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ABSTRACT
Estimates of the scaled selection coefficient, � of Sawyer and Hartl, are shown to be remarkably robust

to population subdivision. Estimates of mutation parameters and divergence times, in contrast, are very
sensitive to subdivision. These results follow from an analysis of natural selection and genetic drift in the
island model of subdivision in the limit of a very large number of subpopulations, or demes. In particular,
a diffusion process is shown to hold for the average allele frequency among demes in which the level of
subdivision sets the timescale of drift and selection and determines the dynamic equilibrium of allele
frequencies among demes. This provides a framework for inference about mutation, selection, divergence,
and migration when data are available from a number of unlinked nucleotide sites. The effects of subdivision
on parameter estimates depend on the distribution of samples among demes. If samples are taken singly
from different demes, the only effect of subdivision is in the rescaling of mutation and divergence-time
parameters. If multiple samples are taken from one or more demes, high levels of within-deme relatedness
lead to low levels of intraspecies polymorphism and increase the number of fixed differences between
samples from two species. If subdivision is ignored, mutation parameters are underestimated and the
species divergence time is overestimated, sometimes quite drastically. Estimates of the strength of selection
are much less strongly affected and always in a conservative direction.

ONE of the primary goals of population genetics has data could be used not only to test neutrality but also
to estimate selection, mutation, and divergence-timebeen to measure and to understand the role of

natural selection in shaping variation within and be- parameters.
Nielsen (2001) pointed out that McDonald-Kreit-tween species. Now that molecular technologies allow

genetic variation to be assayed with relative ease, this goal man and related tests, in which sites can be classified a
priori, provide a very powerful framework for inferencesseems within reach. A number of different approaches to

studying selection have been proposed (Hudson and about natural selection, in contrast to tests like Tajima’s
(1989) and Fu and Li’s (1993), which measure devia-Kaplan 1988; Neuhauser and Krone 1997; Yang 1998;
tions from the highly variable process of neutral coales-Donnelly et al. 2001; Slatkin and Bertorelle 2001),
cence. It is likely that McDonald-Kreitman and relatedand a multitude of neutrality tests, reviewed by Nielsen
methods will become the mainstay of genomic analyses(2001), can be applied if appropriate genetic data are
of the role of selection. In two recent works, modifiedgathered. This work considers Sawyer and Hartl’s
McDonald-Kreitman tests were applied to genomic data(1992) method, which belongs to a class of methods
from Drosophila, suggesting that 45% of the amino acidthat use overall levels of polymorphism and divergence
differences between Drosophila simulans and D. yakubaat two or more categories of sites in samples of DNA
resulted from positive selection (Smith and Eyre-sequences from a pair of species. Hudson et al. (1987)
Walker 2002) and that positive selection at a relativelywere the first to propose such a method, in which the
small number of genes is responsible for the divergencecategories were different loci, followed by McDonald
of D. simulans and D. melanogaster (Fay et al. 2002).and Kreitman (1991), who categorized sites within a
Bustamante et al. (2002) used a modified Sawyer-Hartllocus as being either synonymous or nonsynonymous
method to show that Arabidopsis species have experi-with respect to changes in the amino acid sequence of
enced a higher proportion of deleterious amino acidthe protein product. Both methods assumed no intralo-
substitutions than Drosophila species, in which positivecus recombination and allowed the hypothesis of strict
selection is common, and attributed the difference toselective neutrality to be tested. Shortly afterward, by
high levels of inbreeding in Arabidopsis.assuming Kimura’s (1969) infinite-sites mutation model,

An obvious shortcoming of these methods is that theyi.e., with free recombination between sites, Sawyer and
assume the species under study are panmictic, i.e., notHartl (1992) showed that McDonald-Krietman test
geographically or otherwise subdivided. It is well known
that this assumption is incorrect for many species (Slat-
kin 1985). When there is no intralocus recombination,1Address for correspondence: 2102 Biological Laboratories, 16 Divinity

Ave., Cambridge, MA 02138. E-mail: wakeley@fas.harvard.edu McDonald and Kreitman (1991) point out that shared
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genealogical history should control for the effects of 2001). Like the forward (Nagylaki 1980) and backward
demography when sites can be categorized a priori. It is (Notohara 1993) strong-migration limits, these results
less clear that this should be the case when collections and those of Wakeley (1998, 2001) for the coalescent
of unlinked sites are used to estimate selection, muta- process are based on a “separation of timescales.” In
tion, and divergence-time parameters as in Sawyer and this case, the fast processes are migration and drift
Hartl’s (1992) method. It is possible that the effects within demes and the slow process is drift and possibly
of subdivision on the numbers of polymorphisms and selection in the total population, which is mediated by
fixed differences at synonymous and nonsynonymous migration. The effective size of the population is re-
sites could lead to errors in inferences. Therefore, the scaled and patterns of genetic variation depend on how
goal of this work is to extend the Poisson random field a sample is distributed among demes. In contrast, under
(PRF) theory of polymorphism and divergence devel- the usual strong-migration limit, the only effect of struc-
oped by Sawyer and Hartl (1992) to include subdi- ture is to rescale the effective size of the population
vided species. To do this, it is first shown that in the (Nagylaki 1980; Notohara 1993; Nordborg 1997;
limit of a large number of subpopulations or demes allele- Charlesworth 2001).
frequency dynamics at a single locus in a population with The main result presented here, besides the existence
island-model migration (Wright 1931; Moran 1959; of the diffusion (9) below, is that, if mutations are intro-
Maruyama 1970; Latter 1973) are governed by a diffu- duced at a constant rate per generation and sites segre-
sion process that has the same form as the usual Wright- gate independently of one another, the PRF results of
Fisher diffusion, e.g., see Ewens (1979), but with a time- Sawyer and Hartl (1992) can be applied, but with a
scale different from that of the panmictic case. Then, correction that depends on how samples are taken
the assumption of free recombination between sites allows among demes. If each sample is taken from a different
the PRF model to be used to predict the patterns of deme, then Sawyer and Hartl’s (1992) results apply
variation in samples from a pair of island-model species. directly, but with slightly different mutation and diver-

The diffusion result is obtained using Theorem 3.3 gence-time parameters. If some or all of the samples
in Ethier and Nagylaki (1980) and relies upon the come from the same deme, the PRF results must be
fact that the process of migration and drift within sub- corrected for the effect of drift and migration within
populations occurs on a much faster timescale than

demes. Failure to recognize this can cause serious errors
changes in allele frequency by drift and selection in the

in the estimation of mutation rates and divergence times,total population. The result thus depends on a stochastic
but not, surprisingly, of selection coefficients.equilibrium of allele frequencies within demes with re-

spect to migration and drift, which is also described.
This follows some recent work (Cherry and Wakeley

THEORY2003) in which simulations supported the existence of
such a diffusion under the additional assumption that A population or species is assumed to be subdivided
demes are very large and migration rates correspond- into D demes of equal size N. The organisms are assumed
ingly small. The present analysis shows that this addi- to be haploid, but the results will hold for diploid organ-
tional assumption is unneccessary. The assumption of

isms if N is replaced with 2N, if selection is additive, and
infinite deme sizes and infinitesimal migration rates was

if migration is gametic. The island model of migrationalso made in the recent coalescent work on neutral
(Wright 1931; Moran 1959) is assumed: a fraction mlarge-number-of-demes models (Wakeley 1998, 2001),
of each deme is replaced by migrants every generationand it is made below in The expected number of neutral
and all migrants are randomly sampled from a migrantsegregating sites, when the forward and backward results
pool to which all demes contribute equally. In eachare compared. Otherwise, here it is assumed that the
generation, migration occurs first, followed by selection,demes are finite in size and the migration rates are
and then resampling (drift) within demes according tounconstrained.
the Wright-Fisher model (Fisher 1930; Wright 1931).This work makes a connection between the PRF the-
In the next two sections, two alleles are assumed to beory and work on the robustness of the coalescent process
segregating at a single locus, and Many independentlyto population structure (Nordborg 1997; Möhle
segregating loci considers their introduction by mutation.1998), in particular for the case of geographic structure
The wild-type or nonmutant allele has relative fitness(Wakeley 1998, 2001). The two are related by showing
equal to 1, and the mutant allele has fitness 1 � sD,that the effective size of the ancestral, coalescent process
where sD � �1. The next section establishes the diffusionis the same as that of the forward-time diffusion of allele
approximation for the frequency of the mutant allelefrequencies and that the forward- and backward-derived
as D → ∞, but DsD remains finite. The migration ratepredictions for the expected number of segregating sites
can vary between 0 and 1 (0 � m � 1) and N is assumedin a sample are the same under neutrality. We expect
to be finite. This is in contrast to the usual assumptionsuch connections between forward and backward ap-
that Nm is finite as N goes to infinity.proaches to exist, a fact that is well established in the

case of panmictic populations (Ewens 1990; Möhle Considering the number of mutants within each deme,
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it is apparent that there are exactly N � 1 kinds of fraction of demes that have j copies of the mutant con-
verges on �j � �N

i�1�iP*ij , where P*ij is given by Equationdemes. Each deme that begins a generation with i copies
of the mutant will have mutant frequency 3 with x constant. The distribution � is very well approxi-

mated by the hypergeometric distribution
qi � (1 � m)

i
N

� mx

� sD �(1 � m)
i
N

� mx� �1 � (1 � m)
i
N

� mx� � o(sD) (1) �j �

�� Nm(2 � m)x/(1 � m)2

j � �� Nm(2 � m)(1 � x)/(1 � m)2

N � j �
�� Nm(2 � m)/(1 � m)2

N �
,

after migration and selection, where x is the frequency
of the mutant in the total population. The next genera-

(5)

tion within the deme will be produced by randomly
which is a special case of the multivariate Poly(A) distri-
bution; see Equation 40.13 in Johnson et al. (1997).

sampling N haploid individuals from this distribution. Equation 5 is also identical to the two-allele case of the
Thus, a deme that contains i copies of the mutant now compound multinomial Dirichlet distribution, which
has probability Rannala (1996) proved to hold for the frequencies of

multiple alleles within a deme in the infinite-island or
continent-island model, i.e., where allele frequenciesPij � �Nj �q i

j(1 � qi)N�j (2)
among migrants are assumed to be constant. Rannala
(1996) did not assume Wright-Fisher reproduction, butof having j copies at the start of the following generation.
rather that a birth-death-immigration process occurredBecause limD→∞sD � 0, it is often necessary to consider
within demes. Thus, Rannala’s (1996) model is similaronly one part of Pij :
to the Moran model, in which such distributions are
known to arise: see pages 131–133 in Moran (1962).P*ij � �Nj � �(1 � m)

i
N

� mx�
j

�1 � (1 � m)
i
N

� mx�
N�j

. (3)
Rothman et al. (1974) argued for the use of the com-
pound multinomial Dirichlet distribution in the case of

The notation o(sD) used in Equation 1 and below means Wright-Fisher reproduction within demes.
that limD→∞o(sD)/sD � 0. Thus Pij � P*ij � o(1). The The form of Equation 5 was obtained by selecting
process of drift, described by Equation 2, happens inde- parameters of a hypergeometric distribution that gave
pendently within each deme. the same mean and variance of allele counts among

Limiting allele frequency dynamics at a single locus: demes as Equation 4, namely
Let ZD

i (t) record the fraction of demes that contain i
copies of the mutant and zi(t) be a particular realization E�[ j] � Nx (6)
of this random variable. Thus, ZD(t) is a Markov chain
whose state space consists of all possible configurations Var�[ j] �

N 2x(1 � x)
m(2 � m) � (1 � m)2

, (7)
of the D demes among the N � 1 mutant-count classes.
appendix a proves a diffusion result for ZD(t) as D goes which were obtained using (4) together with the mo-
to infinity and DsD remains finite. Briefly, this is done by ments of the binomial distribution (P*). Equation 5 is
using Equation 1 of Ethier and Nagylaki (1980)—see the exact solution to (4) when N � 2. In addition, as
also Equation 22 of Nagylaki (1980). Define XD(t) � required by (4): when m approaches 1, �i becomes a
�N

i�0iZD
i (t)/N. The random variable XD(t) records the binomial distribution with parameters N and x ; and as

frequency of the mutant in the total population or the m approaches 0, we have �0 � 1 � x, �N � x, and �j �
average frequency of the mutant among demes (x 0 for 1 � j � N � 1. Finally, if xi � j/N is the frequency
above). Next, let YD(t) � ZD

i (t) � �i(t) be the deviation in some deme i, then as N grows but 2Nm � M remains
of ZD

i (t) from the equilibrium prediction �i(t). For a constant, (5) converges on the well-known 	-distribu-
given Pij(t), this equilibrium satisfies tion result

�j(t) � �
N

i�0

�i(t)P*ij(t). (4) g(xi|x)dxi �

(M)


(Mx)
(M(1 � x))
xMx�1

i (1 � xi)M(1�x)�1dxi , (8)

It exists because P* � �P*ij � is ergodic and has a finite which Wright (1931) obtained under the assumption
number of states. We can set �N

i�0�i(t) � 1, and �i(t) that x was constant among migrants. To derive (8) from
becomes the equilibrium prediction for ZD

i (t). (5), it is necessary to use the limit result 6.1.46 in Abram-
The nature of the diffusion approximation (9) below owitz and Stegun (1965) for ratios of gamma functions

is that the migration and drift within demes equilibrate and to let dxi � 1/N. Figure 1 plots the distribution (5)
quickly in comparison to the rate of drift and selection when N � 10 and x � 0.75 over the full range of migra-
in the total population. The results show that, to a suffi- tion rates. With these parameter values, the absolute error
cient order of approximation, demes can be considered of using (5) to approximate the solution of (4) is never �
to always be at a stochastic equilibrium �j (0 � j � N) �0.007 and the relative error is never � �5%.

appendix a shows that, in the limit as D goes to infin-with respect to migration and drift for a given x. The
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of this large-D, large-N diffusion is given in The expected
number of neutral segregating sites by comparing its predic-
tions under neutrality to those of the corresponding
coalescent model (Wakeley 1998). Otherwise, N is as-
sumed here to be finite.

Many independently segregating loci: If we posit an
infinite number of loci, i.e., nucleotide sites, which can
sustain mutations and which each evolve according to
the diffusion of the previous section independently,
then the PRF results of Sawyer and Hartl (1992) hold
for x. Because of the way time is measured in the diffu-
sion, the appropriate mutation parameters are also
scaled:

�a �
2NDua

1 � F
and �s �

2NDus

1 � F
. (10)

The subscripts in Equation 10 refer to “amino acid re-
placement” and “synonymous” following Bustamante

Figure 1.—The approximation (5) for the distribution of et al. (2002), and ua and us are the per-generation rates.mutant allele counts among demes assuming that N � 10 and
Thus, one effect of restricted migration is to increasex � 0.75, shown as a function of the per-generation migration
the apparent mutation rates over the panmictic caserate m.
since 0 � F � 1. The other effect, of course, is to distrib-
ute variation among demes as described in the previous
section. In addition, the parameter tdiv in Sawyer andity, the change in x by drift and selection is so much
Hartl (1992) must here be measured in units of ND/slower than that by migration and drift within demes
(1 � F) generations. With these modifications, Equa-that the collection of demes is always at the equilibrium
tions 13 and 14 in Sawyer and Hartl (1992) apply�i, which depends on N and m, and of course x. By
here to x.Theorem 3.3 of Ethier and Nagylaki (1980), as D

Rewriting Sawyer and Hartl’s (1992) Equations 13goes to infinity the above system reduces to a diffusion
and 14 in terms of the present notation givesx(·) with generator

�stdiv (11)
� �

1
2
x(1 � x)

d 2

dx 2
� �x(1 � x)

d
dx

, (9)

�atdiv
2�

1 � e�2�
(12)

in which � � N limD→∞DsD. Time is measured in units
of ND/(1 � F) generations, where F is the fixation

dφs(x) � �s
dx
x

(13)coefficient, in this case given by Equation (A13) in ap-
pendix a. Thus, the diffusion of x is identical to the
usual Wright-Fisher diffusion with genic selection, with dφa(x) � �a

1 � e�2�(1 � x)

1 � e�2�

dx
x(1 � x)

(14)
the exception that it occurs on a timescale longer than
that of the panmictic case by the factor 1/(1 � F). Thus,

for the expected numbers of fixed and polymorphic,all the well-known predictions of that model apply; e.g.,
synonymous, and replacement differences in two spe-see chapter 5 of Ewens (1979).
cies. When a sample is taken from the two species, asCherry and Wakeley (2003) assumed (8) to hold
in Sawyer and Hartl (1992), we need to consider the

and showed that simulations agreed well with the predic-
chance that a polymorphic site appears fixed in a sample

tions of the implied diffusion process, such as the time
from the species. Here, in contrast to the panmictic case,

to fixation or loss of the mutant type. Without giving a
the distribution of the sample among demes becomes

proof, we can guess that this diffusion should be given important.
by the results of the section above and appendix a if Assume that we have taken a random sample of n
ND → ∞ when D → ∞ and limD→∞2NDmD � M, so that sequences from d different demes in one of the species,
F � 1/(M � 1), but with limD→∞ND/D � 0 (Ethier and such that n1, n2, . . . , nd are the sample sizes from
Nagylaki 1980). Cherry and Wakeley (2003) also each deme. We can write in general that the expected
showed that the distribution of allele frequencies among number of sites that show i1, i2, . . . , id copies of the
demes in simulations with N � 100 and m � 0.01 (and mutant base in the sample (0 � ik � nk) is given by
D � 1000 and sD � 0.001) conformed well to the predic-
tions of Equation 8 in a particular generation when x E[Sj(i1, . . . , id)] � �

1

0
	

d

k�1

h(ik|x, nk)dφj(x), (15)
was equal to 0.611. Further support for the existence
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where j � a, s. The probability h(ik|x, nk), that ik copies sample drawn in this way has probability x of showing
the mutant base. That is, h(1|x, 1) � x and h(0|x, 1) �of the mutant base are in the sample of nk items from

the kth sampled deme, is an average over the within- 1 � x, and similarly for h*(ik|x, nk). Summing Equation
15, for each species, over all i1, i2, . . . , id such that 0 �deme distribution of allele frequencies:
�d

k�1ik � �d
k�1nk gives Sawyer and Hartl’s (1992) Equa-

tions 15 and 19 but with the scaled mutation rates that
apply here: �s and �a. Similarly, Sawyer and Hartl’sh(ik|x, nk) � �

N

j�ik

� j
ik
� � N�j

nk � ik
�

�Nnk�
�j . (16)

(1992) Equations 17 and 18 are derived by considering
the chance that ik � 1 for all k. In sum, inferences about
selection coefficients, mutation rates, and divergence

If N is large and m correspondingly small, we may wish times are entirely robust to (island-model) population
to use the large-deme approximation: subdivision when each sample is taken from a different

deme.
h*(ik|x, nk) � �

1

0
�nk

ik
�x ik

k(1 � xk)nk�ikg(xk|x)dxk . (17) Inferences from single-deme samples: At the opposite
extreme, consider the case in which all samples are

That is, when N is large we can approximate the hyper- drawn from the same deme within each species. Note
geometric probability that the sample contain ik copies that we assume, as in Sawyer and Hartl (1992), that
of the mutant allele (present in j copies in the deme) the two species are identical (here in terms of N, m, and
with a binomial distribution and the allele count distri- �). Let n1 and n2 denote the sample sizes from the two
bution �j with Wright’s (1931) continous 	-distribution species. For this sample, the expected numbers of fixed-
of allele frequences, g(xk|x). synonymous (Ks), fixed-replacement (Ka), polymorphic-

Because we have assumed an infinite number of inde- synonymous (Ss), and polymorphic-replacement (Sa)
pendently segregating sites with collective mutation sites are given by
rates given by (10), the PRF model (Sawyer and Hartl
1992) shows that Sj(i1, . . . , id) is Poisson distributed E(K s) � �s
tdiv � �

1

0

[h(n1|x, n1) � h(n2|x, n2)]
dx
x � (18)

with expected value equal to (15). The numbers of sites
segregating at various frequencies within each deme

E(K a) � �a
2�

1 � e�2�
tdiv � �
1

0

[h(n1|x, n1)contain information about migration rates, and the
numbers of sites segregating at various frequencies in

� h(n2|x, n 2)]
1 � e�2�(1�x)

2�x(1 � x)
dx� (19)the total population contain information about the se-

lection coefficient. Note that (15) can also be used to
compute the expected number of apparent fixed differ- E(S s) � �s�

1

0

[H(x, n1) � H(x, n 2)]
dx
x

(20)
ences, i.e., polymorphisms where the entire sample has
the mutant base, as required in Sawyer and Hartl’s

E(S a) � �a
2�

1 � e�2��
1

0

[H(x, n1) � H(x, n 2)]
1 � e�2�(1�x)

2�x(1 � x)
dx(1992) analysis. This provides a framework for estimat-

ing selection coefficients (and migration rates) in the (21)
context of a subdivided population. As illustrated in

in which H(x, n) � 1 � h(n|x, n) � h(0|x, n). Theresults, we use Equations 11–14 in conjunction with
results from Limiting allele frequency dynamics at a singleEquation 15 to obtain predictions about the numbers
locus are used to compute h(n|x, n) and h(0|x, n).of fixed-synonymous, fixed-replacement, polymorphic-
Namely,synonymous, and polymorphic-replacement sites in a

sample from two species. Further, Equation 15 gives the
h(n|x, n) � �

N

j�1

j !(N � n)!
( j � n)!N !

�j . (22)joint frequencies among demes of segregating polymor-
phisms. In the panmictic case, Hartl et al. (1994),
Akashi (1999), and Bustamante et al. (2001) showed This same equation can be used to compute h(0|x, n) �
that allele frequencies at polymorphic sites contain sub- h(n|1 � x, n).
stantial information about selection. Figure 2 plots the expected values of Ks, Ka, Ss, and

Sa as functions of the migration rate when n1 � n2 � 10
and N � 100 and for three different values of �: �2,

RESULTS
0, and 2. The results are as expected for single-deme
samples. When m � 1, they are the same as in a panmic-The first result to note is that if each sample is taken

from a different deme, the methods of Sawyer and tic population. As m decreases, samples from single
demes tend to be closely related, so the numbers ofHartl (1992) can be applied wihout modification. It

is necessary only to realize that the inferred mutation polymorphisms will decrease and the numbers of (ap-
parent) fixation events will increase. This is true regard-parameters and the divergence time are scaled in terms

of ND/(1 � F) generations instead of the usual ND less of whether � is positive, zero, or negative, although
the relative magnitudes of the four quantities dependgenerations. This result follows from the fact that each
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Figure 3.—The dependence on migration rate (m) of the
estimated values of � using the values of K s, K a, S s, and S a

plotted in Figure 2 and assuming Sawyer and Hartl’s (1992)
panmictic PRF model. At the right (m � 1) the population is
in fact panmictic, and � is estimated accurately in all three
cases.

samples there is some error when the migration rate is
low, but even in the extreme case of m � 10�4 (2Nm �
0.02) the estimates are off only by �25%. However, the
level of error will be greater for larger samples (see
discussion) and when the absolute value of � is larger.
An additional effect is that the error in estimating � is
conservative in that the bias is toward neutrality regard-
less of whether � is positive or negative. Figure 4 shows
the effect on the other parameters: tdiv, �s, and �a. As
should be expected from Figure 2, mutation rates are
underestimated and the divergence time is overesti-
mated when the migration rate is small. The error in
estimating these other parameters is much more ex-
treme than that for �. In addition, there is a small effect
of � on estimates of �a.

The expected number of neutral segregating sites:
Under neutrality, the results presented here agree with
those found using a coalescent approach in WakeleyFigure 2.—The dependence on migration rate (m) of the
(1998), and later in Wakeley (1999, 2001), which wereexpected values of K s, K a, S s, and S a computed using Equations

18–21, assuming n1 � n2 � 10 and N � 100. In addition, �s � derived under the assumption that limN→∞2Nm � M. We
10, �a � 5, and tdiv � 7. (a) � � 2; (b) � � 0; (c) � � �2. make the same assumption here and further assume

that this occurs in such a way that the diffusion result
still holds (see Limiting allele frequency dynamics at a single

strongly on �. The curves for E(Ks) and E(Ss) are, of locus). Then we can use g(xk|x) and h*(ik|x, nk) in expres-
course, identical for all values of �. The results that sion (15) to show that the expected number of synony-
would be obtained by assuming limN→∞2Nm � M and mous segregating sites is equal to �s �n�1

i�1 1/i when all
using Equations 8 and 17 would be similar to what is n sampled are taken from separate demes. This was
shown in Figure 2 if M were varied from 0.02 to 200. found in Wakeley (1998) to hold for the samples from

To understand the effects of (island-model) popula- the neutral genetic locus in the large-D island model,
tion subdivision for the extreme case of single-deme under the assumption of no intralocus recombination.
samples, we can use the “data” of Figure 2 to fit the We expect this agreement under the infinite-sites model
parameters of Sawyer and Hartl’s (1992) panmictic of mutation, because the marginal distribution of gene-
model. Figure 3 shows that estimates of � are remarkably alogies at a single site must be the same as that of an
robust to subdivision, even in this case, where the effects entire nonrecombining locus under neutrality. It is im-
of subdivision should be strongest. Again, if samples portant to note that the variances and other moments
were taken singly from different demes, there would be of the numbers of segregating sites do depend on the

recombination rate.no error in using the panmictic model. For single-deme
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Figure 5.—An illustration that the overestimation of fixa-
Figure 4.—The dependence on migration rate (m) of the tion events and underestimation of polymorphism levels result

estimated values of �s, �a, and tdiv using the values of K s, K a, from a sample-size effect. Except for n1 and n2, parameters
S s, and S a plotted in Figure 2 and assuming Sawyer and are the same as in Figure 2c, and the curves plot Equations
Hartl’s (1992) panmictic PRF model. Estimates of �s and tdiv 18–21 as a function of sample size.
depend only on neutral variation, but estimates of �a show
some effect of selection. The three curves are, from the top,
� � 2, � � 0, and � � �2.

Ss, and Sa depend on n1 � n2 under panmixia with � �
2. Thus, the values on the right-hand side of Figure 5

Consider the number of segregating sites in a sample are identical to those on the right-hand side of Figure
of n sequences, all from the same deme. From the coales- 2a. Although scales of the horizontal axes are not the
cent approach we have same, the effect of smaller migration rate is qualitatively

similar to that of smaller sample size. The reason that
the values on the left-hand sides of the two panels areE[S] � �s �

n

n
�2

|S1(n, n
)|Mn


M(n)
�

n
�1

i�1

1
i

(23)
different is that the average value of n
 at the left in
Figure 2a is equal to 1.06, which is considerably smaller(Wakeley 1998), in which S1(i, j) are Stirling numbers
than the practical lower limit of 2 in Figure 5. Instead,of the first kind (Abramowitz and Stegun 1964) and
the values on the left-hand side of Figure 5 can beM(n) � M(M � 1) . . . (M � n � 1). Here, Equation 15
compared to those in Figure 2a for log10(m) � �2.67,becomes
or m � 0.00215, which (with N � 100) gives E[n
] � 2.

E[S] � �
1

0
�

1

0

[1 � xn
1 � (1 � x1)n]g(x1|x)dx1dφs(x) (24) This work shows that inferences about natural selec-

tion made from DNA polymorphism and divergence
data are robust to population subdivision (Figure 3) asand this is shown in appendix b to be equivalent to

(23). long as the migration rate is not too low. This is remark-
able in view of the strong effects subdivision has on
numbers of polymorphisms, shown in Figure 2, but is

DISCUSSION
understandable in terms of the effect of subdivision on
�s, �a, and tdiv. Except for the weak dependence of �aThe results presented above can be understood in

terms of a sample-size effect of subdivision, one that estimates on � (Figure 4), subdivision and migration
act equally on selected and neutral variation. In bothdepends on how the sample is distributed among demes.

In the limit of a large number of demes, the history of cases, fixation events are overestimated and polymor-
phisms underestimated when the migration rate isa sample under neutrality has two distinct phases: the

scattering phase and the collecting phase described in small. This causes mutation rates to be substantially un-
derestimated and divergence times grossly overesti-Wakeley (1999). Although in this analysis incorporat-

ing selection was not phrased in these terms, it is clear mated if subdivision is ignored, but these effects com-
pensate one another and allow relatively accuratefrom Figure 2 that the same effect is at work, namely,

that a scattering phase, which is a stochastic sample size estimates of selection even if subdivision is ignored.
Often � will be the focus of study, but if �s, �a, and tdivadjustment that begins with a sample of size n and ends

with n
 lineages each in a separate deme, where 1 � are also of interest, it would be useful to have a frame-
work for simultaneous inferences about migration rates,n
 � n (Wakeley 1999), induces a downward sample-

size adjustment to single-deme samples. In the case of selection coefficients, and these other parameters. The
theory presented above is a first step toward this goal.large N and correspondingly small m, the scattering

phase for a sample from a single deme is given by It is important to note that inferences about natural
selection made from allele frequencies at polymorphicP[n
|n] � |S1(n, n
)|Mn
/M(n), which appears in Equation

23. Figure 5 shows how the expected values of Ks, Ka, sites will be robust to subdivision only in the case of
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considering the simpler behavior of ZD
ij(t). In particular, Y(k � 1, x, y) � Y(k, x, y) � c(x, Y(k, x, y)),

conditional on the state of the system z(t) at time t, Y(0, x, y) � y , (A14)
(ZD

0j(t � 1), . . . , ZD
Nj(t � 1)) is globally asymptotically stable, then the diffusion (9)

holds (Ethier and Nagylaki 1980). Note that y � 0 is
�

1
Dz j(t)

multinomial(Dz j(t), Pj 0(t), . . . , PjN(t)), (A1) equivalent to zi � �i and that Equation A14 is equivalent
to Y(k � 1, x, y) � Y(k, x, y)P*. Proof of Equation A14
follows from the ergodicity of the stochastic matrix P*,and ZD

ij(t � 1) and ZD
kl(t � 1) are independent for all i

i.e., that limk→∞P*(k)
ij � �j, along the same lines as theand k, and j � l. Thus, we have conditional moments

proof in Nagylaki (1980, pp. 111–112).
E[Z D

i (t � 1)z(t)] � �
N

j�0

z j(t)Pji(t) (A2) The derivation of Equations A5–A9 follows from
Equations A2–A4. For Equation A5 we have

Var[Z D
i (t � 1)z(t)] �

1
D �

N

j�0

z j(t)Pji(t)(1 � Pji(t)) (A3)
E[XD(1) � x|z] � E ��

N

i�0

i
N

ZD
i (1)� � x (A15)

Cov[Z D
i (t � 1), Z D

j (t � 1)z(t)] � �
1
D �

N

j�0

z j(t)Pki(t)Pkj(t) . (A4)
� �

N

i�0

i
N �

N

j�0

z jPji � x (A16)

All the higher central moments of the ZD
i (t � 1) are

o(1/D). � �
N

j�0

z jqj � x . (A17)
Now let XD(t) � �N

i�0 iZD
i (t)/N, and YD

i (t) � ZD
i (t) �

�i(t). The diffusion result follows from these results (de- Putting in qj from Equation 1 and simplifying give
rived below) for changes over one generation:

E[X D(1) � x|z] � sD�x(1 � x) � (1 � m)2 �
N

i�0
� i
N

� x�
2

z i�
E[XD(1) � x|z] � b(x, y) � o �1

D� (A5)
� o(sD) , (A18)

which gives (A5) if we put zi � yi � �i on the right andE[{XD(1) � x}2|z] � a(x, y) � o �1
D� (A6)

simplify using Equation 7.
For Equation A6 we have

E[{XD(1) � x}4|z] � o �1
D� (A7)

E[{X D(1) � x}2|z] � E �
�
N

i�0

i
N

Z D
i (1) � �

N

i�0

i
N

z i�
2

� (A19)
E[YD

i (1) � yi|z] � c i(x, y) � o(1) (A8)

� E �
�
N

i�0

i
N

(Z D
i (1) � E[Z D

i (1)])Var[YD
i (1)|z] � o(1) (A9)

in which t has been suppressed, x � �N
i�0 izi/N, and � �

N

i�0

i
N

(E[Z D
i (1)] � z i)�

2

� (A20)
yi � zi � �i, and

b(x, y) � sD(1 � F)x(1 � x) � E �
�
N

i�0

i
N

(Z D
i (1) � E[Z D

i (1)])�
2

�
� sD(1 � m)2�

N

i�0
� i
n

� x�
2

yi (A10) � o(sD) (A21)

� �
N

i�0
� i
N�

2

Var[Z D
i (1)]a(x, y) �

1
ND

(1 � F)x(1 � x)

� �
N

i�0
�
N

k�0
k�i

i
N

k
N

Cov[Z D
i (1), Z D

k (1)]
�

(1 � m)2

ND �
N

i�0
� i
n

� x�
2

yi (A11)

� o(sD) (A22)ci(x, y) � �
N

j�0

yjP*ji � yi . (A12)

�
1
D �

N

j�0

z j 
�
N

i�0
� i
N�

2

Pji � ��
N

i�0

i
N

Pji�
2

�The fixation index is given by

� o(sD) (A23)
F �

(1 � m)2

Nm(2 � m) � (1 � m)2
. (A13)

�
1
D �

N

j�0

z j

qj(1 � qj )

N
� o(sD) . (A24)

It is clear from Equation A12 that c(x, 0) � 0 for all x �
(0, 1). If, in addition, the zero solution of the difference Again, putting in qj and simplifying, this becomes Equa-

tion A6.equation
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For equation A7 we have
� �

N

j�0

yjP*ji � yi � o(1), (A32)
E[{X D(1) � x}4|z] � E �
�

N

i�0

i
N

Z D
i (1) � �

N

i�0

i
N

zi�
4

� (A25)

which is equal to (A8).
For Equation A9 we have� E �
�

N

i�0

i
N

(Z D
i (1) � E[Z D

i (1)])

Var[YD
i (1)|z] � Var[ZD

i (1) � �i(1)|z] (A33)
� �

N

i�0

i
N

(E[Z D
i (1)] � zi)�

4

� . (A26) � 2 Var[ZD
i (1)|z] � 2 Var[�i(1)|z], (A34)

using (3.12) in Ethier and Nagylaki (1980). FromAs in (A20) above, the second sum on the right in (A26)
(A3), we have Var[ZD

i (1)|z] � o(1). From Equation A27is equal to E[XD(1) � x|z], which, from (A5), is o(1).
we can see that, like (A30), the second term in (A34)Expanding and considering the third and fourth central
ultimately depends on the moments of ZD

i and so is alsomoments of ZD
i (1) gives the result (A7).

o(1). Therefore, Var[YD
i (1)|z] � o(1) as required inIn the derivations of (A8) and (A9) below I assume

Equation A9.that the exact solution of (4) is sufficiently close to (5)
This completes the derivation of (A5–A9), showingthat the latter can be used in place of the exact solution.

that Theorem 3.3 in Ethier and Nagylaki (1980) canMore precisely, I assume that
be applied and that the diffusion x(·) with generator
(9) in the text holds as D goes to infinity.

�i(1) � �i � �
N

k�1

rk(XD(1) � x)k , (A27)

APPENDIX Bwhere the coefficients rk depend on N, i, m, and x. This
is certainly true for Equation 5, and because (5) and Beginning with Equation 24, and then putting in
the exact solution of (4) are nearly identical in form g(x|x) and φs(x), we have
(see Figure 1 and associated text), it should also be true

E[S] � �
1

0
�

1

0

[1 � x n
1 � (1 � x1)n]g(x1|x)dx1dφs(x) (B1)of the exact solution although the coefficients rk will be

different.
For Equation A8 we have

� �s�
1

0

1
x �

1

0

[1 � x n
1 � (1 � x1)n]g(x1|x)dx1dx (B2)

E[YD
i (1) � yi|z] � E[ZD

i (1) � �i(1)|z] � yi (A28)

� �s�
1

0

1
x �1 �

(Mx)(n)

M(n)

�
(M(1 � x))(n)

M(n)
�dx . (B3)� �

N

j�0

z jPji � E[�i(1)|z] � yi . (A29)

Using the identityUsing (A27), the second term on the right in Equation
A29 becomes M(n) � �

n

n
�1

|S1(n, n
)|Mn
 (B4)

E[�i(1)|z] � �i � �
N

k�1

rkE[(XD(1) � x)k|z]. (A30) we obtain

Then by the same argument that gave (A7), using (A1), E[S] � �s �
n

n
�1

|S1(n, n
)|M n


M(n)
�

1

0

1
x

[1 � x n
 � (1 � x)n
]dx (B5)
it can be shown that these higher moments are also
o(1/D). Because of this, and putting in �i � �N

j�0�jP*ji ,
� �s �

n

n
�1

|S1(n, n
)|M n


M(n)
�
n


i�1

1
i
, (B6)Equation A29 becomes

which is the same as Equation 23 since the first termE[YD
i (1) � yi|z] � �

N

j�0

z jPji � �
N

j�0

�jP*ji � yi � o(1) (A31)
(n
 � 1) is equal to zero.


