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10.1 Introduction

Population geneticists and phylogeneticists view tree structures differently. To
the phylogeneticist, tree structures are the objects of study and the branching
patterns a tree displays are inherently significant. Phylogeneticists are inter-
ested in the relationships among species or other taxa, and these histories are
tree-like structures. To the population geneticist, particularly to the student
of coalescent theory, individual tree structures are usually not of interest. In-
stead attention is focused on the characteristics of populations or species, and
intraspecific trees, or gene genealogies, are a stepping stone on the path to
such knowledge. This difference in approach divides workers who study cur-
rent and historical population structure into two groups: those who ascribe
significance to single gene trees and those who focus on summary properties
of gene trees over many loci. The purpose of this chapter is to give some
perspective on this division and to suggest ways of identifying the domain of
application of coalescents and intraspecific phylogeography in terms of the
histories of populations or species. This is not meant to be divisive. In the not
too distant future, we can hope that these complementary approaches will be
unified, as models catch up with data and a science of population genomics
is realized.

10.1.1 Population genetics history

Theoretical population genetics was born out of the tension between Biome-
tricians (or Darwinians) and Mendelians in the early decades of last century.
We often trace our field back to the famous paper of Fisher (1918) which set-
tled this dispute; see Provine (1971). In short, the Biometricians, represented
by W. F. R. Weldon and Karl Pearson, had for decades been measuring quan-
titative traits and considering such things as the correlation of traits between
parents and offspring. They maintained that natural selection acted on these
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continuous characters and that change in these was slow; discrete variation
was unimportant to evolution. After the rediscovery of Mendel's laws in 1900,
William Bateson, Hugo de Vries, and other Mendelians argued for the impor-
tance of discrete variations in evolution. Their views were directly opposed to
those of the Biometricians; selection on continuous variation could not result
in significant evolutionary steps, which were discontinuous. In hindsight we
might say that the Biometricians’ mistake was to confuse the continuity of
traits with that of the underlying variation, and the Mendelians® error was to
equate the mechanism of inheritance with that of evolution itself. In any case,
it is clear that the two camps agreed only on one point: continuous variation
and Mendelian inheritance were incompatible.

This fundamental conflict was resolved mathematically by Fisher (1918).
Specifically, Fisher showed that continuous variation could be explained by
the action of many Mendelian loci of small effect. In the decade or so after
this remarkable start, the major results of this new branch of science, which
was called theoretical population genetics, were laid down by Fisher (1930),
Haldane (1932), and Wright (1931). Following the birth of theoretical popula-
tion genetics, the mathematical theory was extended and the facts of genetics
were reconciled with Darwin’s theory of evolution. During the Modern Syn-
thesis, these avenues of research were merged into the neo-Darwinian theory
of evolution, providing a series of welljustified, more or less qualitative expla-
nations of patterns of speciation, adaptation, and geographic variation. Two
of the major architects of the Modern Synthesis were Dobzhansky (1937) and
Mayr (1942). Our modern understanding of evolution is grounded in neo-
Darwinism. During the next few decades, many workers contributed to the
theory, although Malécot (1948) and Kimura (1955a,b) certainly stand out.
By 1960 the mathematical theory of population genetics had developed a very
high degree of sophistication, although for the most part, as Lewontin (1974)
notes, this was in the absence of genetic data.

It wasn’t until the mid 1960s that population genetics finally confronted
genetic data (Harris 1966, Lewontin and Hubby 1966). Since then, we have
seen a grand shift in population genetics from the forward-looking view of
the classical theory of Fisher, Haldane, and Wright to the backward-looking
view of the coalescent or genealogical approach; see Ewens (1990) for a re-
view of this transformation. The modern approach focuses on inferences from
samples of genetic data and, often to great advantage, recasts theoretical prob-
lems in terms of genealogies. Significant works along the path to this include
Ewens (1972), which describes the distribution of the counts of alleles in a
moderate-sized sample from a large population, and Watterson (1975), which
describes the distribution of the number of polymorphic nucleotide sites in
either a moderate or a large sample from a large population. The retrospec-
tive approach came fully to life in the early 1980s with the introduction of
the coalescent process by Kingman (1982a,b,c), Hudson (1983b), and Tajima
(1983). The present relative lack of concern for the structures of particular
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gene genealogies traces back to the constantsize, single-population, neutral
coalescent model described in these works, which is discussed in detail in
Section 10.2 below.

10.1.2 Phylogenetics and intraspecific phylogeography

Charles Darwin’s famous book contains just one figure: a hypothetical phy-
logenetic tree. Long before Darwin (1859) and Wallace (1858) put forward
the idea of descent with modification, biologists had employed trees to depict
the relationships among species and higher taxa. Tree structures are a natural
way to represent such affinities, which are groups nested within other groups.
Prior to Darwin and Wallace, however, trees had been employed strictly as
convenient organizational tools to represent systematic affinities. For exam-
ple, the classification system put forward by Linnaeus (1735) is a branching
structure which delineates relationships, yet Linnaeus rejected the idea of evo-
lution. When the idea of descent with modification gained acceptance as the
explanation for biological diversity, these tree structures gained a new signif-
icance. They were no longer an expedient, but rather represented the actual
histories of groups of species. The development of phylogenetics since Darwin
and Wallace has been strongly influenced by the concept of trees as history. In
addition phylogenetic theory and methodology have been shaped by the evo-
lutionary idea that descendant species which trace back to a common ancestor
will inherit any unique characteristics that ancestral species had evolved.

Until the last 30 years or so, the role of theory in phylogenetics and in
population genetics could not have been more different. Although there is
now a lot of overlap of approach, historical differences do persist. Theoretical
population genetics has always been firmly grounded in traditional applied
mathematics and probability theory. In this sense population genetics has
many parallels with physics. The theoretical framework is mathematical and
statistical, and there is broad acceptance of this framework and its attendant
models within the field of biology.

In contrast, within the field of phylogenetics there has been widespread
skepticism of such approaches, particularly statistical ones. This is most evi-
dent in the cladistic approach, which practitioners credit to Hennig (1965,
1966). This approach seeks to identify the phylogenetic tree which disagrees
the least with the data at hand. The criterion for it is parsimony: pick the tree
that requires the fewest character state changes. The tree is then considered a
potentially true statement about history. It is a phylogenetic hypothesis which
predicts what further study should uncover and which thus may be shown to be
false. It is not viewed as an estimate of some unknown quantity. This approach
is understandable if Hennig's view is accepted: that the phylogeneticist can
directly observe (the results of ) history through careful study of the morphol-
ogy and development of a group of organisms, by identifying shared, uniquely
derived characters, or synapomorphies, Sound arguments against the cladistic
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approach have been made in response to seeing the blind application of the
parsimony method to data which have not been subject to the careful prior
study Hennig envisioned, and which are more labile than complex morpho-
logical features. Thus, with the introduction of model-based approaches, like
the maximum likelihood method of Felsenstein (1981), the recent history
of phylogenetics has been a progressive acceptance of the mathematical and
statistical theory. However, this process of acceptance is still ongoing.

Coincident with the emergence of the backward-looking, genealogical ap-
proach to population genetics, phylogenetic methods began to be applied to
intraspecific data. This was greatly facilitated by the nonrecombining nature of
the first molecule examined —animal mitochondrial (mt) DNA-and the grow-
ing technical ability during the 1970s and 1980s to assay samples of mtDNA
from natural populations. The result was a new and active subfield of evolu-
tionary biology called intraspecific phylogeography, or just phylogeography
(Avise et al. 1987, Avise 1989, 2000). A number of new methods of historical
inference have resulted from this approach (Neigel ef al. 1991, Neigel and
Avise 1993, Templeton et al. 1995, Templeton 1998). The hallmark of phylo-
geography is that inferences are drawn from intraspecies or organismal gene
trees which are reconstructed from data. The focus on gene trees as indica-
tors of population structure, population history, and speciation has provided
a much needed bridge between phylogenetics and population genetics (Hey
1994, Avise 2000). However, there is still a gulf between workers schooled in
population genetics and those who favor traditional phylogenetics or cladis-
tics. Bluntly put, the latter group tends to place too much emphasis on single
gene genealogies whereas the former group places too little. Drawing conclu-
sions from single genealogies can be problematic because each is only a single
point in the space of all possible genealogies. Under some kinds of popula-
tion histories, this will cause serious errors in inference. Conversely, focusing
too much on the standard, structure-less, history-less coalescent model gives
a picture of the utility of single gene trees that is too discouraging.

10.2 Gene genealogies and the coalescent

In the early 1980s, the ancestral process known as the coalescent was described.
Kingman (1982a.b,c) provided a mathematical proof of the result. Hudson
(1983b) and Tajima (1983) introduced this genealogical approach to pop-
ulation geneticists and derived many biologically relevant results. Nordborg
(2001) provides a recent review; see also Hudson (1990) and Donnelly and
Tavaré (1995). Kingman found a simple ancestral process to hold for sam-
ples from a wide variety of different types of populations, in the limit of large
population size and providing that the genetic lineages in the population are
exchangeable (Cannings 1974). Exchangeable lineages are ones whose pre-
dicted properties are unchanged if they are relabeled or permuted (Kingman
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1982b, Aldous 1985). With the assumption that all variation is neutral, the fa-
miliar Wright-Fisher model (Fisher 1930, Wright 1931) of a population with
nonoverlapping generations fits this criterion, as does the overlapping gener-
ation model of Moran (1958). Different populations will differ in how the ac-
tual population size is related to the effective population size that determines
the rate of the coalescent process. The standard coalescent involves two very
important assumptions besides exchangeability. For this model to hold, the
population must be of constant effective size over time and there must be no
population subdivision.

When time is measured in units of 2N, generations for a population of
diploid organisms, or in units of N, generations for a population of haploid
organisms, the time to a coalescent event is exponentially distributed with
mean

. 2

E(l) = Kki—1) (10.1)
where % is the number of ancestral lineages present. Under the coalescent
model, each of the (i;] possible pairs of lineages coalesces with rate 1. Without
recombination, which will be treated later, a sample of size n will go through
exactly n— 1 coalescent events to reach the common ancestor of the entire
sample. Thus, every genealogy has n — 1 coalescent intervals, beginning with
the most recent, k = n, and ending with the most ancient, & = 2. Figure 10.1
shows an average coalescent genealogy; that is, with the lengths of the co-
alescent intervals drawn in proportion to Equation 10.1. The more recent
coalescent intervals tend to be much shorter than the ancient ones, and on
average the final coalescent interval represents more than half of the total
time from the present back to the most recent common ancestor of the sam-
ple. Because the time scale of the coalescent process depends inversely on N,
we expect genealogies to be longer when the effective size is larger.

As we trace the ancestry of the lineages back in time, because each pair
that exists has the same rate of coalescence, when a common ancestor event
happens each pair is equally likely to be the one that coalesces. The structure
of trees under the coalescent is determined by this process of joining random
pairs of lineages. The result is, if we think in forward time for the moment
starting at the root of the tree, a random-bifurcating tree topology. This results
from the fact that there is no structure to the coalescent process — that all
lineages are exchangeable — and the resulting trees are likewise unstructured.
Without intralocus recombination, all the sites at a single genetic locus will
share the same genealogy. Loci that segregate independently of each other
will have uncorrelated genealogies, both in terms of the coalescent times and
topology. Considering topological structure, if we took a sample of three items,
and labeled them A, B, and C, then each of the three possible rooted tree
topologies— ((A, B). C), ((A. C), B), ((B, C), A) —isequally likely to occur. If



198 John Wakeley

I : |

~
)

I

A B C D E F G H I

Figure 10.1. A hypothetical coalescent genealogy of a sample of size N =9. The lengths
of the coalescent intervals, ¢, through &, are drawn in proportion to their expected values
given by Equation 10.1.

we take a large sample of independently segregating loci, we expect to observe
equal numbers of each of these three trees.

10.3 The axes of genealogical variation: tree size
and branching pattern

As a starting point in talking about demographic history, we can take the
standard, coalescent process as a null model. The underlying, exchangeable
population genetic models, such as the Wright-Fisher model, are familiar to
most biologists and their use as null models is not uncommon. This estab-
lishes predictions for what we should observe in a sample of sequences from
a population. With reference to the discussion of the coalescent above, we
are interested in two kinds of genealogical variation: (1) variation in the total
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length of the tree, and (2) variation in the branching pattern. The length of
a genealogy is the sum of the lengths of all its branches. Under the standard
coalescent model, this is given by the sum of n — 1, independent exponential
times with different parameters. We expect this distribution to be realized
when a large number of independent loci are sampled. The branching pat-
tern of a genealogy specifies 27 — 3 partitions of the n sampled sequences,
tips, or leaves of the tree. That is, each branch in the genealogy divides the
members of the sample into two groups, the ones on either side of the branch.,
The genealogy or branching pattern at each sampled locus will be a random
draw from the rather large universe of all possible random-bifurcating trees.

Itis very important to note that our ability to observe the length and topol-
ogy of genealogies is mediated by mutation. Even without any variation, ge-
nealogies will come in different sizes and shapes; we just won't know it. We
rely on mutations occurring along the branches of the tree to produce the
sequence polymorphisms that provide clues about history. The rate of mu-
tation per locus is typically very small, somewhere around 10~* to 10-6 per
generation, and mutation events in different generations are independent.
Therefore, the number of mutations that occur along a genetic lineage of
length ¢ will be Poisson distributed with expectation fu, where u is the mu-
tation rate per generation. When time is rescaled as in the coalescent, this
becomes 16/2, where T'= {/(2N,) and 8 = 4N, u. In the standard coalescent
model, the parameter € is equal to the expected number of nucleotide dif-
ferences between two randomly chosen gene copies. The randomness of the
mutation process is an important factor in determining among-locus varia-
tion in the observable indicator of tree length: the number of polymorphic
sites in the sample. The letter § is used to denote the number of these seg-
regating sites in a sample. Even when the genealogies at different loci are all
identical in size there will be Poisson variation around the expectation due to
the randomness of the mutation process. This imposes a lower bound on the
variation in § among loci, namely that the variance will be equal to the mean.

Our ability to uncover genealogical topology also depends on mutation.
We become aware of particular branches in the tree when mutations occur
on them. When the mutation rate at each nucleotide site at a genetic locus is
small, and recombination is absent or very unlikely, the infinite-sites mutation
model of Watterson (1975) is a good approximation to the mutation process.
Under this model, each time a new mutation occurs, it happens ata previously
unmutated site. The assumption of no recombination guarantees that all sites
in a sample of DNA sequences will share the same bifurcating topology, but
this is not the most important aspect of Watterson's (1975) model. If each site
mutates at most once in the history of the sample, then each polymorphism is
the result of a single mutation event on some branch in the tree, and the par-
titions of the sample made by the branch and by the polymorphism are iden-
tical. Correlation in genealogical topologies among loci will be represented
in sequence data by the repetition of such site frequency patterns at many loci.
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10.4 The effects of population structure and population
history on genealogies

This section describes the effects on the size and shape of genealogies of de-
viations from the assumptions of the standard coalescent model, particularly
changes in effective size over time and two kinds of population subdivision.
These effects are summarized in Figure 10.2. The thin lines in the figure
represent population boundaries, and thin, dashed lines indicate incomplete
barriers to the movement of individuals. The genealogies of these samples of
size four are drawn using thick lines. For each historical scenario, (a) through
(d), hypothetical genealogies are shown for samples from two independently
segregating loci. This illustrates the effects of population structure and popu-
Jation history on the sizes and shapes of genealogies. Note that “shape” here
refers only to topological structure and not to the relative lengths of different
parts of a tree. In brief, changes in population size through time change the
distribution of tree sizes by making the coalescence rate time dependent, but
do not affect the topology of trees. Population subdivision alters the distri-
bution of tree lengths, but it also can have dramatic effects on the shape of
trees because it makes some common ancestor events much more likely than
others.

10.4.1 Population growth

If one population is twice as big as another, the former has one half the
rate of coalescence as the latter. On average, trees will be twice as big in the
larger population as in the smaller one. When a single population has grown
in size, the rate of coalescence responds proportionately. Looking back in
time, the rate of coalescence will be low until the time of growth, then it will
increase. The predictions of the standard coalescent for the relative sizes of
ancient and recent coalescent intervals pictured in Figure 10.1 will no longer
hold. Instead, the more recent intervals will be relatively longer and the more
ancient intervals will be relatively shorter. If growth is rapid and relatively
recent, genealogies will tend to be star shaped, that is, to have small internal
branches (Slatkin and Hudson 1991). Population growth by itself will not alter
the probabilities of genealogical topologies, because when a coalescent event
occurs each pair of lineages still has an equal chance of being the one that
coalesces.

If population growth is rapid enough, it is well approximated by a single
abrupt change in population size. In this case, the ancestral process has two
additional parameters: i, the time of change in population size measured in
units of 2N, (current effective size) generations, and Q = N,/ N,, the ratio of
the ancestral and current effective population sizes. Between the present and
time 7, each pair of lineages coalesces with rate equal to one, whereas before
Ti- the rate is Q per pair of lineages. Of course, this model also describes
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Figure 10.2. Two hypothetical genealogies for a sample of size four at two independently
segregating loci under the four population models discussed in the text: (a) population
growth, (7)) population decline, (¢) equilibrium migration, and (d) isolation without gene
flow. Thin lines indicate population boundaries.
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population decline, which is discussed in Section 10.4.2 below. If Q <1,
growth has occurred and the more recent coalescent times will be relatively
long, and if Q > 1 decline has occurred and the most recent coalescent times
will be relatively short.

Figure 10.2(a) shows the genealogies of samples from two hypothetical, in-
dependently segregating loci for the case of an abrupt growth event. In both
cases, the sample of four lineages traces all the way back to the change in
size without experiencing a single coalescent event. Because the recent effec-
tive size is large, the expected time back to the first coalescent event is much
greater than the time back to the growth event. When the lineages arrive in
the much smaller ancestral population, they experience a great increase in
the rate of coalescence, and the common ancestor of the sample is reached
quickly. Therefore, most trees will be about the same size, and variation among
them will be much less than in Kingman’s coalescent. However. the distribu-
tion of tree topologies will be the same as in the standard, constant-size model,
and trees at different loci will differ in branching pattern. Thus, the two ge-
nealogies in Figure 10.2(a) have different structures. On the left, samples A
and B are the first to coalesce, on the rightitis B and € which are first.

10.4.2 Population decline

Turning rapid growth on its head, we have the case of rapid decline in Figure
10.2(b). Here there will be a relatively higher rate of coalescence during the
recent part of the history, up until the time of the decline in effective size.
As above, the event is assumed to be abrupt, simply for ease of explanation.
Samples at some loci, like the one on the left in Figure 10.2(b), will trace back
{0 a2 most recent common ancestor before reaching the event. These trees will
be short. If multiple lineages trace their ancestry back to the decline in size,
then the rate of coalescence for those remaining lineages decreases in propor-
tion to the magnitude of the change in size. The ancient coalescent intervals
will be much elongated in this case, which is depicted on the right in Figure
10.2(b). Therefore, there will be a lot of variation in the size of genealogies
among loci, more than in the standard, constant-N, coalescent. In terms of
tree structure, again because the lineages are exchangeable, genealogies will
be random-bifurcating trees and there will be the same very low level of cor-
relation in branching pattern at independent loci that is seen in the standard
coalescent. Thus, as in Figure 10.2(a), the genecalogies in Figure 10.2(b) are
different at two independent loci.

10.4.3 Equilibrium migration
Population subdivision introduces structure to genealogies, structure that may
correlate with geography, and causes the tree topologies at different loci to
be correlated. Subdivision will also affect variation in the sizes of genealogies
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among loci, but the direction of this effect depends on whether migration can
occur among subpopulations or demes, as this section supposes, or not, as in
Section 10.4.4 below. For simplicity, assume that a population is subdivided
into D demes and conforms to the symmetric island model of Wright (1931).
The demes are of equal size, N, and the fraction of each deme that is replaced
by migrants each generation is the same and equal to m. This is by far the most
commonly employed model of a subdivided population in both empirical and
theoretical studies. The term equilibrium migration refers to the fact that this
constant-rate migration is supposed to have been ongoing for long enough
that the effects of any prior history are erased. In Wright's island model, mi-
grants are equally likely to come from any deme in the population. Thus, this
model does not include explicit geography. Populations that adhere to the
assumptions of the island model will not display the correlation between ge-
ography and genetic variation known as isolation by distance (Wright 1943).
They will show different levels of polymorphism within vs. between demes,
and powerful nonparametric tests to detect subdivision have been developed
(Hudson et al. 1992). In the case of just two populations, the island model
can be considered an explicit model of geography. This simple case is con-
sidered here in order to illustrate the effects of equilibrium migration on
genealogies.

The parameters that determine the pattern of genetic variation in a sample
of n; sequences from one deme and ny sequences from another are f and M =
4Nm. If m,, and 7, are the average number of pairwise nucleotide differences
within and between populations, respectively, then for the D-deme island
model we have

E(my) = D6, (10.2)

1
E(my) = D61+ QM) (10.3)
(Li 1976). For the two-deme model, we put D = 2 in Equations 10.2 and 10.3.
There are two surprising aspects of these equations. First, the expected value of
7, does not depend on the rate of migration (Slatkin 1987, Strobeck 1987).
This is a special property of the symmetric island model: the tendencies of
within-deme pairwise coalescence times to be short if neither of the pair is a
migrant and to be long if one of them is a migrant average out perfectly to give
Equation 10.2. If any asymmetries are introduced into the model, this result
no longer holds. Second, the effect of subdivision depends on the product
of the deme size and the migration rate, which is captured in the scaled
migration rate M. As M grows large, the expectation of 7, converges on that
of m,, and the population will appear panmictic. This surprising result traces
back to Wright (1931), and explains why populations that are obviously not
panmictic sometimes show no evidence of subdivision. That is, M can be large
even when the per-generation rate of migration, m, is small. Equations for the
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variances of m, and 7; both within and among loci can be found (Wakeley
1996a,b), and these both depend on the scaled migration rate. When M is
large, the variances become those expected in a panmictic population, and
as M decreases the variances of pairwise differences grow.

The predictions of Equations 10.2 and 10.3 can be extended to levels of
polymorphism in larger samples: under equilibrium migration, levels of ge-
netic variation will be larger on average for multi-deme samples than for
single-deme samples. The effect of this will be greater when M is small. In
the sample (n,n2) from two demes, coalescent times among the n; sequences
from deme one, and among the ny sequences from deme two, will tend to
be shorter than coalescent times between sequences from different demes.
This means that the topological structure of genealogies will no longer be the
random-bifurcating trees predicted by the standard coalescent. There will be
a tendency towards trees which have a bran ch that divides the sample exactly
into the n; and ny sequences taken from each deme, for example trees in
which the demic samples are reciprocally monophyletic. Again, this tendency
will be more pronounced if the scaled migration rate between the two demes
is small. Thus, the genealogies for two independent loci on the right and left
of Figure 10.2(c) both show this kind of topology. In addition, variation in
levels of polymorphism among loci will depend inversely on the scaled migra-
tion rate, M: for example, see Hey (1991). So, for the same average rate of
polymorphisms under equilibrium migration, some loci will have very short
and some very long histories. This is also displayed in Figure 10.2(c).

10.4.4 Isolation without gene flow

Equilibrium migration is just one of a multitude of possible explanations
for the occurrence of subdivision. In fact, it is probably uncommon for a
population to remain stably subdivided, both in the sizes of demes and in the
rates and patterns of migration, for long enough to reach equilibrium. One
of the earliest tenets to emerge from phylogeographic studies is that most
species appear to have experienced dramatic shifts in demography over time
and space (Avise 1989). Confining ourselves for the moment to models with
discrete demes, the polar opposite of equilibrium migration is isolation and
divergence without genetic exchange. This isolation model posits an ancestral
population that splitsinto two descendant populations at some time, Tj, in the
past and after that time the two populations do not exchange migrants. The
isolation model can be compared with the migration model in Section 10.4.3
to illustrate the striking differences between equilibrium and nonequilibrium
population subdivision.

In general, each population in the isolation model might be of a different
size. and we would have 8 = 4Ny, 0a = 4 Now, and #, = 4 Nju as parameters
(Wakeley and Hey 1 997). However, for purposes of comparison with the equi-
librium migration model of Section 10.4.3, we assume that 6 =t = f4. In
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this case, the average numbers of pairwise differences within and between
demes have expected values

E(m,) =0 (10.4)
E(m) = 6(1+ 1p) (10.5)

(Li 1977). Aside from a constant scaling factor (D), equilibrium migration and
isolation without gene flow make identical predictions about average levels
of genetic variation within and between demes where Ty = 1/(2M). In other
words, if 7, and m, are measured from data, then both models could be fit
and their parameters estimated, but i, and 7, would not serve to distinguish
between migration and isolation. The most obvious difference between the
two models is in the interpretation of the pattern of polymorphism. Under the
isolation model, genetic variation between demes in a sample is a snapshot for
a particular Tp. If the population were sampled again ata later date, Ty + T,
the level of divergence would be greater. Equation 10.3, in contrast, holds for
all time, and represents a dynamic balance achieved between ongoing genetic
drift and migration.

In addition to this difference in interpretation, variation in levels of ge-
netic variation among loci will be different under migration and isolation
even when the average levels are the same (Li 1976, 1977, Takahata and Nel
1085, Wakeley 1996a). The variances are larger under migration than under
isolation, and the difference grows with 7p = 1/(2M). This results from the
fact that under migration, coalescent events between samples from different
demes can occur at any time, mediated by migration, whereas under isolation
there can be no interdeme coalescent events until the lineages trace back into
the ancestral population. In the extreme of a very long divergence time in the
isolation model (Tp > 1), difference between E(m,) and 6T will be negli-
gible. In this case the distribution of the number of segregating sites among
loci will approach a Poisson distribution, with mean and variance equal to
#Ty. In contrast, in the extreme of a very low migration rate in the migration
model, the variance of the number of segregating sites among loci will be
much greater than the mean (Wakeley 1996a). Thus, the trees for two inde-
pendent loci under isolation in Figure 10.2(d) are more similar in size than
those shown in Figure 10.2(c) for migration. Equilibrium migration and iso-
lation without gene flow share the prediction that genealogical trees will tend
towards reciprocal monophyly, and this is also displayed in Figure 10.2(d).

10.5 Domains of application: coalescents and phylogeography

The above discussion illustrates some general principles about the effect of
population structure and population history on the sizes and shapes of ge-
nealogies. To summarize:
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1. population growth/decline tends to decrease/increase variation in tree size
among loci but does not affect variation in tree shape relative to the standard
coalescent model,

2. both equilibrium and nonequilibrium population subdivision (migration vs.
isolation above) alter the structure of genealogies such that gencalogies at in-
dependently segregating loci will tend to share topological features, and

3. migration increases variation in tree size among loci whereas isolation decreases
it.

This section investigates how the strengths of these trends depend on the
parameters of a population. The goal is to identify population histories for
which the analysis of single gene genealogies is likely to be fruitful and those
for which it will be less useful to refer to any specific genealogy. Simulations
are used to determine the distribution of tree size and shape among loci. The
parameters are those discussed above in Section 10.4 and the quantities used
to measure variation in the size and shape of genealogies are described below.

10.5.1 Measures of variation in tree size

The most straightforward measure of the size of a genealogy is the number of
segregating sites, 5. A sample from any population will have some expected
value of S and some variance. For example, in the case of a sample of n
sequences under the standard, constant size, unstructured coalescent with
infinite-sites mutation,

=1

E(S) _92— (10.6)

i=1
n—1 n— 1 1
V(S) _HZ: TGN — (10.7)
i=1 v =] #
(Watterson 1975). When we sample a large number of loci, we should find
that the mean and variance among them would conform to Equations 10.6
and 10.7. This, of course, assumes that the sample size, n, and the mutation
parameter, 6, are the same at every locus. However, this assumption is made
only as a matter of convenience in comparing different population structures
and histories below; it would be straightforward to allow for differences in 6
and n among loci.
There are many ways in which we could compare levels of variation in S,
our measure of tree size, among loci. The standardized measure,

_V(§-=S$
V()

(10.8)

will be used here, in which S is the average number of segregating sites and
V(S) is the observed variance of § among loci. Given a multilocus data set, €
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is easy to compute. The expectation of © is given approximately by

V(S) —E(S
.. 1/(5)( )

The number of segregating sites, S, is a compound random variable (see
Section 10.3). Thus we can intuitively partition V(S) into contributions due
(1) tovariation in tree size and (2) to variation in the mutation process. Ifthere
is no variation in the size of genealogies among loci, then all of the variation in
Swill be due to the Poisson mutation process and the expected value of €2 will
be zero. Instead, if the variation in tree size among loci is much greater than
the mean, then V(S) will be large and Q will be close to its upper bound of
one. Thus, € is a normalized measure which can be compared under different
assumptions about the population. Our null model, the standard coalescent,
predicts a fairly high value of €, depending of course on 6 and n. If 6 = 10
and n = 20, which are the values used in simulations below, Equation 10.9
gives E(2) = 0.82.

(10.9)

10.5.2 Measures of correlation in branching pattern

There is also a multitude of ways we could compare genealogical topologies
among loci. If we knew the true trees or if we were very confident about our
trees reconstructed from data, then we could use a tree comparison metric
like that of Robinson and Foulds (1981). Alternatively, if we are not confi-
dent about our reconstructed trees or do not wish to make explicit reference
to them, we could use some measure of the correlation in haplotype pat-
terns among loci such as coefficient of linkage disequilibrium (Lewontin and
Kojima 1960). This measures gametic associations between alleles at two loci,
but multilocus statistics are also possible (Smouse 1974). Here, because of the
focus on simple two-deme models of subdivision, we will instead consider the
co-occurrence of identical data partitions among loci, that is the observation of
identical patterns of polymorphism among members of the sample at several
loci. This presupposes that the same individuals were assayed at all genetic
loci.

Assuming that the infinite-sites mutation model holds, each polymorphic
site in a sample divides the members of the sample into two groups, ones
which retain the ancestral base at the site and ones which have inherited
the mutant base. As noted in Section 10.3, the one-to-one correspondence
between mutation events and polymorphic sites in the sample, and the ob-
servation of a pattern in the data guarantee the existence of a branch in the
genealogy of the sample, one that divides the sample exactly as the polymor-
phism does. For example, a mutation event on the shortest internal branch
in the genealogy in Figure 10.1, the one which exists only during f, would
make a polymorphic site at which samples E, I, and G would show the mu-
tant base and samples A, B, C, D, H, and I would show the ancestral base.
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In the standard coalescent model, we would not expect to see this pattern
repeated at another, independent locus sequenced in the same individuals
because the fraction of random-bifurcating trees that contain such a branch
is very small. However, all genealogies contain n external branches, on which
singleton polymorphisms can arise, so we would expect to see these partitions,
i.e., all n kinds of singletons, repeated at many loci. Thus, there is a negative
correlation between the allele frequency ata polymorphic site and the chance
that the same pattern will be found at other loci.

In a sample from a subdivided population, we expect sites which divide
the sequences along deme-sample lines to tend to be repeated at multiple
loci. There might be a fairly low overall concordance of whole tree topologies
among loci, because of the variability of within-deme patterns of common
ancestry, but some branches would tend to be repeated. For the simple two-
deme models considered here, these repeated branches will be the ones that
divide the sample into the ny and ne sequences sampled from demes one and
two. A statistic that will be sensitive to the co-occurrence of single partitions
across loci is max(p;), in which p; is the fraction of loci that show at least one
polymorphic site with partition i. Singleton partitions are excluded in the
calculation of max( p;) because all loci are expected to show these regardless
of population structure and history. This measure will be sensitive to the effects
of subdivision as it is modeled here. As the level of subdivision increases, the
partition most frequently observed across loci will be the one that corresponds
exactly to the two demes’ samples, and max( p;) will approach one. We take the
null distribution of max( ;) to be that found under the standard coalescent.
This will depend on the sample size and on 6. For# = 10 and n = 20, used in
the simulations below, the standard coalescent gives max( ;) ~ 0.04.

10.5.3 Simulations of population structure and population history

The usual coalescent simulations were performed (Hudson 1990), adding
a change in size, cf. Hudson (1990), or migration/isolation, cf. Wakeley
(1996b), as indicated. The statistics  and max( p;) were computed for each
simulation replicate. In addition to simulations under the standard coales-
cent model, a small set of parameter values was chosen to illustrate the
effects of population structure and population history on the joint distri-
bution of  and max(p;). The sample size was n= 20 when there was no
structure, and n; = ne = 10 under migration and isolation. Only one case
each of growth and decline is presented: (6 = 100.0, Q = 0.01, 7 = 0.1)
and (0 = 0.25, Q= 100.0, 7. = 0.1). These were selected to represent ex-
treme growth and extreme decline respectively, and the values of 6 were
chosen so that the average number of polymorphic sites per locus would be
the same under both models. Several levels of subdivision were investigated
for equilibrium migration and isolation without gene flow. Under migration
these were M = 0.5, 0.25, 0.01 with 6 = 5.0, and under isolation they were
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Figure 10.3. The results of the simulations described in the text. Each pointin the scatterplot
is the pair of (max(p;), Q) values for a single simulation replicate.

Tp = 1.0, 2.0, 50.0 with @ = 10.0. These parameter sets were chosen in con-
sideration of Equations 10.2 through 10.5, so that the expected numbers of
pairwise differences within and between the two demes would be equivalent
in the two models for three different levels of differentiation. One hundred
independent loci were surveyed in the sampled individuals.

The results are shown in Figure 10.3. Only ten simulation replicates were
performed for each set of parameters, as this was enough to distinguish the
cases, and the results of all replicates are plotted in Figure 10.3. Simulations
under the standard coalescent model cluster around the values 2 = 0.82 and
max( p;) =~ 0.04 mentioned above. Under population growth and decline, the
qalue of max( p;) is nearly unchanged from the constantsize case, but the
value of  changes drastically. This accords well with the discussion in Section
10.4 above. The minor differences in max( p;) between these and the standard
coalescent result from the fact that singleton polymorphisms are ignored in
computing max( p;), and there are a lot more singletons under population
growth than under population decline. This is essentially the same as the
mutation rate effect on € that can be seen for the standard coalescent from
Equations 10.6 and 10.7; as 6 grows, so does the expected value of €. In
sum, under this model of dramatic growth we expect the size of even a single
genecalogy to accurately represent the history of the population but, because
there is no structure to the population, the topology of the tree contains little
or no information about historical demography. Under decline, neither the
size nor the shape of a single genealogy will be informative about history.

Subdivided populations vary both in € and in max(p;). Under both
equilibrium and nonequilibrium subdivision, the repetition of genealogical



210 John Wakeley

topologies across loci provides information about the structure of the pop-
ulation. That is, migration and isolation converge on max( ;) = 1 when M
becomes small and 7)) becomes large, respectively. Two interesting aspects of
this are evident in Figure 10.3. First, the rates of convergence to this extreme
are different under migration and isolation. For example, when we expect
the average number of pairwise differences between demes to be twice as
big as that within demes (M = 0.5 or T = 1.0; see Equations 10.2 to 10.5),
simulations give max( ;) =~ 0.18 under migration and max(p;) ~0.45 under
isolation. This is expected from previous work on genealogical topologies un-
der the two models (Tajima 1983, Takahata and Slatkin 1990, Wakeley 1996b).
In the present context it means that, other things being equal, single gene
trees will be more informative about population structure under isolation than
under migration. The second point is related to this; that is, subdivision has
to be quite strong under migration for max( p;) to approach one. Even when
the average number of pairwise differences between demes is b0 times that
within demes, about four out of 100 loci will not show the (n;. ne) partition
that defines the samples. That equilibrium migration is a highly variable pro-
cess can also be seen in values for €, which approach one as M decreases. In
contrast, as 7p increases between two isolated demes, 2 decreases, but a very
long divergence time is required for € to be close to zero.

The measures Q and max( p;) appear to distinguish well among the models.
In addition, they serve to illustrate how single gene trees might or might not
be representative of population structure and population history in terms of
the parameters of the models. The broad empty area of Figure 10.3, for lower
values of  and intermediate values of max( p;), is an artifact of the simplicity
of the models considered here. Populations that follow the isolation model
but have a small value of 84 relative to 6 and #y can produce values in this
range.

10.6 Conclusions

While reconstructing a genealogy is not a necessary step in population ge-
netic inference, it can be quite informative under some circumstances. There
is a difference of approach in this regard between workers who use coales-
cent techniques and those who practise intraspecific phylogeography. While
this dichotomy is far from complete, it is real enough. Coalescent technicians
do not usually make reference to particular gene trees. This is part of the
culture of coalescents: that gene trees are unobservable random quantities
which certainly shape genetic variation but whose branching patterns do not
contain much information about population history. This view is most rea-
sonable when populations conform to the standard coalescent model. When
trees are referred to explicitly, it is typical to “integrate” over them in mak-
ing inferences (Kuhner el al. 1995, Grifiths and Tavaré 1996). In contrast,
the first step in a phylogeographic analysis is to reconstruct a gene tree from
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data, and inferences are based upon this inferred tree. This sensibility about
the significance of inferred trees was received and adapted from the field of
phylogenetics. At the intraspecific level, roughly speaking, the circumstances
favorable to using inferred gene trees are those in which random genetic
drift is relatively unimportant compared with nonequilibrium factors like the
splitting of populations.

Only the simplest nonequilibrium model was considered here: a single
population that split into two isolated demes at some time in the past. This
kind of history has the qualities necessary for the single-tree approach to be
most fruitful; that is, small  and large max( p;) . However, most of the branches
in the genealogies under this model, those for the intrademe patterns of
common ancestry, will be discordant among loci. A more ideal scenario for
the single-gene-tree approach is the stepping-stone model of range expansion
considered by Slatkin (1993), which is a history of multiple isolation events. If
asingle sample was taken from each subpopulation, then we might expect the
population tree to be reproduced at many loci. Of course, this too will depend
upon the population splits being separated enough in time for the effect of
drift to be negligible. Otherwise, even without migration, a gene tree may be
different from the population tree (Neigel and Avise 1986, Pamilo and Nei
1988). This will be an issue as well for continuously distributed populations
that have undergone range expansions; the movement ol individuals will have
to be restricted for historical structure to be evident in gene tree topologies.

This treatment has assumed no recombination within loci and [ree recom-
bination between loci. Intralocus recombination will decouple sites” histories.
Multiple genealogies will be realized in the history of a single locus and these
will be correlated along the sequence (Hudson 1983a, Kaplan and Hudson
1985). Restricted interlocus recombination will make genealogies across sam-
pled loci correlated. Both of these processes should tend to increase max( ;).
Intralocus recombination increases the number of chances a locus has to re-
alize a given partition, and restricted recombination between loci will cause
branches to be shared across loci. They should have opposite effects on €2,
though. Intralocus recombination will lower the variation in tree sizes be-
cause there will be more independence among sites. The increased corre-
lation among loci caused by restricted interlocus recombination, conversely,
will increase the variance of tree size. Intralocus recombination is quite prob-
lematic for inferred gene-tree approaches since the genealogy is no longer a
bifurcating tree (Hein 1993). It also represents a significant computational
hurdle to coalescent inference methods which make explicit use of linkage
patterns (Grifiths and Marjoram 1996).

The entire field of population genetics will benefit from increased ex-
change between coalescents and phylogeography. There is growing overlap
already. On the one hand, the importance of coalescent approaches is ev-
ident in Avise's (2000) book about phylogeography. On the other, one of
the currently most used coalescent inference programs, GENETREE (Bahlo
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and Grifiths 2000), produces an inferred genealogy. The future availability
of multilocus genetic data will serve as a further bridge between these two
approaches.
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