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10.1 Introduction

Population geneticists and phylogeneticists view tree structures diflerently' To

the phylogeneticist, tree structures are the objects of study and the branching

patterns a tree displays are inherently significant. Phylogeneticists are inter-

ested in the relationships among species or other taxa, and these histories are

tree-like structures. To the population geneticist, particularly to the student

of coalescent theory, individual tree structures are usually not of interest. In-

stead attention is focused on the characteristics of populations or species, and

intraspecific trees, or gene genealoeies, are a stepping stone on the path to

such knowledge. This difference in approach divides workers who study cur-

rent and historical population structure into two groups: those who ascribe

significance to single gene trees and those who focus on summary properties

of gene trees over many lclci. The purpose of this chapter is to give some

perspective on this clivision and to suggest ways of identifying the domain of

application of coalescents and intraspecific phylogeography in terms of the

histories of populations or species. This is not meant to be divisive' In the not

too distant firture, we can hope that these complementary approaches will be

unified, as models catch up with data and a science of population genomics

is realized.

10.1.1 Population genetics history

Theoretical population senetics was born out of the tension between Riome-

tricians (or Darwinians) and Mendelians in the early decades of last century'

We often trace our fielcl back to the famous paper of Fisher (1918) which set-

tlecl this dispute; see Provine (1971). In short, the Biometricians, represented

by w. F. R. Weldon and Karl Pearson, had for decades been measuring quan-

titative traits ancl considering such things as the correlation of traits between

parents and oflspring. They maintained that natural selection acted on these

'fhe liztolatiun oJ PIpukt,tirtrt, Biot,ogy, e<1. IL. S. Singh and M. K. Uyenoyama. Published by

Carnbriclge University Press. O Cambridge University Press 2003'
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continuous characters and that change in these was slow; discrete variation

was unimportant to evolution. After the rediscovery of Mendel's laws in 1900,

William Bateson, Hugo de Vries, and other Mendelians argued for the impor-

tance of discrete variations in evolution. Their views were directly opposed to

those of the Biometricians; selection on continuous variation could not result

in significant evolutionary steps, which were discontinuous. In hindsight we

might say that the Biometricians' mistake was to confuse the continuity of

traits with that of the underlying variation, and the Mendelians' error was to

equate the mechanism of inheritance with that of evolution itself. In any case,

it is clear that the two camps agreed only on one point: continuous variation

and Mendelian inheritance were incompatible.

This fundamental conflict was resolved mathematically by Fisher (1918).

Specifically, Fisher showed that continuous variation could be explained by

the action of many Mendelian loci of small effect. In the decade or so after

this remarkable start, the major results of this new branch of science, which

was called theoretical population genetics, were laid down by Fisher (1930),

Haldane (1932), and Wright ( 1 93 1 ) . Following the birth of theoretical popula-

tion senetics, the mathematical theory was extended and the facts of genetics

were reconciled with Darwin's theory of evolution. During the Modern Syn-

thesis, these avenues of research were merged into the neo-Darwinian theory

of evolution, providing a series of welljustified, more or less qualitative expla-

nations of patterns of speciation, adaptation, and geographic variation. Two

of the major architects of the Modern Synthe sis were Dobzhansky ( 1937) and

Mayr (1942). Our modern understanding of evolution is grounded in neo-

Darwinism. During the next few decades, many workers contributed to the

theory, although Mal6cot (1948) and Kimura (1955a,b) certainly stand out.

By 1960 the mathematical theoryof population genetics had developed avery

high degree of sophistication, although for the most part, as Lewontin (I974)

notes, this was in the absence of genetic data.

It wasn't until the mid 1960s that population genetics finally confronted

genetic data (Harris 1966, Lewontin and Hubby 1966). Since then, we have

seen a grand shift in population genetics from the forward-looking view of

the classical theory of Fisher, Haldane, and Wright to the backward-looking

view of the coalescent or genealogical approach; see Ewens (1990) for a re-

view of this transformation. The modern approach focuses on inferences from

samples of genetic data and, often to great advantage, recasts theoretical prob-

lems in terms of genealogies. Significant works along the path to this include

Ewens (1972), which describes the distribution of the counts of alleles in a

moderate-sized sample from a large population, and Watterson (1975), which

describes the distribr.rtion of the number of polymorphic nucleotide sites in

either a moderate or a larse sample from a large population. The retrospec-.

tive approach came fully to life in the early 1980s with the introduction of

the coalescent process by Kingman ( 1982a,b,c), Hudson ( 1983b), and Taj ima
(1983). The present relative lack of concern for the structures of particular

gene genealo
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gene eenealogies traces back to the constant-size, single-population, neutral

coalescent model described in these works. which is discussed in detail in

Section 10.2 below.

10.1.2 Phylogenetics and intraspecific phylogeography

Charles Darwin's famous book contains.just one figure: a hypothetical phy-

logenetic tree. Long before Darwin (1859) and Wallace (1858) put forward

the idea of descent with modification, biologists had employed trees to depict

the relationships among species and higher taxa. Tiee structures are a natural

way to represent such affinities, which are sroups nested within other groups.

Prior to Darwin and Wallace, howeveq trees had been employed strictly as

convenient organizational tools to represent systematic affinities. For exam-

ple, the classification system put fbrward by Linnaeus (1735) is a branching

stmcture which clelineates relationships, yet Linnaeus rejected the idea of evo-

lution. \4rhen the idea of descent with modification gained acceptance as the

explanation fbr biological cliversity, these tree structures gained a new signif:

icance. They were no longcr an expedient, but rather represented the actual

histories of eroups of species. The development of phylosenetics since Dzrrwin

ancl Wallace has been strongly influence d by the concept of trces as hist<lry. In

acldition phylogenetic theory and methodology have been shaped by the evo-

lut ionary idea that descendant species which trace back to a common ancestor

will inherit any unique characte ristics that :rncestral species had evolvecl.

Unti l  the last 30 years or so, the role of theory in phylogenetics and in

populat ion senetics could not have been more di l '  rent. Althotrgh there is

now a lot ol overlap of appr<lach, hist<lr ical dif lerences do persist.  Theoretical

populat ion senetics has always becn { irrnly srounded in tradit ional appl iecl

mathernatics and probabil i ty the<lry. In this sense populat ion genetics has

many paral lcls with physics. Thc theoreticir l  f izrrnework is mathenratical and

stat ist ical,  and there is broad acceptance <lf  this f ianrcwork:rnd i ts attend:rnt

models within the f ield of 'biokrgy.

ln c()ntrast, within thc f icld of phyloeenetics there has been widespreacl

skepticisrn of such approzrchcs, part icularly stat ist ical ones. This is most evi-

dent in the cladist ic approach, which practi t ioners crcdit  to Hennig (I965,

1966). This approach seeks to iclcnti fy the phylogenetic tree which disaqrees

the lcast with the data at hancl. The criterion firr it is parsimony: pick the tree

thirt requires the f'ewest characte r stzrte chzrnges. The tree is then considered a

potential ly tnre statement zrbout history. I t  is a phylogene t ic hypothcsis which

preclicts what further study should uncover and which thus may be shown to be

fzrlse. lt is not viewed as an estimate of some unknown quantity. This approach

is r-rnderstanclable if Hennis's view is accepted: that the phylogeneticist can

directly observe (the results of ) history through careful study of thc morphol-

ogy ancl development of a group of orqanisms, by iclentifying shared, uniquely

clerivecl characters, ()r synapomorphies. Sound arguments against the cladistic
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approach have been made in response to seeing the blind application of the

parsimony method to data which have not been subject to the careful prior

study Hennig envisioned, and which are more labile than complex morpho-

logical features. Thus, with the introduction of model-based approaches, like

the maximum likelihood method of Felsenstein (1981), the recent history

of phylogenetics has been a progressive acceptance of the mathematical and

statistical theory. However, this process of acceptance is still ongoing.

Coincident with the emergence of the backwardJooking, genealogical ap-

proach to population genetics, phylogenetic methods began to be applied to

intraspecific data. Thiswas greatlyfacilitated by the nonrecombining nature of

the first molecule examined - animal mitochondrial (mt) DNA- and the grow-

ing technical ability during the 1970s and 1980s to assay samples of mtDNA

from natural populations. The result was a new and active subfield of evolu-

tionary biology called intraspecific phylogeography, or just phylogeography
(Avise al at. 1987, Avise 1989, 2000). A number of new methods of historical

inference have resulted from this approach (Neigel et al' 199I, Neigel and

Avise 1993, Templeton et al. 1995, Templeton 1998). The hallmark of phylo-

geography is that inferences are drawn from intraspecies or organismal gene

trees which are reconstructed from data. The fcrcus on gene trees as indica-

tors of population structure, population history, and speciation has provided

a much needed bridge between phylogenetics and population genetics (Hey

1994, Avise 2000). However, there is still a gulf between workers schooled in

population genetics and those who favor traditional phylogenetics or cladis-

tics. Bluntly put, the latter group tends to place too much emphasis on single

gene genealogies whereas the former group places too little. Drawing conclu-

sions from single genealogies can be problematic because each is only a single

point in the space of all possible genealogies. Under some kinds of popula-

tion histories, this will cause serious errors in inference. Conversely, focusing

too much on the standard, structure-less, history-less coalescent model gives

a picture of the utility of single gene trees that is too discouraging'

10.2 Gene genealogies and the coalescent

In the early 1980s, the ancestral process known as the coalescentwas described.

Kingman (1982a,b,c) provided a mathematical proof of the result. Hudson
(1983b) and Tajima (1983) introduced this genealogical approach to pop-

ulation geneticists and derived many biologically relevant results. Nordborg
(2001) provides a recent review; see also Hudson (1990) and Donnelly and

Tavar,6 (1995). Kingman found a simple ancestral process to hold for sam-

ples from a wide variety of different types of populations, in the limit of large

population size and providing that the genetic lineages in the population are

exchangeable (Cannings 1974). Exchangeable lineages are ones whose pre-

dicted properties are unchanged if they are relabeled or permuted (Kingman

P
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1982b, Aldous 1985). With the assumption that all variation is neutral, the fa-
miliar Wright-Fisher model (Fisher 1930, Wright 1931) of a population with
nonoverlapping generations fits this criterion, as does the overlapping gener-
ation model of Moran ( 1958) . Different populations will differ in how the ac-
tual population size is related to the effective population size that determines
the rate of the coalescent process. The standard coalescent involves two very
important assumptions besides exchangeability. For this model to hold, the
population must be of constant effective size over time and there must be no
population subdivision.

\Arhen time is measured in units of 2N" generations for a population of
diploid organisms, or in units of N, generations for a population of haploid
organisms, the time to a coalescent event is exponentially distributed with
mean

( 1 0 . 1 )

where & is the number of ancestral lineages present. Under the coalescent
model, each of the (f) possible pairs of lineages coalesces with rate 1. Without
recombination, which will be treated later, a sample of size n will go through
exactly n - 1 coalescent events to reach the common ancestor of the entire
sample. Thus, every genealogy has n - 1 coalescent intervals, beginning with
the most recent, h: n, and ending with the most ancient, k - 2. Figure 10.1
shows an average coalescent genealogy; that is, with the lengths of the co-
alescent intervals drawn in proportion to Equation 10.1. The more recent
coalescent intervals tend to be much shorter than the ancient ones, and on
average the final coalescent interval represents more than half of the total
time from the present back to the most recent common ancestor of the sam-
ple. Because the time scale of the coalescent process depends inversely on ly'",
we expect genealogies to be longer when the effective size is larger.

As we trace the ancestry of the lineages back in time, because each pair
that exists has the same rate of coalescence, when a common ancestor event
happens each pair is equally likely to be the one that coalesces. The structure
of trees under the coalescent is determined by this process ofjoining random
pairs of lineages. The result is, if we think in forward time for the moment
starting at the root of the tree, a random-bifurcating tree topology. This results
from the fact that there is no structure to the coalescent process - that all
Iineages are exchangeable - and the resulting trees are likewise unstructured.
Without intralocus recombination, all the sites at a single genetic locus will
share the same genealogy. Loci that segregate independently of each other
will have uncorrelated genealogies, both in terms of the coalescent times and
topology. Considering topological structure, ifwe took a sample of three items,
and labeled them A, B, and C, then each of the three possible rooted tree
topologies - ( (,4, B), C), (( A, C), B), (( B, C), A) - is equally l ikely to occur. If
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tt

A B C D E F G H I

Figure 10.1. A hypothetical coalescent genealogy of a sample of size N:9. The lengths

ol'the coalescent intcrvals, l, through 12, are drawn in proportior-r to their expected values

given by Equat ion 10.1.

we take a large sample of independently segregating loci, we expect to observe
eoual numbers of each of these three trees.

10.3 The axes of genealogical variation: tree size
and branching pattern

As a starting point in talking about demographic history, we can take the
standard, coalescent process as a null model. The underlying, exchangeable
population genetic models, such as the Wright-Fisher model, are familiar to
most biologists and their use as null models is not uncommon. This estab-
Iishes predictions fbr what we should observe in a sample of sequences from
a population. With reference to the discussion of the coalescent above, we
are interested in two kinds of genealogical variation: (1) variation in the total
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length of the tree, and (2) variation in the branching pattern. The leneth of
a eenealogy is the sum of the lengths of all its branches. under the standard
coalescent model, this is given by the sum of n - r, independent exponential
times with different pararneters. we expect this distribution to be realized
when a larse number of independent loci are sampled. The branching pat-
tern of a genealow specifies 2n- 3 partitions of the n sampled sequences,
tips, or leaves of the tree . That is, each branch in the genealogy divides the
members of the sample into two groups, the ones on either side of the branch.
The senealogy or branchine pattern at each sampled locus will be a random
draw fiom the rather large universe of all possible random-bifurcating trees.

It is very irnportant to note that our ability to observe the length and topol-
ogy of genealoeies is rnediated by mutation. Even without any variation, qe-
nealogies will come in different sizes and shapes; we.just won't know it. we
rely on mutations occurrins along the branches of the tree to procluce the
sequence polymorphisms that provide clues about history. The rate of mu-
tat ion per locus is typical lyvery small ,  somewhere around 10-a to 10 6 per
generation, and mutation events in diff'erent senerations are independent.
Therefrrre, the number of mutations that occur along a senetic lineage of
length I will be Poisson distributed with expectation tu, where z is the mu-
tation rate per generation. \vhen time is rescaled as in the coalescent, this
becomes 7'0 l2,where 7' :  t /  (2N,) and 0 : 4N,u. In the standard coalescent
model, the pararneter 0 is equal to the expected number of nucleotide dit
ferences between two randornly chosen gene copies. The randomness of the
mutation process is an important fhctor in determinine among-locus varia-
t ion in the clbservable indicatr lr  of tree length: the number of polymorphic
sites in the sample. The letter s is used to denote the number of thcse ses-
regating sites in a sample. Even when the genealogies at different loci are all
identical in size there will be Poisson variation around the expectation due to
the randomness of the rnutat ion process. This imposes a lower botrnd on the
variation in s amons loci, namely that the variance will be equal to the mean.

our abi l i ty to uncover geneal 'uical topolouy also depends on muution.
we becorne aware of particular branches in the tree when mutations occur
on them. When the mutation rate at each nucle<>tide site at a genetic locus is
small ,  and recombination is absent or vcry unl ikely, the infrnite-sites mutation
mode I of watterson ( I 975) is a goocl approximation to the mutation process.
Under this rnodel, each t ime a new mutation occurs, i t  hzrppens at a previously
unmutated site. The assumption of no recombination grrarantees that al l  si tes
in a sample of DNA sequences will share the szrme bifurcatine t.pology, but
this is not the most important aspect of warterson's (1975) model. I f  each site
mutates at most once in the history of the sample, then each polymorphisrn is
the result of a sinE;le rnutation event on some branch in the tree , and the par-
titions of the sarnple made by the branch ancl by the polyrnorphism are iden-
t ical.  correlat ion in genealoeical topoloeies amons loci wi l l  be represented
in sequence data by the repcti t ion of such site f iequency patterns at rnany loci.
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10.4 The effects of population structure and population

history on genealogies

This section describes the effects on the size and shape of genealogies of de-

viations tiom the assumptions of the standard coalescent model, particularly

changes in effective sire over time and two kinds of population subdivision'

These eltects are summarized in Figure 10.2. The thin lines in the figure

represent population boundaries, and thin, dashed lines indicate incomplete

barriers to the movement of individuals. The genealop;ies of these samples of

size four are drawn usins thick lines. For each historical scenario, (a) throueh

(d), hypothetical geneatgies are shown for samples from tlvo indepenclently

,"g."guting loci. ihis illusirates the effects of populati.n structure and popu-

tul,rrinirtJ.y on the sizes and shapes of genealogies' Note that "shape" here

refers only to topological structure and not to the relative lenS;ths of different

parts of a'tree. I' brief, changes in pop.lation size thro'gh time change the

distribution of tree sizes by making the coalescence rate time dependent, but

do not affect the topology of trees. Population subdivision alters the distri-

bution of tree lengths, but it also can have dramatic effects on the shape of

trees because it makes some colnmon ancestor events much tnore likely than

others.

10.4.1 Populat ion growth

I f c l n e p o p u l a t i o n i s t w i c e a s b i g a s a n o t h e r . t h e f o r m e r h a s o n e h a l f t h e

rate t>f coalescence as the latter. on average, trees will be twice as big in the

larger population as in the smaller one. when a single population has srown

ir-r ,ir., th" .ut" of coalescence responds proportionately' Looking hack in

time, the rate of coalescence will be low until the time of growth, then it will

increase. The predictions of the standard coalescent for the relative sizes of

ancient and recent coalescent intervals pictured in Figure 10.1 wil l  no longer

hold. Instead, the more recent intervals will be relatively longer and the more

ancient intervals will be relatively shorter. If growth is rapid ancl relatively

r e c e n t , g e n e a l o g i e s w i l l t e n d t o b e s t a r s h a p e d , t h a t i s , t o h a v e s m a l l i n t e r n a l

n.ar-r.he, (slatkin and Hudson lggi). populati.n growth by itself will nor alter

the probabilities of genealogical topologies, because when a coalescent event

o...r.. each pair of lineages still has an equal chance of being the one that

coalesces.

If population growth is rapid enough, it is rvell approximated by a single

abrupt ihur'tg" in population size. In this case, the ancestral process has twtr

addiiional parameters: 7i;, the tinte of change in population size r.eas'red in

units of 2|v, (currenteffective size) generations, and Q : Nrtl l''[,, the ratio of

the ancestral and currcnt eff'ective population sizes. Between the present and

time 
',1i;, 

each pair of lineages coalesces with rate equal to one' where as befbre

'{; the rate is Q per paiiof lineages' Of course , this model also describes
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p o p u l a t i o n d e c l i n e , w h i c h i s d i s c u s s e d i n S e c t i o n 1 0 ' 4 ' 2 b e l o w ' I f Q < 1 '
g.o*tt, has occurred and the more recent coalescent times will be relatively

io.rg, urrd if e > 1 decline has occurred and the most recent coalescent times

will be relatively short.
Figure 10.2(a) shows the genealogies of samples from two hypothetical' in-

depe"ndently segregating loci for the case of an abrupt growth event. In both

cases, the ,u*p1. of f"nt lineages traces all the way back to the change in

size without experiencing a single coalescent event. Because the recent effec-

tive size is large, the expected time back to the first coalescent event is much

greater than ihe time back to the growth event. \Arhen the lineages arrive in

the much smaller ancestral population, they experience a great increase in

the rate of coalescence, and the common ancestor of the sample is reached

quickly. Therefore, most trees will be about the same size' and variation among

ihem will be much less than in Kingman's coalescent. Flowever, the distribu-

tion of tree topologies will be the same as in the standard, constant-size model'

and trees at different loci will differ in branching pattern. Thus, the tlvo ge-

nealogies in Figure 10.2(a) have different structures' On the left' samples A

and B are the first to coalesce, on the right it is B and c which are first.

10.4.2 Population decline

Turning rapid growth on its head, we have the case of rapid decline in Figure

10.2 (b). Here there will be a relatively higher rate of coalescence during the

recent part of the history, up until the time of the decline in effective size'

As above, the event is assumed to be abrupt, simply for ease of explanation'

Samp lesa tsome loc i , l i ke theoneon the le f t i nF igu re l0 ' 2 (b ) 'w i l l t r aceback
to a most recenr common ancestor before reaching the event. These trees will

be short. If multipte lineages trace their ancestry back to the decline in size,

then the rate of coalescence for those remaining lineages decreases in propor-

tion to the magnitude of the change in size. The ancient coalescent intervals

will be much elongated in this case, which is depicted on the right in Figure

10.2 (b). Therefore, there will be a lot of variation in the size of genealogies

among loci, more than in the standard, constant-ly'r coalescent. In terms of

tree siucture, again because the lineages are exchangeable' genealogies will

be random-bifurcating trees and there will be the same very low level of cor-

relation in branching pattern at independent loci that is seen in the standard

coa lescen t .Thus ,as inF igu re l0 .2 (a ) , t hegenea log ies inF igu re l0 ' 2 (b )a re
diff'erent at two independent loci.

f 0.4.3 Equilibrium migration

population subdivision introduces structure to genealogies, structure that may

coirelate with geography, and causes the tree topologies at different loci to

be correlated. Subdivision will also affect variation in the sizes of genealogies

among loci, but
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amons loci, but the direction of this effect depends on whether misration can

occur among subpopulations or demes, as this section supposes, or not, as in

Section 10.4.4 below. For simplicity, assume that a population is subdivided

into D demes and conforms to the symmetric island model of Wright (1931).

The demes are of equal size, N, and the fraction of each deme that is replaced

by migrants each generation is the same and equal to m. This is by far the most

commonly employed model of a subdivided population in both empirical and

theoretical studies. The term equilibrium migration refers to the fact that this

constant-rate migration is supposed to have been ongoing for long enough

that the effects of any prior history are erased. In Wright's island model, mi-

srants are equally likely to come from any deme in the population. Thus, this

model does not include explicit geography. Populations that adhere to the

assumptions of the island model will not display the correlation between ge-

ography and senetic variation known as isolation by distance (Wright 1943).

They will show different levels of polymorphism within vs. between demes,

and powerful nonparametric tests to detect subdivision have been developed

(Hudson et al. 1992). In the case of .just two populations, the islancl model

can be considered an explicit model of geography. This sirnple case is con-

sidered here in order to illustrate the effects of equilibrium migration on

genealogies.

The parameters that determine the pattern of genetic variation in a sample

of n 1 seqrrences fiom one deme and n2 sequences frclm another are 0 and M :

41,'lm. If n,,, and r 1, are the average number of pairwise nucleotide differences

within and befiveen populations, respectively, then fbr the D-deme island

mcldel we have

203

) . 4 . 2  b e l o w .  l f  Q < 1 ,
times will be relatively

ecent coalescent times

n two hypothetical, in-

growth event. In both

rack to the change in

cause the recent effec-

alescent event is much

r the lineages arrive in

rce a great increase in

the sample is reached

e, and variation among

However, the distribu-

d, constant-size model,

.ern. Thus, the two ge-

On the left, samples A

C which are first.

rapid decline in Figure

:oalescence during the

:cline in efTective size.

rr ease of explanation.

10.2(b), wi l l  trace back

) event. These trees wil l

l  to the decl ine in size,

;es decreases in propor-

)nt coalescent intervals

on the r ight in Figurc

the size of qe nealosies

:oalescent. ln terms of

;eable, genealogies will

re very low levcl of cor-

is seen in the standard

s in Figure 10.2(b) are

,gies, structure that may

gies at different loci to

[he sizes of genealoeies

E(nr , , )  :  P9 ,

I i ( n ) : D e ( + * )

(10 .2)
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(Li 1976). For the hvo-deme model, we put D :2in Equations 10.2 and 10.3.

There are two surprisins aspects of these equations. First, the expected value of

2,,,  does not depend on the rate of migration (Slatkin 1987, Strobeck 1987).

This is a special property of the symmetric island model: the tendencies of

within-cleme pairwise coalescence times to be short if neither of the pair is a

migrant and to be long if one of them is a migrant averase out perfectly to give

Eqr-ration 10.2. If any asymmetries are introduced into the model, this result

no longer holds. Second, the effect of subdivision depends on the product

of the deme size and the migration rate, which is captured in the scaled

migration rate M. As Msrows large, the expectation of z, converges on that

of T,,,, and the population will appear panmictic. This surprisins result traces

back to Wright (1931), and explains why populations that are obviously not

panmictic sometimes show no evidence of subdivision. That is, M can be large

even when the per-generation rate of migration, rz, is small. Equations for the
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variances of t. and z6 both within and among loci can be found (Wakeley

1996a,b), and these both depend on the scaled migration rate' \A4ren Mis

large, the variances become ihose expected in a panmictic population' and

u, M d....utes the variances ofpairwise differences grow'

The predictions of Equations 10.2 and 10,3 can be extended to levels of

polymoiphism in larger sumple'' under equilibrium migration' levels of ge-

netic variation will be largei on average for multi-deme samples than for

single-deme samples. Thelffect of this will be greater when M is small' In

thJsample (ry,ra) from two demes, coalescent times among the n1 sequences

from deme one, and among the n2 sequences from deme two' will tend to

be shorter than coalescent times between sequences from different demes'

This means that the topological structure of genealogies will no longer be the

random-bifurcating tree, piedicted by the standard coalescent. There will be

a tendency towards trees which have a branch that divides the sample exactly

into the n1 arrdlxz sequences taken from each deme' for example trees in

which the demic sampies are reciprocally monophyletic. Again, this tendency

will be more pronounced if the sialed migration rate between the two demes

is small. Thui, the genealogies for two independent loci on the right and left

o fF igu re10 .2 (c )uo tnsnowth i sk indo f topo logy . Inadd i t i on , va r i a t i on in
levelsofpolymorphismamonglociwil ldependinverselyonthescaledmigra.
t i on ra te ,M ; l o rexamp le , r . .H "y (1991 ) ' so , f o r thesameave rage ra teo f
polymorphisms under Lquilibrium migration, some loci will have very short

und ,o*! very long histoiies. This is also displayed in Figure 10'2 (c) '

10.4.4 Isolation without gene flow

Equi l ibr iummigrat ionis justoneofamul t i tudeofpossib leexplanat ions
for the occurrence of s,,bdivision. In fact, it is probably uncommon for a

populat iontoremainstablysubdiv ided,both inthesizesofdemesandinthe
,ui., und patterns of migration, for long enough to reach equilibrium' One

of the earliest tenets to1r.r"rg. from phylogeographic studies is that most

species appear to have experienced dramatic shifts in demography over time

*a rpu.L^1,tuise lggg). ionfining ourselves for the moment to models with

discrete demes, the polar opposite of equilibrium migration is isolation and

divergence without genetic exchartge. This isolation model posits an ancestral

popuf,ution that spliti into two descendant populations at some time, 3r, in the

pu. tu, .aaf ter that t imethetwopopulat ionsdonotexchangemigrants.The
isolation model can be .o.r'rpu..J with the migration model in Section 10'4'3

to illustrate the striking differences between equilibrium and nonequilibrium

population subdivision.' I , . 'g . ' . ,u l ,eachpopulat ionintheisolat ionmodelmightbeofadi f ferent

,ir", a"ttd we would have 91 : 4N11r, 0z : 4Nzu' and 0 a : 4l{au as parameters

(Wakeley and Hey 1997) . However, for purposes of comparison with the equi-

l ibrium migration model of Section 10'4'3, we assume that 9l :02: 0a' In

this case, thr
demes have r

(Li  1e77).4
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this case, the average numbers of pairwise differences within and between

demes have expected values
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(Li 1977). Aside from a constant scaling factor (D), equilibrium migration and

isolation without gene flow make identical predictions about average levels

of genetic variation within and between demes where T2 : r I (2 M'In other

words, if r,u and Ir6 aLre measured from data, then both models could be fit

and their parameters estimated, but 2,, and t 6 would not serve to distinguish

between migration and isolation. The most obvious difference betr,veen the

two models is in the interpretation of the pattern of polymorphism. Under the

isolation model, genetic variation between demes in a sample is a snapshot fbr

a particular 4r. If the population were sampled again at a later date,7'n -l 7' ,

the level of divergence would be greater. Equation 10.3, in contrast, holds for

all time, and represents a dynamic balance achieved between ongoing genetic

drift and migration.
In addition to this difference in interpretation, variation in levels of ge-

netic variation among loci will be different under migration and isolation

even when the average levels are the same (Li 1976, 1977,Takahata and Nei

1985, Wakeley 1996a) . The variances are larger under migration than under

isolation, and the difference grows with rD : r I (2 M ' This results from the

fact that under migration, coalescent events between samples from different

demes can occur at any time, mediated by migration, whereas under isolation

there can be no interdeme coalescent events until the lineages trace back into

the ancestral population. In the extreme of a very long divergence time in the

isolation model (7i) >> 1), difference between E(tr1,) and 0To w\l\ be negli-

gible. In this case the distribution of the number of segregating sites among

Ioci will approach a Poisson distribution, with mean and variance equal to

0 7)t.ln contrast, in the extreme of a very low migration rate in the migration

model, the variance of the number of segregating sites among loci will be

much greater than the mean (Wakeley 1996a) . Thus, the trees for two inde-

pendent loci under isolation in Figure 10.2(d) are more similar in size than

rhose shown in Figure 10.2(c) for migration. Equilibrium migration and iso-

lation without p;ene flow share the prediction that genealogical trees will tend

towards reciprocal monophyly, and this is also displayed in Figure 10'2(d)'

10.5 Domains of application: coalescents and phylogeography

The above discussion illustrates some general principles about the effect of

population structure and population history on the sizes and shapes of ge-

nealogies. To sum marize:

(10 .4)

(10 .5)
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1. population growth/decline tends to decrease/increase variation in tree size

among loci but does not affect variation in tree shape relative to the standard

coalescent model,

2. both equilibrium and nonequilibrium population subdivision (migration vs.

isolation above) alter the structure ofgenealogies such that genealogies at in-

dependently segregating loci will tend to share topological features, and

3. migration increases variation in tree size among loci whereas isolation decreases

ir.

This section investigates how the strengths of these trends depend on the

parameters of a population. The goal is to identif' population histories for

which the analysis of single gene genealogies is likely to be fruitful and those

for which it witl be less useful to refer to any speciflc genealogy. Simulations

are used to determine the distribution of tree size and shape among loci. The

parameters are those discussed above in Section 10.4 and the quantities usecl

to measure variation in the size and shape of genealogies are described below.

10.5.1 Measures of variat ion in tree size

The most straightforward measure of the size of a genealogy is the number of

segregating sites, ,S. A sample from any population will have some expected

value of S and some variance. For example, in the case of a sample of n

sequences under the standard, constant size, unstructured coalescent with

infi nite-sites mutation,

POPUL
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(10 .6 )

(10 .7 )

(10 .8 )

(Watterson 1975). \A/hen we sample a large number of loci, we should find

that the mean and variance among them would conform to Equations 10.6

and 10.7. This, of course, assumes that the sample size, n, and the mutation

parameter, 6, are the same at every locus. However, this assumption is made

only as a matter of convenience in comparing different population structures

and histories below; it would be straightforward to allow for differences in I

and n among loci.
There are many ways in which we could compare levels of variation in S,

our measure of tree size, among loci. The standardized measure,

r/kr - S
c ) -

r// s\'  \  " /

will be used here, in which S is the average number of segregating sites and

lGl ir the observed variance of S among loci. Given a multilocus data set, I
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is easy to compute. The expectation of Q is given approximately by

v (s )  -  E (s )
E(a) = 

"f t )
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The number of segregating sites, S, is a compound random variable (see

Secrion 10.3). Thus we can intuitively partition V(S) into contributions due

( 1) to variation in tree size and (2) to variation in the mutation process. If there

is no variation in the size of genealogies among loci, then all of the variation in

S will be due to the Poisson mutation process and the expected value of Q will

be zero. Instead, if the variation in tree size among loci is much greater than

the mean, then V(5') will be larse and Q will be close to its upper borrnd of

one. Thr"rs, I is a normalized measure which can be cornpared under diflerent

zrssumptions about the population. Our null model, the standard coalescent,

predicts a fairly high value of 9, depending of c()urse on 0 and n. If 0 : I0

an:td n:20, which are the values used in sirnr.r lat ions below, Equation 10.9

g i v e s  E ( Q )  : 0 . 8 2 .

10.5.2 Measures of correlat ion in branching pattern

Thcre is zrlso a multitude of ways we could compare genealogical topologies

anlong loci. If we knew the true trees clr if we were very confident about our

t rces  rCC()ns f r t rc ted  I iom data .  lhen  we co t t ld  t t sc  a  11qs  60mpar is ( )n  tne t r i c

l ike that of Robinson and Foulds (1981). Alternatively, i f  we are not confi-

dent about ()ur rec()nstructed trees or do not wish to make explicit reference

to them, we could use some measure ol the correlation in haplotype pat-

terns antons loci such as coefficient of linkage clisequilibrium (Lewontin and

Kojima 1960). This measures gametic associat ions between al leles at two loci,

but rnult i locus stat ist ics are also pctssible (Smouse 1974). Here, because of the

fbcus on simple two-deme models of subdivision, we will instead consider the

co-occurrence of identical data partitions amone loci, that is the observalion of

identical patterns of polymorphism among members of the sample at several

loci. This presupposes that the same inclividuals were assayed at all genetic

loci.

Assumine that the infinite-sites mutation model holds, each polymorphic

site in a sample divides the mernbers of the sample into two sroups, ones

which retain the ancestrzrl base at the site and ones which have inherited

the rnutant base. As noted in Section 10.3, the one-to-one correspondence

between mutation events and polymorphic sites in the sample, and the ob-

servation of zr pattern in the data guarantee the existence of a branch in the

genealogy of the sample, one that divides the sample exactly as the polyrnor-

phism cloes. For example, a mutati()n event on the shortest internal branch

in the senealogy in Figure 10.1, the one which exists only during 15,, would

make a polymorphic site at which samples E, i', and G would show the mu-

tantbase and samples A, B, C, D, H,and lwould show the ancestral base'
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In the standard coalescent model, we would not expect to see this pattern

repeated at another, independent locus sequenced in the same individuals

because the fiaction of random-bifurcating trees that contain such a branch

is very small. However, all genealogies contain n external branches, on which

singleton polymorphisms can arise, so we would expect to see these partitions,

i.e., all n kinds of sing;letons, repeated at many loci. Thus, there is a negative

correlation between the allele frequency at a polymorphic site and the chance

that the same pattern will be fbund at other loci.

In a sample from a subdivided population, we expect sites which divide

the sequences along deme-sample lines to tend to be repeated at multiple

loci. There might be a fairly low overall concordance of whole tree topologies

among loci, because of the variability of within-deme Patterns of cornmon

ancestry, but some branches would tend to be repeated. For the simple twc>

derne models considered here, these repeated branches wil l  be the ones that

divide the sample into the fl.1 and i?2 sequences sampled from demes one and

two. A statistic that will be sensitive to the co-occurrence of single partitions

across loci is max(P) , in which 1; is the fraction of loci that show at least one

polymorphic site with partition L singleton partitions are excluded in the

calcr-rlation of max(p;) because all loci are expected to show these resardless

of population structure and history. This measure will be sensitive to the effects

of subdivision as it is mrtdeled here. As thc level of subclivision increases, the

partition most frequently observed across loci will be the one that corresponds

exactly to thc two demes' samples, and ma,x(p;) will approzrch one . We take the

null distribution Of max(1t;) to be that fbund uncler the stzrndard coalescent.

This wil l  depend on the sample size and on 0. For 0 :  10 and n : 20, used in

the simulations bclow, the standard ctlalescent gives rnax(Nti) - O.O+.

10.5.3 Simulations of populat ion structure and populat ion history

The usual c()alescent simulzrt ions were perfbrmed (Hudson 1990), adding

a chanse in sizc, cf.  Hr,rdson (1990), or migration/isolat ion, cf.  Wakeley

(1996b), as indicated. The stat ist ics Q ancl rnax(p;) were computed f irr  each

simtrlat ion repl icate. In addit ion to sirnulat ions ttnder the standard coales-

cent model, a small set of' parameter values was chosen to illustrate the

eff'ects of population structure and population history on the .ioint distri-

bution oI 'Q and max(Nt;).  The sarnple size was n:20 when therc was no

structure, and nl : 'n2:10 under nl igrat ion and isolat ion' Only one case

e a c h  o f  g r o w t h  a n d  d e c l i n e  i s  p r c s e n t e d :  ( d : 1 0 0 ' 0 ,  Q : 0 ' 0 t ,  ? ; : 0 ' l )

and (g  :0 .25 ,  ( ] :100.0 ,  7?r :0 .1 ) .  These were  se lec ted  to  represent  ex-

treme growth and extreme clecline respectively, and the values of 0 were

chosen so that the average number of polymorphic sites per locus would be

the same under both models. Several levels of strbdivision were investigated

for equilibrium migration and isolation without sene flow Under migration

these were M: 0.5,0.25, 0.01 with 0 : 5.0, and under isolat ion they were
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O Isolat ion, TD- 2.0

tE Isolat ion, Tt: 50.u

Z S ize-changc,  Q:0 .01

Z Size-c1itr,ngc, Q: 100.0

Figurel0.3.  Theresul tsof thesimulat ionsdescr ibedinthetext .Eachpoint inthescat terplot
is the pair of (max(pi), Q) values for a single simulation replicate.

7b:  \ .0 ,2.0,50.0 wi th 0 :  10.0.  These parameter  sets were chosen in con-

sideration of Equations 10.2 through 10.5, so that the expected numbers of

pairwise differences within and between the two demes would be equivalent

in the two models for three different levels of differentiation. One hundred

independent loci were surveyed in the sampled individuals.
The results are shown in Figure 10.3. Only ten simulation replicates were

performed fbr each set of parameters, as this was enough to distinguish the

cases, and the results of all replicates are plotted in Figure 10.3. Simulations
under the standard coalescent model cluster around the values Q : 0.82 and

max(Fi) - 0.04 mentioned above. Under population growth and decline, the

value of max(p) is nearly unchanged from the constant-size case, but the

value of Q changes drastically. This accords well with the discussion in Section

10.4 above. The minor diff-erences in max(pt) between these and the standard

coalescent result from the fact that singleton polymorphisms are ignored in

computing max(p;), and there are a lot more singletons under poprrlation

growth than under population decline. This is essentially the same as the

mutation rate effect on Q that can be seen for the standard coalescent from

Equations 10.6 and 10.7; as I grows, so does the expected value of S). In

sum, under this model of dramatic growth we expect the size of even a single

genealogy to accurately represent the history of the population but, because

there is no structure to the population, the topology of the tree contains little

or no information about historical demography. Under decline, neither the

size nor the shape of a single genealogy will be informative about history.

Subdivided populations vary both in O and in max(Ft).Under both

equilibrium and nonequilibrium subdivision, the repetition of genealogical
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topologies across loci provides information about the structure of the pop-

ulation. That is, migration and isolation converge on max(p;) : 1 when M

becomes small and Tp becomes large, respectively. Two interesting aspects of

this are evident in Figure 10.3. First, the rates of convergence to this extreme

are different under migration and isolation. For example, when we expect

the average number of pairwise differences befiveen demes to be twice as

big as thatwithin demes (M : 0.5 or Tp - 1.0; see Equations 10.2 to 10.5),

simulations give max(p;) - 0.18 under migration and max(p;) x 0.45 under

isolation. This is expected from previous work on genealogical topologies un-

der the two models (Tajima 1983, Takahata and Slatkin 1990, Wakeley 1996b).

In the present context it means that, other things being equal, single gene

trees will be more informative about population structure under isolation than

under migration. The second point is related to this; that is, subdivision has

to be quite strong under migration for max(pi) to approach one. Even when

the average number of pairwise differences between demes is 50 times that

within demes, about four out of 100 loci will not show the (ry, ,a) Partition
that defines the samples. That equilibrium migration is a highly variable pro-

cess can also be seen in values for 9, which approach one as M decreases' In

contrast, as T2 increases between two isolated demes, I decreases, but a very

long divergence time is required for f2 to be close to zero.

The measures I and max(pt) appear to distinguish well among the models.

In addition, they serve to illustrate how single gene trees might or might not

be representative of population structure and population history in terms of

the parameters of the models. The broad empty area of Figure 10.3, for lower

values of Q and intermediate values of max(p,i), is an artifact of the simplicity

of the models considered here. Populations that follow the isolation model

but have a small value of 6,4 relative to 6l and 02 can produce values in this

range.

10.6 Conclusions

\Arhile reconstructing a genealogy is not a necessary step in population ge-

netic inference, it can be quite informative under some circumstances. There

is a difference of approach in this regard between workers who use coales-

cent techniques and those who practise intraspecific phylogeography. \{trile

this dichotomy is far from complete, it is real enough. Coalescent technicians

do not usually make reference to particular gene trees. This is part of the

culture of coalescents: that gene trees are unobservable random quantities

which certainly shape genetic variation but whose branching patterns do not

contain much information about population history. This view is most rea-

sonable when populations conform to the standard coalescent model. \Arhen

trees are referred to explicitly, it is typical to "integrate" over them in mak-

ing inferences (Kuhner et al. 1995, Grifiths and Tavar6 1996). In contrast,

the first step in a phylogeographic analysis is to reconstruct a gene tree from

data, and inferen
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data, and inferences are based upon this inferred tree. This sensibility about
the significance of inferred trees was received and adapted from the field of
phylogenetics. At the intraspecific level, roughly speaking, the circumstances
favorable to using inferred gene trees are those in which random genetic
drift is relatively unimportant compared with nonequilibrium factors like the
splitting of populations.

Only the simplest nonequilibrium model was considered here: a single
population that split into two isolated demes at some time in the past. This
kind of history has the qualities necessary for the single-tree approach to be
mostfruitful; thatis, small I andlarge max(p;). Howeveq mostof the branches
in the genealogies under this model, those for the intrademe patterns of
common ancestry, will be discordant amons loci. A more ideal scenario for
the single-gene-tree approach is the stepping-stone model of range expansion
considered by Slatkin (1993), which is a history of multiple isolation events. If
a single sample was taken from each subpopulation, then we might expect the
population tree to be reproduced at many loci. Of course, this too will depend
upon the population splits being separated enough in time for the effect of

drift to be negligible. Otherwise, even without migration, a gene tree may be
different from the population tree (Neigel and Avise 1986, Pamilo and Nei
1988). This will be an issue as well for continuously distributed populations
that have undergone ranse expansions; the movement of individuals will have

to be restricted for historical structure to be evident in gene tree topologies.
This treatment has assumed no recombination within loci and free recom-

bination between loci. Intralocus recombination will decouple sites' histories.
Multiple genealogies will be realized in the history of a single locus and these

will be correlated along the sequence (Hudson 1983a, Kaplan and Hudson
1985). Restricted interlocus recombination will make genealogies across sam-
pled loci correlated. Both of these processes should tend to increase max(p;).
Intralocus recombination increases the number of chances a locus has to re-

alize a given partition, and restricted recombination between loci will cause

branches to be shared across loci. They should have opposite effects on f),
though. Intralocus recombination will lower the variation in tree sizes be-
cause there will be more independence among sites. The increased corre-
lation among loci caused by restricted interlocus recombination, conversely,
will increase the variance of tree size. Intralocus recombination is quite prob-
lematic for inferred gene-tree approaches since the genealogy is no longer a
bifurcating tree (Hein 1993). It also represents a significant computational
hurdle to coalescent inference methods which make explicit use of linkage

patterns (Grifiths and Marjoram 1996) .
The entire field of population genetics will benefit fiom increased ex-

change between coalescents and phylogeography. There is growing overlap
already. On the one hand, the importance of coalescent approaches is ev-
ident in Avise's (2000) book about phylogeography. On the other, one of

the currently most used coalescent inference programs, cENETREE (Bahlo
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and Grifiths 2000), produces an inferred genealogy. The future availability

of multilocus genetic data will serve as a further bridge befween these two

approaches.
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