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Abstract

Recent developments in population genetics are reviewed and placed in a historical context. Current and future challenges,
both in computational methodology and in analytical theory, are to develop models and techniques to extract the most
information possible from multilocus DNA datasets. As an example of the theoretical issues, five limiting forms of the
island model of population subdivision with migration are presented in a unified framework. These approximations illustrate
the interplay between migration and drift in structuring gene genealogies, and some of them make connections between the
fairly complicated island-model genealogical process and the much simpler, unstructured neutral coalescent process which

underlies most inferential techniques in population genetics.

The field of population genetics has undergone remarkable
changes in the past few decades. This has been driven mostly
by the development of DNA sequencing technologies, which
now make gathering large quantities of the most direct kind
of genetic data easy and affordable. Theoretical models and
computational techniques appropriate to handle these data
are still in development, and there is great need for further
work. This article gives a short history of the field in relation
to these developments and outlines some of the mathemat-
ical issues relevant to the study of gene genealogies of
samples from demographically complicated populations.
These sorts of analyses, which sometimes yield surprisingly
simple results, are illustrated for genetic ancestries of samples
of size two in Wright’s (1931) island model of population
structure, but the conclusions are limited neither to such
small samples nor to such simple population structures.

Theoretical Population Genetics History

The story of the emergence of theoretical population
genetics, out of a tension between biometricians and
Mendelians, has been told eloquently by Provine (1971). In
relation to the current state of the field, it is interesting to
note that even the first population genetics theory was data
driven. Fisher (1918), in an article often taken to represent
the birth of the field, used mathematics to show that two
apparently conflicting sets of available data wete actually in
perfect harmony. In particular, Fisher (1918) demonstrated

that measured correlations between relatives, which were the
focus of biometricians’ studies, could be explained by the
contributions of a large number of Mendelian factors (now,
polymorphic loci) each of small effect. It was in that same
article that Fisher introduced vatiance and covatiance as the
most natural and convenient measures of dispersion and
correlation, showing, for example, that it is much easier to
separate out contributions to the variance than it is to
decompose the standard deviation, which was the favored
measure of the biometricians. It was in this and subsequent
articles that Fisher developed the method of analysis of
variance (ANOVA), which became a mainstay of statistical
data analysis.

The eatly works of Fisher (1930), Wright (1931), and
Haldane (1932) built the foundation of theoretical popula-
tion genetics and established many of the fundamental
results still quoted today. During the period from about 1940
to the mid-1960s, these and other authors produced many
more detailed mathematical results about the evolutionary
process and about the maintenance of genetic variation
within populations. In addition, this period saw the extension
of the field into an even more sophisticated mathematical
realm by such notables as Malécot (1948) and Kimura
(1955a,b). This work proceeded without the benefit of direct
genetic data (Lewontin 1974), but can now be seen to form
the basis of the next data-driven advancement, which came
with the introduction of gel electrophoresis to population
genetics by Harris (1966) and Lewontin and Hubby (19606).
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Again, the availability of data, in this case measurements
of allozyme variability within and among populations,
spurred the development of new theory. Ewens (1972)
proposed a new statistical distribution that predicted patterns
of selectively neutral allozyme variation in a sample from
a large population. The introduction of the “Ewens sampling
formula” marks the beginning of a shift in perspective from
a prospective view of classical population genetics to a new,
retrospective view which was soon embodied by Kingman’s
(1982a,b) coalescent; see Ewens (1990) for a discussion of
these developments. Whereas the classical approach used
forward-time analyses to make predictions about genetic
variation in a population and required a separate theory of
sampling, this new work took a backwards-time approach to
generate directly, predictions about genetic variation in
a sample. Thus the retrospective approach has always been
closely tied to samples and to inference. One eatly example is
Watterson (1977), who noted that the distribution of allele
frequencies in a sample could contain information about the
action of natural selection and proposed a test for selection
based on deviations from the Ewens distribution.

Kingman’s Coalescent

Ewens developed his sampling formula using the notion of
identity by descent, which had been introduced by Malécot
(1946), and under the assumption of infinite alleles mutation
(Kimura and Crow 1964; Malécot 1946). This prompted
a series of works by Watterson (1976a,b), Griffiths
(1979,1980), and others, describing the diffusion approxi-
mation (thus building on Kimura’s work) for the neutral,
infinite alleles model. Because alleles in the infinite alleles
model are always related in the genealogical sense, this work
was instrumental in the next major development in
population genetics (Kingman 2000), which was the in-
troduction of the coalescent process by Hudson (1983a,b),
Kingman (1982a,b), and Tajima (1983). Another precurser to
the coalescent process was Watterson (1975), in which
predictions about levels of sequence variation in a sample
were made, using genealogical ideas, under the assumption of
infinite sites mutation (Kimura 1969) without recombina-
tion. Under the infinite sites model or others appropriate for
DNA, the coalescent is well suited for the analysis of
sequence data. It is not just a coincidence that the
introduction of the coalescent coincided with the first
application of DNA sequencing technology to the problem
of measuring genetic variation (Kreitman 1983).

Donnelly and Tavaré (1995), Hudson (1990), and
Nordborg (2001) provide reviews of coalescent theory.
Briefly, under the assumption of selective neutrality it is
possible to model just the history of a sample, that is, without
regard to the rest of the population. Selection can be
accommodated easily if it is strong (Kaplan et al. 1988, 1989),
while coalescent models of weak selection (Krone and
Neuhauser 1997; Neuhauser and Krone 1997) are more
complicated. The coalescent, as it is typically presented in
population genetics, makes all the usual assumptions of the
Wright-Fisher model of a population (Fisher 1930; Wright
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1931). In addition to selective neutrality, it is assumed that
the population is of constant size and is not structured in any
way (by geography, gender, age, or nonrandom mating). The
latter makes the members of a sample, or the ancestral
lineages of a sample as they are followed back in time,
exchangeable in the statistical sense (Aldous 1985; Kingman
1982b), which means that they are not distinguished by any
properties that affect rates of coalescence.

When time is measured in units of N, = N/ o’
generations, where NN is the population size and 67 is the
variance in offspring numbers among members of the
population, and the effective size 1V, is large, then the rate of
coalescence is equal to one for every pair of sample lineages
(Kingman 1982a,c). Further, every coalescent event involves
just two lineages, so the history of the sample of size 7 back
to the most recent common ancestor includes exactly # — 1
coalescent events. The times 7; between coalescent events
are distributed exponentially and depend on the number 7 of
lineages present during each interval:

= (3)eb (1

where (;) = i — 1)/2 is the number of possible pairs of 7
lineages. In the special case of a sample of size two, the time
to the most recent common ancestor is exponentially
distributed with rate equal to one (i.e., putting in 7 = 2
above). The exchangeability of lineages is reflected in the fact
that when a coalescent event occurs among the members of
a sample, every pair of lineages is equally likely to be the pair
that coalesces.

Formally, Equation (1) is obtained for a fixed sample size
7 in many exchangeable population models (Cannings 1974),
as the population size N tends to infinity and time is
measured appropriately (in units of N, = N/ c” generations).
In the limit NV — 0, the possibility of multiple coalescent
events in a single generation becomes negligible and the
discrete-time process of genetic ancestry is replaced by the
continuous-time process embodied in Equation (1). The
resulting model is used as an approximation to the ancestral
process for samples and populations in which the sample size
is much less than the population size (7 < V).

Recent Trends in Population Genetics

The past few years have seen an explosion of DNA
sequencing and other genotyping technologies as a result of
the genome projects of humans and other organisms.
Technical improvements, such as the use of robotics, have
found their way into most universities and streamlined the
gathering of relatively large genetic datasets even in
nonmodel organisms. In particular, it is now common to
see analyses of multiple genetic loci, whereas 20 years ago it
was a major challenge to obtain sequence data from a single
locus. This is of fundamental importance to the field of
population genetics because we can expect to uncover from
multiple loci both genome-wide patterns and locus-specific
effects. Population structure is an example of a phenomenon



Table I. Theoretical predictions and observed counts of
polymorphic sites for samples of size two at 11,027 human genetic
loci.

No. of SNPs Poisson Coalescent Observed
0 8256 = 52 8767 £ 50 8796 *= 43
1 3040 %= 49 2332 *+ 46 2247 = 44
2 617 = 24 663 = 26 668 £ 24
3 99 =9 200 £ 15 214 = 14
4 16 = 4 66 * 9 102 £ 10

that affects loci across the genome in a similar manner, while
natural selection is an example of processes that can affect
single loci. It may be impossible to distentangle the forces
that have produced and maintained variation at a single locus
without having a genomewide picture of variation because
single loci represent just one realization of the stochastic and
multifactorial process of descent within populations.

At present, the datasets with the largest number of loci
are from humans and model organisms such as Arabidopsis,
Dirosophila, and mouse. An examination of some observations
from human population genetics helps to illustrate the future
hopes and challenges for the field. For example, Table 1,
which is redrawn from Table 3 of the International SNP
Map Working Group (2001), shows theoretical predictions
and observed counts of polymorphic sites for samples of size
two at 11,027 human genetic loci spread more or less
randomly throughout the genome. The table shows that
a simple Poisson prediction, which would hold if there was
no variation in coalescent times among loci, fits the data very
pootly, and that predictions from the standard coalescent
provide a much better fit. However, the fit of the coalescent
prediction is also poor (x> = 23.85; P < .01), indicating that
one or more of the assumptions of the standard coalescent
model does not hold for humans. Other analyses of multilple
loci similatly conclude that simple models cannot explain the
data (Pluzhnikov et al. 2002; Przeworski et al. 2000).

Thus there appears in multilocus data from humans to be
information about other processes—that is, migration,
changes in population size, and/or natural selection—than
those modeled in the standard coalescent. This is of course
not surprising given the dynamic history of humans
(Takahata 1995; Harpending et al. 1998; Hawks et al.
2000), but rather offers the hope that inferences might be
made about some of these more complicated and interesting
phenomena. Another example comes from a more detailed
study by Reich et al. (2002) of a similar but much larger
dataset Reich et al. (2002)
correlations in genealogical tree lengths (or coalescent times)
between pairs of loci separated by different distances along
the genome. One of the results of their analyses is depicted in
Figure 1. Correlations in genealogical tree lengths are
expected to decline with the distance between loci due to
recombination, and Reich et al. (2002) showed that
a prediction for this decline based on the standard coalescent
with recombination (lower black curve) could not explain the

from humans. measured

long-range correlations in the human genome. Interestingly,
a prediction from one of the models of population structure
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Figure |. Estimated correlations of genealogical tree lengths

at pairs of loci separated by different distances in the human
genome; redrawn from Figure 2a in Wakeley and Lessard
(2003), which corresponds to Figure 5a of Reich et al. (2002).
Theoretical prediction is for an unstructured population of
size N, = 10" and a recombination rate per base pair per
meiosis of 1.3 X 10®. See Reich et al. (2002) and Wakeley
and Lessard (2003) for details.

with migration considered below (many-demes model: upper
black curve) may be at least a partial explanation for these
cotrelations (Wakeley and Lessard 2003).

Multilocus data such as those presented in Table 1 and
Figure 1 motivate current work both on theoretical models
and statistical techniques. Broadly put, the aim is to develop
models that include all the relevant processes and to produce
a suite of inferential methods that use multilocus data to
tease apart the effects of multiple forces acting simulta-
neously. Stephens (2001) and Tavatré (2004) review trends in
the development of statistical techniques. Briefly, these
center around the problem of computing the likelihood
P(datajmodel), which is the probability of the observed data
under a model with specified values of all parameters. A first
step is to condition on the underlying genealogy, since
P(data|genealogy,model) is usually easy to compute. Then,
because it is nearly impossible to “integrate” over genealogies
analytically, these are generated randomly using simulations
and P(data|genealogy,model) is averaged over many geneal-
ogies. Methods differ in how genealogies are produced,
specifically in how the information in the data is used to
inform the choice of genealogies, and in whether inferences
are based on the likelihood or computation of P(datajmodel)
is imbedded in a bayesian method of inference. The inclusion
of additional factors, such as migration and recombination,
adds to the computational complexity of the problem
because it expands the space of genealogies and because
inferences must then be made in a multidimensional
parameter space.

The development of theoretical models that can aid in
understanding complicated demographic histories and pro-
vide a basis for methods of statistical inference has been
another major aim of recent work. In addition to natural
selection, mentioned above, the genealogical models have
been extended to include changes in population size
(Kingman 1982a; Slatkin and Hudson 1991), recombination
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(Hudson 1983a; Kaplan and Hudson 1985), migration (see
below), and sometimes several of these factors at once
(Kaplan et al. 1991). One of the important roles of analytical
work is to identify cases in which the structure of
complicated, multiparameter models reduces to something
simpler. When this is possible, it can lead to greater
understanding of the interplay of processes affecting data
as well as to more efficient computational techniques.
Results of this sort come from studying the limiting behavior
of a model as one (or more) of the parameters becomes
either large or small. The question is then whether any of
these simpler models are appropriate for modeling the
history of a particular species. To illustrate the techniques
and give an example of such results, the following section
describes five mathematical limits of a commonly employed
model of population subdivision with migration.

Coalescence in the Island Model and
Simplifications

Wright’s (1931) island model of population subdivision and
migration is the best studied model of geographical structure
in population genetics. This section treats the finite island
model (Latter 1973; Maruyama 1974), in which the
population is subdivided into 0 demes, each of size N
haploid individuals, and each of which accepts a fraction 7 of
migrants every generation. The results discussed below all
hold for a diploid monoecious population if N is replaced by
2N. The application of the island model is limited because it
does not in fact contain explicit geography: migrants are
equally likely to have come from any deme in the population.
Therefore it cannot make a prediction of “isolation by
distance” (Wright 1943), although generalized versions of the
island model can (Wakeley and Aliacar 2001). The model
does predict greater levels of relationship among individuals
from the same deme than among individuals from different
demes, and thus violates the fundamental assumption of the
coalescent, that lineages are exchangeable. In the island
model, rates of coalescence tend to be higher within than
between demes.

Although the approximations below can be made for
more general models of subdivision, the finite island model is
complicated enough to illustrate the vatious simplifications
that have been studied. Consider a sample of size two taken
from the population. Larger samples can be treated using the
same methods, but as with the model a limited sample is
enough to illustrate the results. Generations are assumed to
be nonoverlapping. At the beginning of each generation,
individuals in each deme contribute a large number of
“gametes” to their own deme’s gamete pool and to a migrant
gamete pool. Reproduction occurs within demes according
to the Wright-Fisher model, except that a fraction » of
gametes are sampled from the migrant pool, the other
fraction coming from the deme’s own gamete pool. The
samples, or the ancestral lineages of the sample, can be in
either of two states: (1) in the same deme or (2) in different
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demes. The only other possible state (3) is that the ancestral
lineages of the sample have coalesced. The ancestry of the
sample is a discrete-time Markov process with the following
single-generation transition matrix:

e+ F(1=3) A=)t =3) [+ 5] 5

0 0 1

(2)

in which a0 = (1 — ) is the probability that neither lineage is
a migrant.

The entries in IT are the probabilities of moving between
states, or of staying in the same state, in a single generation
looking back. For example, (II);; is the probability of
coalescence (state 3) in a single generation, given the two
lineages are in the same deme now (state 1). It is equal to the
probability that the lineages came from the same deme,
either by staying in the same deme (with probability o) or by
migrating and having the same source deme (with probability
(1 — o)/ D), and that they are derived from the same parent
within that deme (with probability 1//NV). State 3 is an
absorbing state—once in state 3, there is zero chance of
moving to states 1 or 2—and the process is followed back to
the first occurrence of this, which is the most recent time the
samples shared a common ancestor. The goal in analyzing
this model is to obtain the fgeneration transition matrix
II(# = I Then (II(A);5 and (I1())y3 are, respectively,
the distribution of the time to coalescence for a sample of
size two from the same deme and the distribution for a
sample from two different demes.

Although for the matrix II above it is possible to obtain
I1(?) faitly easily by finding the eigenvalues and eigenvectors
of the matrix, the result (not shown) is still complicated
compared to the simplicity of the unstructured coalescent.
Further, in the case of samples larger than size two, the
matrix becomes larger and the algebra becomes intractable
when the sample size is greater than about five. The
complexity of many natural populations may be irreducible
beyond this, and may in fact be much more complicated than
the finite island model. However, there are a number of
special cases of the above model which share the simplicity
of the coalescent. Several of these still capture the essence of
island-model subdivision, that is, greater relatedness within
than between demes, while others collapse to the un-
structured case. Whether these simpler versions of the model
are appropriate for any particular natural population is an
empirical question. Some of the results are easily obtained,
while others rely on a theorem due to Méhle (1998) for
Markov processes with two time scales that is detailed below
in the section on low migration.

The High-Migration Limit

A somewhat trivial, introductory example is the case in which
m = 1, that is, when individuals have no homing tendency at
all. The transition matrix of Equation (2) reduces to



S1-3) (-9 &
T=ls0-0 -5 & U
0 0 1

The population is of course exactly panmictic when 7z = 1,
so that all members of every deme are equally likely to have
come from any deme in the population. Reproduction is
population wide, and the only remnant of subdivision is that
individuals reside ephemerally in demes each generation.
Thus the first two rows of II are identical; the coalescent
process for a sample from the same deme is identical to the
coalescent process for a sample from different demes. The
probabilities in these first two rows can be obtained by
imagining tossing two balls (lineages) randomly into D bins
(demes) each containing /V boxes (potential parents).

The matrix of Equation (3) specifies that the time to
common ancestry for a pair of lineages will be geometrically
distributed with mean, in generations, equal to the total
population size, ND. This is identical to the result for # = 2
in the panmictic model. With the further assumption that
ND is large, and if time is measured in units of ND
generations, the distribution of the time to common ancestry
for the two lineages becomes exponential as in Equation (1).

The Low-Migration Limit

The low-migration limit has been studied from a genealogical
standpoint by Takahata (1991) and Notohara (2001), and by
Slatkin (1981) using a forward time approach. As = gets
closer and closer to zero, the probability that neither lineage
migrates becomes o = (1 — 7)” ~ 1 — 2. The transition
matrix can be written as the sum Il = A + B, where

(1= o0 %
A= 0 1 0 (4)
0 0 1
and
20-3)(1-3) 201-4) 20-5)%
S ) - o
0 0 0

If the migration rate was actually equal to zero, then II = A
and lineages in different demes would never coalesce, since
(A)22 = 1, while lineages in the same deme would follow the
usual ancestral process for the Wright-Fisher model and have
a chance 1/NN of coalescing each generation. The entries in
the second row of the matrix B are important because they
represent the chance that two separated lineages enter the
same deme and thus might coalesce. Because of this, the time
scale of the coalescent process will depend on . For
example, the rate (II)y; = m(B)2; at which two separated
lineages enter the same deme is small if the migration
probability »7 is small, so the time it takes for this to occur
will be very long if # is close to zero.

Wakeley ¢ Recent Trends in Population Genetics

The above is precisely the situation in which Mohle’s
(1998) theorem may be applied to find a continuous-time
limit of a discrete-time process with events occurring on two
time scales: fast in matrix A and slow in matrix 7zB. The
result is then considered an approximation for populations in
which the migration rate is small. In technical terms, we
define A = lim,, ,o I and B = lim,, ;o (Il — A)/, and the
theorem requires that the matrix P = lim, o A’ exists. This
equilibrium matrix P is simply the result of letting the fast
process described by A run to its conclusion, which in this
case would be guaranteed coalescence starting from state 1
and no change starting from states 2 and 3. Then, if time is
measured in units of 1/ generations, the ancestral process is
determined by the rate matrix G = PBP and includes both
the process described by B and the now instaneous jumps
represented by the matrix P. In patticular, II() = P
(Méhle 1998).

Here,

00 1
P=(0 1 0], (6)
00 1

and the rate matrix simplifies to

0 0 0
6={0 -2 2] (7)
0 0 0
so that, finally,
0 0 1
H(t): 0 ¢3 1—¢7|. (8)
0 0 1

Therefore, in the low-migration limit and with time
measured in units of 1/» generations, a sample of two
sequences from the same deme coalesces immediately. In
truth, the time this takes will be approximately geometrically
distributed with mean /V generations, but this amount of
time is negligible on the time scale of 1/ generations with »
— 0, so that /N does not even appear in Equation (8). The
distribution of time to common ancestry for a pair of
sequences from different demes is exponentially distributed
on this new timescale, with rate 2/, because there are two
lineages and the chance to enter the same deme is inversely
proportional to 1. Note that we could rescale time again, by
this factor 2/D, and the result would be Kingman’s
coalescent for among-deme samples, with instantaneous
coalescence of within-deme samples.

The Strong-Migration Limit

The case of strong migration was originally studied by
Nagylaki (1980) in the context of the forward time diffusion
of allele frequencies, and more recently by Notohara (1990)
using a genealogical approach. Mohle’s (1998) theorem can
again be used, but now with time measured in units of NV
generations and letting /N go to infinity for constant values of
m and D. The intermediate matrices—A, B, P, and G—are
not shown, only the final result:
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The result is similar to the high-migration limit in that the
genealogical process does not depend on the sampling
scheme. The distribution of the time to common ancestry is
exponential, as in the standard coalescent, the only difference
being the measurement of time. If time in Equation (9) is
rescaled again, by D, so that the units were N generations,
then the rate of coalescence would be equal to one for
a sample of size two, just as in Equation (1).

The migration parameter 7 is no longer part of the
equation. This is because, when NV is large and » is not
necessarily small, the lineages will have migrated so many
times before they coalesce that the population will appear to
be panmictic. The distribution of the two lineages among the
demes reaches a statistical equilibrium so that the probability
both are in the same deme is a constant 1/D, the factor
multiplying the terms in the first column of Equation (9).
Note that the strong-migration limit is different than the
high-migration limit, because in the strong-migration limit it
is the difference in time scale between migration and
coalescence, which makes the structure disappear, while in
the high-migration limit there really is no structure. One can
think of the strong migration limit as a reflection of the fact,
discovered by Wright (1931) and illustrated in the next
section, that patterns of population subdivision depend on
the product Nz, and in the strong-migration limit N — .

The Structured Coalescent

This is the limit typically applied in population genetics,
dating back to Wright (1931). It is appropriate when  is
small and [V is large, so that the effects of migration depend
only on the product Nz The structured coalescent is implicit
in the work of Hey (1991), Slatkin (1987), and Strobeck
(1987), with formal work by Notohara (1990) and a rigorous
proof by Herbots (1994); see also Wilkinson-Herbots (1998).

Defining a new parameter M to be equal to 2N, and
assuming that [V is large, the single-generation transition
matrix becomes

L-[t+u(t-pls M1 -3)3

1
N
~ M M
II DN [ DN UM B
0 0 1

(10)

where the approximation is that terms involving 1 /N2 and
1/N° have been dropped. Considering the limit as N goes to
infinity, this II does not include processes acting on different
time scales; all changes between states occur at rates
proportional to 1//NV. Thus the application of Mohle’s (1998)
theorem provides no simplification. There is a continuous-
time approximation in which time is measured in units of NV
generations, which can be written TI( = ¢/, where
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but it is no simpler than the direct analysis of Equation (10)
or even Equation (2). However, for sample sizes larger than
two, the stuctured coalescent is simpler that the discrete-time
model since coalescent events occur singly in the structured
coalescent, whereas multiple coalescent events can occur in
a single generation in the discrete-time model.

The Many-Demes Limit

The structured coalescent is a model of nontrivial population
subdivision. That is, the distribution of the time to
coalescence depends on the sample configuration under
the structured coalescent, while in two of the three previous
limits—high migration and strong migration—the genealog-
ical process becomes the same for every kind of sample. Like
the structured coalescent, the many-demes limit for the
matrix in Equation (2) exhibits a nontrivial population
structure, but it is also closely related to the unstructured
coalescent. The many-demes limit was studied in Wakeley
(1998) using a genealogical approach and in Wakeley (2003)
forward in time. It is an approximation for populations with
a large number of demes, and thus sits somewhere between
the finite island model (Latter 1973; Maruyama 1974) and the
infinite island model (Wright 1931).

The simplification again results from the application of
Mohle’s (1998) theorem, in the limit as D — o in Equation
(2) and time is measured in units of ) generations. The
matrix A contains rates for coalescent events and migration
events that do not bring two lineages together into the same
deme, while the matrix B/ contains rates for migration
events that do bring two lineages together into the same
deme. In this case,

1-F

(12)

0
P=1|0
0

— o MY

1
0
where

(1—m)

F= 2
Nm(2—m)+ (1 — m)

(13)

is the probability that two lineages currently in the same
deme coalesce before they are separted by migration. Thus /7
is the equivalent to one way that Fgr (Wright 1951) has been
defined (Charlesworth 1998; Slatkin 1991). The matrix G =
PBP is readily obtained (not shown), and finally

0 M—=F)e? 1—(1—=F)“
II(r)=1|o0 e’ 1—e” ,
0 0 1

in which



m(2 — m) :1—];’ (15)

TNC—m+(—mw N

describes the ancestral process for a sample of two lineages
when time is measured in units of 1) generations and D is
large. Thus, in the many-demes limit, the time to common
ancestry for a sample of two sequences from two different
demes is exponentially distributed with rate ¢ on this
time scale. If time is measured in units of ND/(1 — F)
generations, then the rate becomes one just as in Kingman’s
coalescent. A sample of two sequences from the same
population has an initial chance F of coalescing (at # = 0),
and with chance 1 — F it has an exponentially distributed
coalescence time identical to that of a single-deme sample.

Discussion

All of the limits discussed above can be extended to samples
larger than two. In the high-migration limit and the strong-
migration limit, the result is always complete collapse to the
unstructured coalescent. The structured coalescent retains its
complexity, and it becomes necessary to model the locations
of all the lineages back in time. The low-migration limit and
the many-demes limit become more general versions of the
two-phase processes described above. In both cases, the
history of a sample of sequences taken singly from different
demes follows an unstructured coalescent model, but with an
effective size that is different than the census size ND of the
population. In the low-migration limit and the many-demes
limit, this effective size depends inversely on the migration
rate because migration is the process that brings lineages into
the same deme so they can coalesce. Sample configurations
in which the sample size is greater than the number of
sampled demes have two parts to their history. First, there is
an initial burst of coalescent events for within-deme samples,
and possibly some migration events, before the remaining
lineages, which are all now in separate demes, enter the
unstructured coalescent process. In the many-demes model,
these have been respectively called the “scattering” phase
and the “collecting” phase in consideration of the role of
migration during each (Wakeley 1999). In the low-migtration
limit, all samples from a single deme will coalesce to a single
lineage in the scattering phase.

The limits above can also be extended to more general
population models, including population structures in which
demes differ in size and migration rate, and in which
migration is not necessarily equally probable for every pair of
demes. In the face of this, the complexity of the structured
coalescent increases quickly, while the other limits remain
functions of a much smaller number of parameters due to
their connection, via an effective population size, with the
unstructured coalescent. For example, histories under the
low-migration limit depend only on this effective size since
all within-deme samples coalesce during the scattering phase.
In the many-demes model, the history of the sample depends
directly on the parameters for the sampled demes, while the
only effect of the many unsampled demes is through the
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effective size. This is in contrast to the case of the structured
coalescent, in which the effects of unsampled demes are not
captured in an effective population size, and in which it is
typically assumed in applications that the sampled demes
constitute the entire population; but see Beerli (2004).

Given the current ease of sequencing DNA and the
continued improvements in biotechnology, large multilocus
datasets will be the norm in population genetics studies in the
coming years for nonmodel as well as model organisms.
Even now, computational methods of inference and
analytical work on the necessary models do not meet the
needs of researchers, so there should be continued effort in
both these subfields of population genetics. The results
summarized here show that complex demographic scenarios
can, in some cases, be described using relatively simple
models. Which of these models, if any, is appropriate for
a patticular population is an empirical question, and should
be considered separately from the ease with which these
models can be applied. Populations with small numbers of
demes, small migration rates, and large deme sizes will
require the complexity of the structured coalescent. In the
simpler cases, the effect of structure either (1) disappears
entirely, as in the high-migration and strong-migration limits,
or (2) reduces to separable effects on the time scale of
coalescence and on levels of within-deme versus between-
deme relatedness, as in the low-migration limit and the many-
demes limit. Other behaviors are possible in other kinds of
populations, and the methods reviewed here should aid in
the derivation of results in a variety of situations.
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