straightforward to include but it is not
necessary to the result. Other assumptions of the model
detailed below include selective neutrality of variation and
no explicit spatial structure, although the latter could be
adjusted (Wakeley & Aliacar 2001). The result is an approx-
imation to the genealogical process for metapopulations
that are divided into a large number of populations. It is
hoped that the simple structure of the limiting ancestral
process will aid in the development of efficient computa-
tional methods of inference and will facilitate understand-
ing of the ways in which metapopulation dynamics shape
genetic variation.

A focus on genealogies as depictions of history is one of
the hallmarks of the new inferential approach to popula-
tion genetics. From that starting point, however, two quite
different camps are apparent. Working from the realiza-
tion that substantial information about history may be
present in the structure of genealogies, the methods in the
field of intraspecific phylogeography (Avise et al. 1987), or
simply phylogeography (Avise 2000), typically begin with
a single tree reconstructed from the data. On the other
hand, methods based on the coalescent assign little or no
significance to single genealogies, instead averaging over
them in order to make inferences (Griffiths & Tavaré 1994;
Kuhner et al. 1995). Phylogeography has its roots in the
field of phylogenetic systematics, which historically
has been rather anti-statistical, while coalescent theory is
firmly grounded in probability and statistics. The potential
advantages and shortcomings of both approaches have
been reviewed recently (Hey & Machado 2003; Knowles
2003; Wakeley 2003). One of the primary methods of
phylogeography — nested clade analysis (Templeton ef al.
1995) — has finally been tested using simulations, and the
results are not encouraging (Knowles & Maddison 2002).
This motivated Knowles & Maddison (2002) to propose the
term statistical phylogeography to describe the emerging
field that infuses phylogeography with coalescent theory
and rigorous statistical techniques. There are, of course,
strong connections between these modern approaches to
the interpretation of DNA sequence data and the pioneer-

ing work of Malécot (e.g. Malécot 1948, 1975) and Wright
(1951), who developed similar models and techniques but
focused on allelic data.

The job of historical inference is at the intersection of
biology, mathematics, statistics and computer science. It is
made difficult, in part, because population genetic history
is the result of the joint action of the many factors men-
tioned above. Thus, one of the major goals of theoretical
work should be to identify cases in which simplified
models, or approximations, are justified in spite of the fact
that the actual processes are complicated. The remaining
situations will require complicated models or will have to
await the development of better theoretical approaches.
The original coalescent model (Kingman 1982a, b; Hudson
1983; Tajima 1983) admits none of these complications, and
the last two decades have seen it extended in many differ-
ent ways (Hudson & Kaplan 1988, 1995; Kaplan ef al. 1988,
1991; Krone & Neuhauser 1997; Neuhauser & Krone 1997;
Nordborg 1999). Most of the resulting models are special
cases of what has become known as the structured coale-
scent (Notohara 1990; Nordborg 1997, 2001; Wilkinson-
Herbots 1998). The structured coalescent allows for different
rates of coalescence within and between different classes
of lineages, which can be defined by such things as allelic
state or geographical location. It is a much needed and
well-described model, but it is complicated because the
history of a sample depends on many different parameters.

Recently, a number of related results have shown that
the standard, unstructured coalescent arises in a variety of
models with structure (Nordborg & Donnelly 1997; Mohle
1998a,b; Wakeley 1998, 1999). These are known as robust-
ness results for the coalescent (Mohle 1998c), and are
obtained when the ancestral process involves forces that
occur on very different time scales. For example, King-
man’s coalescent (Kingman 1982a,b) is a haploid model,
but it has been shown to hold for large, two-sex diploid
populations because individual genetic lineages will
switch back and forth between males and females many
times before they coalesce (Mohle 1998a). The only differ-
ence is that the rate of coalescence depends on the effective
size of the population, which is a function of the numbers
of males and females (M&hle 1998a). The results presented
below are of this sort, and follow some recent similar work
on related models. Genealogical history is a two-phase
process: (i) a brief ‘scattering” phase that amounts to a
stochastic, structured sample size adjustment, and (ii) a
much longer ‘collecting” phase which is an unstructured
coalescent process with an effective size that depends
on the many parameters of the model (Wakeley 1999). This
allows the large and growing body of knowledge about
the analytical, computational, and inferential framework of
Kingman’'s coalescent (Kingman 1982a,b) to be applied to
structured populations simply by including the scattering
phase.

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 865-875
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Fig.1 A graphical depiction of the metapopulation model
described in the text.

A metapopulation model

The model used here is from Whitlock & McCauley (1990)
and is a generalization of the model of Slatkin (1977).
The metapopulation is divided into D populations each
containing N haploid individuals. Note that in the popu-
lation genetic literature these are often referred to as demes
(Gilmour & Gregor 1939), and the metapopulation is often
simply called the population. Generations are nonover-
lapping, and follow the life cycle depicted in Fig. 1. At the
beginning of each generation, a fixed number, De, of popu-
lations is chosen at random from the metapopulation.
These populations become extinct and do not contribute to
the next generation (but see below). The D(1 — ¢;) populations
that do not become extinct each contribute an effectively
infinite number of gametes, or newborns, to three different
pools: their own gamete pool, a migrant gamete pool and
a propagule pool. Gametes are contributed to the propagule
pool in packets of size k, while the migrant pool and the
gamete pools of the individual populations are unstruc-
tured. The De, populations that do become extinct are of
two kinds: De,0 are recolonized from the propagule pool,
and De(1 - ¢) are recolonized from the migrant pool. In
this formulation, in which gametes are produced after
extinction, the parameters ¢; and ¢ can vary between zero
and one, but ¢; cannot be equal to one or the entire popu-
lation would become extinct.

Every adult individual dies after contributing its
gametes. The next generation of adults is formed, in the
usual Wright-Fisher reproductive scheme (Fisher 1930;
Wright 1931), by random sampling from the gamete pool(s),
but with the structure imposed by Fig. 1. For each descend-
ant of the populations which did not become extinct, a
fraction 1 — m of the next generation’s adults comes from that
population’s gamete pool and a fraction m comes from the
migrant pool. Of the populations that did become extinct,
Deyd received k colonists from the propagule pool and
De(1 — ¢) receive k colonists from the migrant pool. Colon-
ists from the propagule pool are certain to have come
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from the same parental population. Colonists from the
migrant pool may have come from any contributing popu-
lation. The recolonized populations regain their original
size N immediately by another round of Wright-Fisher
sampling from the k colonists. This is a restricted version of
the model of Whitlock & McCauley (1990) because of the
assumption of a haploid organism and because Whitlock &
McCauley (1990) had a broader vision of the parameter
¢. The model is clearly abstract and lacking realism in
many respects, yet it is hoped that it captures some of the
important features of metapopulation dynamics. A few
shortcomings and possible extensions of the model are
taken up in the Discussion. Here, it should be noted that the
results can be applied to diploid organisms by a simple
rescaling of the effective population size; see Mohle (1998a,b).

The large-D approximation

The model described above and depicted in Fig. 1 is
complicated, but sample genealogies from such a meta-
population have a relatively simple structure. Even more
complicated models, such as some that include explicit
geography (Wakeley & Aliacar 2001), have this same simple
structure. To obtain the result, it is necessary to make two
further assumptions: that genetic variation is selectively
neutral and that the metapopulation is comprised of a large
number of populations. The first of these is not to be taken
lightly, and there is great deal of historical and current
debate about the role of selection in shaping genetic variation
within and among populations and species (Kimura 1983;
Golding 1994; Fay et al. 2001, 2002; Bustamante et al. 2002;
Smith & Eyre-Walker 2002). The second is a safe assum-
ption for many metapopulations, and has been a standard
starting point since Wright (1931, 1940) and Levins (1968a,b),
although its consequences have rarely been investigated
explicitly as a mathematical limit. The derivation of the
present result is given in the Appendix for a sample of size
two. In the limit as D approaches infinity, it is shown that
the history of the sample from the discrete time model con-
verges to a continuous time process that has the scattering
phase/collecting phase structure described above.

The derivation can be understood intuitively by refer-
ring to the matrix that describes the discrete time Markov
process of coalescence. As shown in Table 1, this matrix
can be written as the sum of two different matrices, I, =
A + B/D, one which does not depend on D at all and one
which is proportional to 1/D when D is large. The sample
or the ancestral lineages of the sample can be in one of three
states: state 1 is both lineages in the same population, state
2 is the two lineages in different populations, and state 3
is the two lineages have coalesced. State 3 is an absorbing
state, which means that the process is followed back in
time only to the most recent common ancestor of the
sample. The entries of IT, are the probabilities of moving
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between states in a single generation looking back. For
example (I1p), is the probability that the sample is in state
1 one generation back, given that it is in state 1 now. Part
of this is in the matrix A and is the probability that the
population is not extinct/recolonized and neither of the line-
ages migrates and they do not coalesce plus the probability
that the population is propagule-extinct/recolonized and
the lineages do not coalesce either in the extra recoloniza-
tion sampling step or in the source population (see Fig. 1).
The other part is in the matrix B/D and is the probability
that one or other, or both, lineages move either by mig-
ration or extinction/recolonization (without coalescing in
the extra sampling step) and they have the same source
population but do not coalesce there. The probability of
having the same source population is what creates the
inverse dependence on D.

As D grows, the entries in B/D, which are the ones that
bring separated lineages together into a single population,
become proportionately smaller. The entries in A do not
depend on D. Thus, the dynamics from state 1 will depend
only on the top row of A in the limit as D tends to infinity,
whereas transitions from state 2 depend on the rare events
whose probabilities are in the second row of B/D. If the
sample starts in state 2, it will stay there for an approxi-
mately exponentially distributed number of generations,
D/b, on average, then it will jump to either state 1 or state
3. That is, b,/ D is the probability that one or the other, or
both, lineages move, by migration or extinction/recolon-
ization, and they end up in the same population. While in
state 2, the lineages are likely to move many times among
populations. When the sample leaves state 2, it will either
coalesce or go to state 1. Since the entries in A are much
greater than the entries in B/D when D is large, the amount
of time the sample stays in state 1 is much shorter than the
amount of time it had spent in state 2. So, in a short time,
the sample will either coalesce or it will move back to state
2 and this whole process will restart. As shown in the
Appendix, in the limit D — o and if time is measured in
proportion to D generations, a continuous time approxi-
mation is valid in which the jumps from state 1 take an
infinitesimal amount of time.

The result is a Kingman-type coalescent process (the
collecting phase) that only needs to be adjusted for first
jump (the scattering phase) from state 1 for a sample from
a single population. The adjustment, for this sample of size
two, is by a factor 1 —F, which is the probability that the
two lineages do not coalesce during the scattering phase.
The quantity F is equivalent to one of the ways in which
Wright's Fg. (Wright 1951) has been defined (Slatkin 1991;
Charlesworth 1998). Its value here is given by

1 1
ulﬁ + EO%

1—111[1 —;}j

F=

Table 1 Backward, single-generation transition matrix IT, for
a sample of size two, split into two parts: IT,=A +B/D.
Specifically (Ip); is the probability that the sample moves from
state i (row) to state j (column) in a single generation
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where a, is given in Table 1, and is consistent with the
expressions for Fg; studied by many authors (Slatkin 1977,
1991; Whitlock & McCauley 1990; Whitlock & Barton 1997;
Pannell & Charlesworth 1999, 2000). In addition, the time
scale of the collecting-phase coalescent process is determined
by an effective population size

B D(1-¢,)

N, =
[ 1- (1 )2 - m>2] {F[l - 111] ‘ H

which again is consistent with the work of others, but is
also identical to the expression recently obtained by Rousset
(2003). The difference here is that F and N, are parameters
in a well-defined stochastic process (Mohle 1998b), closely
related to the unstructured coalescent (Kingman 1982a,b;
Hudson 1983; Tajima 1983), rather than descriptors of the
average behaviour, defined in a variety of different ways
(Ewens 1982; Charlesworth 1998), of genetic drift within
and among populations.

Finite N vs. large-N approximations

The effects of D, N, m, ¢;, ¢, and k on F and N,, and thus on
levels and patterns of genetic variation, have been described
by several authors; see Pannell & Charlesworth (2000) for
a review. The present results, and those of Rousset (2003),
allow comparisons to be made between results for finite N

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 865-875
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Fig. 2 The dependence of F on N for constant scaled parameters.
In (a), E, = Ne, is held constant at E, = 100, withm = 1and ¢ = 0, and
four different values of k are used: 1, 2, 4 and 8, from top curve to
bottom curve. In (b), M = Nm is held constant at M = 100, with ¢, = 0.
Both plots show values of F as N varies from 100 to 2500 individuals.

and those obtained under the typical diffusion approxi-
mation for a metapopulation which assumes that N is very
large and m and ¢, are very small. In this large-N limit,
patterns of genetic variation depend on the scaled parameters
M = Nm and E, = Ne), and these are surprisingly good
predictors even when N is not particularly big and m and
e, are not particularly small. However, when M or E, is
large, N has to be larger still for the assumption of small m
and e, to be met. Conversely, if N is not very large, then m
and e, must be very small for the usual diffusion approxi-
mations to be accurate. Figures 2 and 3 illustrate this for F
and N,, respectively.

Figure 2 shows the effect on F of varying N for constant
values of M and E. In Fig.2(a), F is shown to depend
strongly on N when E, = 100 in a model without restricted
migration (m = 1) and only migrant-pool colonization
(¢ = 0). On the far left of the graph, F is large because a high
rate of extinction (large ¢;) is required to keep E, = 100. The
dependence on N is strong even when N is as large as 500.
In fact, with m =1 and ¢ = 0, as assumed here, the expres-
sion for F reduces to ¢,/k, so Fig. 2(a) simply plots F = 100/
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(Nk). Thus, the effect of N is stronger when k is smaller. On
the far right of the graph, the effect of subdivision is small,
i.e. Fis close to zero, because ¢, is small while m = 1. A sim-
ilar strength of dependence on N is shown in Fig. 2(b), in
which M =100 for a migration-only metapopulation
(e, = 0). In this case, F increases from zero when N =100
(and m = 1) to a value greater than zero when N is large.
However, although there is a strong dependence of F on N,
the overall effect of subdivision in this case is small, i.e. F
is small, because M = 100 represents a significant amount
of migration regardless of the value of m (Wright 1931).
Asasecond illustration that the large-N approximation is
sometimes undesirable, consider a model in which gamete
production occurs before extinction, rather than after extinc-
tion as has been assumed thus far. If gametes are produced
before extinction, then populations that become extinct can
contribute to the next generation. The only effect of imple-
menting this assumption is to multiply both b; and b, in
Table 1 by the factor 1 - ¢,. This does not change F, but the
effective population size is 1 - ¢, times smaller if gametes
are produced after extinction than if gametes are produced
before extinction. However, as N approaches infinity, and
limy,_,_, Ne, = Ejand limy_, , Nm = M, both models give

ND
N,=—m—
2(E, + M)F
where

E
1+-2
k

1+2M +E0[l—¢+¢iJ

F =

These equations for N, and F (or Fg) have been found
previously by Whitlock & Barton (1997) and Whitlock &
McCauley (1990), and are of course consistent with earlier
work (Wright 1931, 1940; Slatkin 1977; Maruyama &
Kimura 1980). What is interesting is that they do not
depend on whether gamete production occurs before or
after extinction.

Figure 3 compares the effective population size of two
metapopulations in which the local population size is
N =100 and in which the source of subdivision is extinc-
tion and migrant-pool recolonization (m =1 and ¢ = 0).
Because N is not particularly large, this is a case in which
the product Ne, or E, is not expected to be a good pre-
dictor unless ¢ is quite small. The two metapopulations
compared in Fig. 3 differ in the timing of gamete production:
either before extinction (gpbe) or after extinction (gpae).
Figure 3(a) plots the effective size of the metapopulations
relative to the effective size of an unstructured population
of the same total size. On the left, when the rate of extinc-
tion, e,, is small, the effective sizes are very similar and
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Fig. 3 Comparison of the dependence of N, on ¢, when gamete
production occurs before extinction (gpbe) and when gamete pro-
duction occurs after extinction (gbae). In both (a) and (b), N = 100,
m=1,¢=0and k =10. (a) shows N, in both models compared to
the effective size of a single, unstructured population of size ND.
(b) shows the ratio of effective sizes under the two models.

both are close to the actual size of the metapopulation. On
the right, when the rate of extinction e, is large, both effec-
tive population sizes become much smaller than the total
population size. However, they also diverge from each
other, and the effective size of the metapopulation in which
gamete production follows extinction is the much smaller
of the two. In fact, as mentioned above, the ratio of the
effective sizes of these two metapopulation is equal to 1/
(1 —ey), and this is plotted in Fig. 3(b).

Figures 2 and 3 might, alternatively, be used to support
the use of the large-N limit, in which lim,,_,_, Ne, = E; and
limy,_, . Nm = M, because the resulting approximations
for F and N, are accurate even for moderate values of N, m
and ¢;,. However, the figures also show that the approxima-
tions worsen quickly when N decreases below some critical
value or when ¢, increases above some critical value. Large
values of m appear less problematic since the population
becomes panmictic as m approaches one. As the large-D
model holds for finite N and arbitrary m and ¢, as well as
in the usual diffusion limit, it can be used to empirically

address the question of whether the sizes of N, m and ¢, are
consistent with a large-N approximation.

Discussion

For metapopulations that consist of a large number of
populations, genealogies are characterized by an initial
scattering phase followed by an unstructured collecting phase
coalescent. During the scattering phase, coalescent events
can occur between samples from the same population but
not between samples from different populations, and mig-
ration events and extinction/recolonization events move
lineages to populations that do not already contain lineages
ancestral to the sample. When each remaining ancestral
lineage is in a separate population, the collecting phase coal-
escent process begins, and continues until the most recent
common ancestor of the entire sample is reached. The
collecting phase depends on those rare events that bring
lineages together into the same population. Thus it is much
longer than the scattering phase, the duration of which
becomes negligible in the limit as D tends to infinity. The
effect of this brief scattering phase can be profound, as this
is what generates differential patterns of relationship within
vs. between populations. Despite the complicated nature
of the model, the collecting phase depends only an effec-
tive size, N,, a composite parameter which is proportional
to D and N but also depends on 1, ¢,, ¢ and k. In contrast,
the scattering phase is determined by the properties (N, m,
ey 0, k) of the sampled populations. Simulations show that
this approximation to the ancestral process for a sample
from a metapopulation appears to hold for moderate D
(Wakeley 1998; Lessard & Wakeley 2003; Pannell 2003).
Following the two-locus, migration-only case in which
both finite and infinite N were treated recently (Lessard &
Wakeley 2003), the Appendix shows that the usual diffu-
sion limit for a metapopulation, which assumes that N — oo
while Nm and Ne, remain finite, can be included in the
model and the basic result is unchanged. In addition, the
scattering/collecting structure is robust to some forms of
explicit geography (Wakeley & Aliacar 2001), can include
changes in demography over time (Wakeley 1999), and
holds for samples larger than two both for finite N (Lessard
& Wakeley 2003) and in the usual diffusion limit (Wakeley
1998). The large-N version of the scattering phase has been
described for metapopulations without propagule pool
recolonization (Wakeley & Aliacar 2001), in which case
tractable analytical descriptions are possible for samples
larger than two. Here, for arbitrary N, m, ¢, and k, the pos-
sibility of multiple coalescent events in a single generation
during the scattering phase makes analysis more difficult,
but could be modelled using simulations. An odd feature
of the present model is the inclusion of an extra sampling
or reproduction step for populations which become extinct
and are recolonized. Slatkin (1977) originally proposed this

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 865-875



assumption explicity to simplify the analysis and not to
model any specific biological phenomenon. The result is
that the populations that undergo extinction/recolonization
have two generations over the same period of time as
the other populations experience a single generation. One
way to achieve parity among populations would be to
include another reproduction step in Fig. 1 for the popu-
lations that do not become extinct. However, this would
enforce an artificial two-generation structure on the model,
with extinction/recolonization possible only every other
generation. A better solution would be to replace the pres-
ent model with one in which generations are overlapping
and populations can be in a number of states, with regard
to when they were last recolonized, and migration could
occur at any time. Ingvarsson (1997) studied an aspect
of this problem, allowing recolonized populations to grow
from size k to N over a number of generations and for migra-
tion to occur during this growth phase.

All variation is ancestral

Because mutations along the branches of the genealogy are
the source of polymorphism among the members of a
sample, the large-D result has dramatic implications for
interpreting genetic variation. In particular, since the duration
of the scattering phase is negligible in comparison to that
of the collecting phase, all genetic variation in a large-D meta-
population results from mutations that occurred in the
ancestral (collecting phase) part of the history. Samples
from the metapopulation tap into this ancestral variation
via the scattering phase, which again is a stochastic sample
size adjustment that determines patterns of identity among
samples from the same population. This is particularly
evident for a sample of size two from the same population,
in which there is a probability F that the samples coalesce
immediately so that there is not even a chance of a mutation
between them. With probability 1 — F the samples enter the
collecting phase, so that their coalescence time is exponen-
tially distributed and some mutations can occur. This also
has consequences for population mutation rates and patterns
of polymorphism. In the usual diffusion approximation for
a haploid subdivided population, the mutation parameter
is taken to be 2Nu, or 4Nu if the organisms are diploid and
monoecious. Here, the natural way to include mutations is
to set © = 2N,u, where N, is the effective size of the collecting
phase coalescent. In other words, levels of polymorphism
will depend on m, e, ¢ and k in addition to ND. Let ©t,, and
7, be the number of nucleotide differences between two
sequences sampled from the same population (‘within’) or
sampled from two different populations (‘between’), and
assume that every mutation creates a new polymorphic
site (Kimura 1969; Watterson 1975). Then, with 6 = 2N,u,
the expected numbers of pairwise differences within and
between populations are:
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Elr,1=(1-F)8
Elm,]=6

In the case of the island migration model, without extinc-
tion/recolonization, these equations reduce to the familiar
result that E[r, ] = 2NDu and E[m,] = 2Ndu{1 + [1/(2Nm)]}
(Slatkin 1987; Strobeck 1987). In general, however, e.g. with
extinction/recolonization, the expected number of pair-
wise differences within populations is not the same as
in a single, panmictic population of the same total size.
Although these results for pairwise differences do not offer
the hope to distinguish the effects of migration from those
of extinction/recolonization, results for the frequencies of
polymorphisms in larger samples indicate that this will in
fact be possible (Wakeley & Aliacar 2001). In the case of
finite N, the equations for E[r, ] and E[m,] above assume
that lim,_,_ Du is finite, and if the usual diffusion limit is
included they assume that limj,__ lim,_,_ DNu is finite.
They hold for a sample of low mutation rate data, such as
DNA sequence data, from a large metapopulation. One
consequence of this is that, in order for = 2N u o« Du to be
finite, the mutation parameter for an individual popula-
tion, 2Nu, must be so small as to be negligible. On the other
hand, if 2Nu is not small in a metapopulation containing a
large number of populations, then the metapopulation
mutation rate will be very large. In fact, 6 would have to be
infinite in limit D — oo. A model of this sort could be useful
for analysing some types of genetic data, such as allozyme
data or perhaps microsatellite data. In the former case, by
assuming an infinite alleles mutation model, Slatkin (1982)
showed that migration becomes equivalent to mutation since
every migrant lineage will be of a unique allelic type. [See
also Vitalis & Couvet (2001a,b) who use this same idea in a
study of two-locus identity probabilities.] Considered from
the standpoint of sequence data, a model with 2Nu non-
negligible would predict an infinite number of mutations/
polymorphisms, and this would be contrary to observa-
tions of DNA data from metapopulations. For microsatellite
or other allelic data in which there was a finite number of
possible allelic types, the infinite number of collecting-phase
mutations would mean that every collecting-phase lineage
would be a random sample from the equilibrium distribu-
tion of allelic types.

Humans as a metapopulation

Excoffier (2003) proposes a hypothetical model for human
history that permits mutations during the scattering phase,
yet predicts a finite total number of mutations/poly-
morphisms. The model of Excoffier (2003) assumes extreme
metapopulation growth, in which one population produces
an effectively infinite number of populations over a short
period of time. Mutations occur during the scattering



872 J. WAKELEY

phase at the usual rate, which here would be with prob-
ability u per lineage per generation. Migration events during
the scattering phase still send lineages off to populations
which do not contain other ancestral lineages, but the
collecting phase is cut short well before the first coalescent
event occurs and, on average, after only a finite number of
mutations have occurred. Prior to this, all lineages are
assumed to have come from one population which gave
rise to the entire metapopulation. This model is related to
one proposed by Takahata (1995), except that it does not
include extinction and recolonization and that the number
of populations is assumed to be large. The assumption of
a large number of populations does appear justified for
humans, although delineating human populations is by no
means a simple task (Cavalli-Sforza et al. 1994). Using one
measure, the number of different human languages and
dialects (Grimes 2000), there could be about 6800 different
human populations. Excoffier (2003) proposed the extreme
recent growth model after Ray ef al. (2003) discovered a
scattering and collecting phase structure to genealogies
under a model of range expansion on a two-dimensional
grid of populations. The simulations of Ray et al. (2003)
showed that the extent to which genetic variation in a
sample from a single population reflects range expansion
depends on Nm for the population, and thus on the scat-
tering phase. Ray et al. (2003) suggested this as a potential
explanation of why different human populations do or
do not show evidence of ancient growth. This illustrates,
within the context of a spatially explicit model, the import-
ance of accounting for population structure in making
inferences about human history.

Acknowledgements

I thank Laurent Excoffier for the invitation to contribute to this
special volume. I also thank Laurent Excoffier and three anonymous
reviewers for comments on the manuscript. Special thanks go to
Sabin Lessard for ongoing discussions of these issues and for detailed
comments on the manuscript. This work was supported by a Career
Award (DEB-0133760) from the National Science Foundation.

References

Avise JC (2000) Phylogeography: the History and Formation of Species.
Harvard University Press, Cambridge, MA.

Avise JC, Arnold ], Ball RM, et al. (1987) Intraspecific phylogeo-
graphy: the mitochondrial bridge between population genetics
and systematics. Annual Review of Ecology and Systematics, 18,
489-522.

Bustamante CD, Nielsen R, Sawyer SA, Olsen KM, Purugganan
MD, Hartl DL (2002) The cost of inbreeding in Arabidopsis.
Nature, 416, 531-534.

Cavalli-Sforza LL, Menozzi P, Piazza A (1994) The History and
Geography of Human Genes. Princeton University Press, New Jersey.

Charlesworth B (1998) Measures of divergence between popula-
tions and the effect of forces that reduce variability. Molecular
Biology and Evolution, 15, 538 -543.

Ewens W] (1982) On the concept of effective size. Theoretical Popu-
lation Biology, 21, 373-378.

Ewens W] (1990) Population genetics theory — the past and the
future. In: Mathematical and Statistical Developments of Evolutionary
Theory (ed. Lessard S), pp. 177-227. Kluwer Academic Publishers,
Amsterdam.

Excoffier L (2003) Patterns of DNA sequence diversity and genetic
structure after a range expansion: lessons from the infinite-
island model. Molecular Ecology, 13, (in press).

Fay JC, Wyckoff GJ, Wu C-I (2001) Positive and negative selection
in the human genome. Genetics, 158, 1227-1234.

Fay JC, Wyckoff GJ, Wu C-I (2002) Testing the neutral theory of
molecular evolution with genomic data from Drosophila. Nature,
415, 1024-1026.

Fisher RA (1930) The Genetical Theory of Natural Selection. Clarendon,
Oxford.

Gilmour JSL, Gregor JW (1939) Demes: a suggested new termino-
logy. Nature, 144, 333.

Golding B (1994) Non-Neutral Evolution. Chapman & Hall, New
York.

Griffiths RC, Tavaré S (1994) Ancestral inference in population
genetics. Statistical Science, 9, 307-319.

Grimes BF (2000) Ethnologue, 14th edn, Vol. 1. SIL International,
Dallas.

Hanski I, Gilpin ME (1997) Metapopulation Biology: Ecology, Genetics,
and Evolution. Academic Press, San Diego.

Hey J, Machado CA (2003) The study of structured populations —
new hope for a difficult and divided science. Nature Reviews
Genetics, 4, 535-543.

Hudson RR (1983) Testing the constant-rate neutral allele model
with protein sequence data. Evolution, 37, 203-217.

Hudson RR, Kaplan NL (1988) The coalescent process in models
with selection and recombination. Genetics, 120, 831-840.

Hudson RR, Kaplan NL (1995) Deleterious background selection
with recombination. Genetics, 141, 1605-1617.

Ingvarsson PK (1997) The effect of delayed population growth
on the genetic differentiation of local populations subject
to frequent extinctions and recolonizations. Evolution, 51, 29—
35.

Kaplan NL, Darden T, Hudson RR (1988) Coalescent process in
models with selection. Genetics, 120, 819-829.

Kaplan NL, Hudson RR, lizuka M (1991) Coalescent processes in
models with selection, recombination and geographic subdivi-
sion. Genetic Research Cambridge, 57, 83-91.

Kimura M (1969) The number of heterozygous nucleotide sites
maintained in a finite population due to the steady flux of muta-
tions. Genetics, 61, 893—-903.

Kimura M (1983) The Neutral Theory of Molecular Evolution. Cam-
bridge University Press, Cambridge.

Kingman JFC (1982a) The coalescent. Stochastic Processess Applications,
13,235-248.

Kingman JFC (1982b) On the genealogy of large populations. Journal
of Applied Probability, 19A, 27-43.

Knowles LL (2003) The burgeoning field of statistical phylogeo-
graphy. Journal of Evolutionary Biology, 17, 1-10.

Knowles LL, Maddison WP (2002) Statistical phylogeography.
Molecular Ecology, 11, 2623-2635.

Krone SM, Neuhauser C (1997) Ancestral processes with selection.
Theoretical Population Biology, 51, 210-237.

Kuhner MK, Yamato J, Felsenstein | (1995) Estimating effective
population size and mutation rate from sequence data using
Metropolois-Hastings sampling. Genetics, 140, 1421-1430.

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 865-875



Lessard S, Wakeley | (2003) The two-locus ancestral graph in a
subdivided population: convergence as the number of demes
grows in the island model. Journal of Mathematical Biology, in
press.

Levins R (1968a) Evolution in Changing Environments. Princeton
University Press, New Jersey.

Levins R (1968b) Some demographic and genetic consequences of
environmental heterogeneity for biological control. Bulletin of
the Entomological Society of America, 15, 237-240.

Malécot G (1948) Les Mathématiques de L’hérédité. Masson, Paris.
[extended translation (1969) The Mathematics of Heredity. W. H.
Freeman, San Francisco].

Malécot G (1975) Heterozygosity and relationship in regularly
subdivided populations. Theoretical Population Biology, 8, 212—
241.

Maruyama T, Kimura M (1980) Genetic variability and effective
population size when local extinction and recolonization of sub-
populations are frequent. Proceedings of the National Academy of
Sciences USA, 77, 6710-6714.

Mohle M (1998a) Coalescent results for two-sex population models.
Advances in Applied Probability, 30, 513-520.

Mohle M (1998b) A convergence theorem for Markov chains
arising in population genetics and the coalescent with partial
selfing. Advances in Applied Probability, 30, 493-512.

Mohle M (1998c) Robustness results for the coalescent. Journal of
Applied Probability, 35, 438—447.

Neuhauser C, Krone SM (1997) The genealogy of samples in
models with selection. Genetics, 145, 519-534.

Nordborg M (1997) Structured coalescent processes on different
time scales. Genetics, 146, 1501-1514.

Nordborg M (1999) The coalescent with partial selfing and balan-
cing selection: an application of structured coalescent processes.
In: Statistics in Molecular Biology and Genetics. IMS Lecture Notes-
Monograph Series (ed. Seillier-Moiseiwitsch F), Vol. 33, pp. 56—
76. Institute of Mathematical Statistics, Hayward, CA.

Nordborg M (2001) Coalescent theory. In: Handbook of Statistical
Genetics (eds Balding DJ, Bishop MJ, Cannings C), pp. 179-212.
John Wiley & Sons, Chichester.

Nordborg M, Donnelly P (1997) The coalescent process with self-
ing. Genetics, 146, 1185-1195.

Notohara M (1990) The coalescent and the genealogical process in
a geographically structured population. Journal of Mathematical
Biology, 29, 59-75.

Pannell JR (2003) Coalescence in a metapopulation with recurrent
local extinction and recolonization. Evolution, 57, 949-961.

Pannell JR, Charlesworth B (1999) Neutral genetic diversity in a
metapopulation with recurrent local extinction and recoloniza-
tion. Evolution, 53, 664—676.

Pannell JR, Charlesworth B (2000) Effects of metapopulation pro-
cesses on measures of genetic diversity. Philosophical Transactions
of the Royal Society of London, Series B, 355, 1851-1864.

Ray N, Currat M, Excoffier L (2003) Intra-deme molecular diver-
sity in spatially expanding populations. Molecular Biology and
Evolution, 20, 76—86.

Rousset F (2003) Effective size in simple metapopulation models.
Heredity, 91, 107-111.

Slatkin M (1977) Gene flow and genetic drift in a species subject to
frequent local extinctions. Theoretical Population Biology, 12,253~
262.

Slatkin M (1982) Testing neutrality in a subdivided population.
Genetics, 100, 533-545.

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 865-875

COALESCENCE IN A METAPOPULATION 873

Slatkin M (1987) The average number of sites separating DNA
sequences drawn from a subdivided population. Theoretical
Population Biology, 32, 42-49.

Slatkin M (1991) Inbreeding coefficients and coalescence times.
Genetics Research, Cambridge, 58, 167-175.

Smith NG, Eyre-Walker A (2002) Adaptive protein evolution in
Drosophila. Nature, 415, 1022-1024.

Strobeck C (1987) Average number of nucleotide differences in
a sample from a single subpopulation: a test for population
subdivision. Genetics, 117, 149-153.

Tajima F (1983) Evolutionary relationship of DNA sequences in
finite populations. Genetics, 105, 437—460.

Takahata N (1995) A genetic perspective on the origin and history
of humans. Annual Review of Ecological Systematic, 26, 343~
372.

Templeton AR, Routman E, Phillips C (1995) Separating popu-
lation structure from population history: a cladistic analysis of
the geographical distribution of mitochondrial DNA haplotypes
in the tiger salamander, Ambystoma tigrinum. Genetics, 140,
767-782.

Vitalis R, Couvet D (2001a) Estimation of effective population size
and migration rate from one- and two-locus identity measures.
Genetics, 157, 911-925.

Vitalis R, Couvet D (2001b) Two-locus identity probabilities and
identity disequilibrium in a partially selfing subdivided popu-
lation. Genetics Research Cambridge, 77, 67-81.

Wakeley ] (1998) Segregating sites in Wright's island model.
Theoretical Population Biology, 53, 166-175.

Wakeley ] (1999) Non-equilibrium migration in human history.
Genetics, 153, 1863-1871.

Wakeley J (2003) Inferences about the structure and history of
populations: coalescents and intraspecific phylogeography. In:
The Evolution of Population Biology — Modern Synthesis (eds Singh R
Uyenoyama M, Jain S), Cambridge University Press, Cambridge,
in press.

Wakeley J, Aliacar N (2001) Gene genealogies in a metapopu-
lation. Genetics, 159, 893-905 [Corrigendum (Figure 2). Genetics,
160, 1263-1264].

Watterson GA (1975) On the number of segregating sites in
genetical models without recombination. Theoretical Population
Biology, 7, 256-276.

Whitlock MC, Barton NH (1997) The effective size of a subdivided
population. Genetics, 146, 427-441.

Whitlock MC, McCauley DE (1990) Some population genetic
consequences of colony formation and extinction: genetic
correlations within founding groups. Evolution, 44, 1717-1724.

Wilkinson-Herbots HM (1998) Genealogy and subpopulation
differentiation under various models of population structure.
Journal of Mathematical Biology, 37, 535—-585.

Wright S (1931) Evolution in Mendelian populations. Genetics, 16,
97-159.

Wright S (1940) Breeding structure of populations in relation to
speciation. American Naturalist, 74, 232-248.

Wright S (1951) The genetical structure of populations. Annals of
Eugenics, 15, 323-354.

The author is in the Department of Organismic and Evolutionary
Biology at Harvard University. His main research interests are in
the genetical theory of structured populations.




874 J. WAKELEY

Appendix

The large-D approximation follows from a straightforward
application of Mohle is (1998b) Theorem 1. For the metapopu-
lation model considered here, the theorem states that the
discrete time Markov process with transition matrix I, =
A +B/D converges in distribution to a continuous time
process with transition matrix

I(H) = im(A + B/D)Pl = PetG
D—eo
for all t > 0, and infinitesimal generator G = PBP, where

P =lim A"
r—o0

The matrices A and B/D are given in Table 1. Again, state
1 is when the two lineages are in the sample population,
state 2 is when the two lineages are in different popu-
lations, and state 3 is when they have coalesced into a single
ancestral lineage. These matrices, A and B, have the same
structure as the corresponding matrices for the case of a
partially selfing population considered by Nordborg &
Donnelly (1997) and by Méhle (1998b), with the populations
here corresponding to individuals in the partial-selfing
model. In fact, the diploid, partial selfing model is a special
case of the model discussed in the text in which gametes are
produced before extinction, andif N =2,m=1,¢,=5,¢ =1,
and k — oo,

The matrix P represents jumps that are instantaneous on
the time scale of the large-D continuous time approxima-
tion. This includes the scattering phase for the sample. It is
readily obtained from the matrix A as

0 1-F F
P={0 1 0

0 0 1
where

a,— +e 1

N %k

F=-——
1—111[1—1]
N

is the probability that two lineages currently in the same
population coalesce before they are separated, either by migra-
tion or extinction/recolonization, into different populations.
The matrix G = PBP is given by

0 -cAQ-F) cQ-F)
G=|0 —c c
0 0 0

in which

c:b{p(l_%}ﬂ.

The exponential form of G is given by ¢/G = 33 r/L.eM,
where A, r; and [; are the eigenvalues and the right and left
eigenvectors, respectively, of the matrix above, with the
vectors normalized so that r,;=1 for 1<i<3. These are
M=A=0A==r=011,,=(01,0,0),r,=01-F1,0),
[,=0,0,1),l,=(1,F-1,1),and I; = (0, 1, -1). Finally

0 A=Fet 1-Q10-F)e
II(t) = Pe!G = | 0 et s
0 0 1

describes the ancestral process for a sample of two lineages
when time is measured in units of D generations and D is large.
Specifically (I1(£));; is the probability that the sample is in
statejat time t in the past, given that it was sampled in state
iin the present. Thus, the time to common ancestry (state 3)
for a sample of two sequences from two different populations
(state 2) is exponentially distributed with rate c. For a sample
of two sequences from the same population (state 1), the rate
of coalescence is also equal to c but there is an additional factor
(1 - F) which represents the probability that the sequences do
not initially coalesce. The other factor F can be thought of as
the probability density of the coalescent time exactly at ¢ = 0.

Rescaling time again, now by the factor ¢, makes the rate
of coalescence for the pair lineages equal to one. Thus, the
ancestry of a sample of two sequences from two different
populations is given by Kingman 1982a,b) coalescent pro-
cess when time is measured in units of

D D - ¢,)

N,=—=
¢ 1 1
{ 1- (- )= m)Z}Hl B NJ i N]

generations. As before this rescaling, the ancestry of a
sample of two sequences from a single population follows
this same coalescent process, but only if the sample does
not coalesce during the scattering phase. As N approaches
infinity, and lim,,_,_ Ne, = Ejand lim,,_, Nm = M, the quant-
ities F and N, converge on the expressions give in the
text, which shows that the usual diffusion assumption can be
added to the large-D model. Following Lessard & Wakeley
(2003), note that the large-N version of the large-D approxi-
mation does not depend on the order in which the limits
are taken: D — oo first, as above, or N — e first. In the latter
case, after applying the definition of the exponential matrix
(i.e. Mohle’s theorem but with A as the identity matrix I),
so that time is measured in units of N generations, the matrix
G contains both O(1) and O(1/D) terms. It is necessary
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to reapply a continuous-time analogue of the theorem
of Mohle (1998b) as in Lessard & Wakeley (2003) to G =
A* + B*/D, in which

A* =
1 1 1
-1-2M-E, (1_¢)+¢E 2M+Ey(1-¢) 1_% 1+15OE
0 0 0
0 0 0

and
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2M + Ey(1 - ¢>[1 - %J M - Ey(1 - q))[l - %j 0

B* = 2E, + M) “2(E, + M) 0

0 0 0

Then, P*=1lim, ,_ efA* and II(t) = P*e/G* where G* = P*B*P*.
The result I1(#) is identical to the one found above. This
lack of dependence on the order of the limits follows
from the fact that the backwards transition matrix can be
writtenIT=1+ A*/N + B*/(ND) + O(N,D) as in Lessard &
Wakeley (2003).






