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ABSTRACT
We show that the unstructured ancestral selection graph applies to part of the history of a sample from

a population structured by restricted migration among subpopulations, or demes. The result holds in the
limit as the number of demes tends to infinity with proportionately weak selection, and we have also made
the assumptions of island-type migration and that demes are equivalent in size. After an instantaneous
sample-size adjustment, this structured ancestral selection graph converges to an unstructured ancestral
selection graph with a mutation parameter that depends inversely on the migration rate. In contrast, the
selection parameter for the population is independent of the migration rate and is identical to the selection
parameter in an unstructured population. We show analytically that estimators of the migration rate, based
on pairwise sequence differences, derived under the assumption of neutrality should perform equally well
in the presence of weak selection. We also modify an algorithm for simulating genealogies conditional
on the frequencies of two selected alleles in a sample. This permits efficient simulation of stronger selection
than was previously possible. Using this new algorithm, we simulate gene genealogies under the many-
demes ancestral selection graph and identify some situations in which migration has a strong effect on
the time to the most recent common ancestor of the sample. We find that a similar effect also increases
the sensitivity of the genealogy to selection.

KIMURA (1983) strongly promoted the idea that the Hudson (1983), and Tajima (1983). The reason for
abundant genetic variation seen in nearly every spe- this is clear: it is much simpler to predict the frequencies

cies studied must be neutral. Ohta and Kimura (1971) of selected alleles using diffusion theory than using the
suggested a less strict version of this in which polymor- backward-time approach of the coalescent. For neutral
phisms are explained by the constant input of nearly loci, the coalescent provides a simple and useful descrip-
neutral mutations, i.e., variants with selective advantages tion of the genetic ancestry of a sample of genetic data—
or disadvantages smaller than the reciprocal of the pop- the genealogy for short—from a large well-mixed, or pan-
ulation size. After a great deal of debate and many analy- mictic, population of constant size through time. Due to
ses, summarized in Golding (1994), there are now few the close connection between genealogies and genetic
adherents to the strict neutral mutation hypothesis. Mo- data, and to the ease with which genealogies can be sim-
lecular techniques currently allow huge numbers of ulated, a growing set of computational tools use the coales-
polymorphisms to be assayed with relative ease, and the cent to make inferences about population history from
resulting genomic data can be used to estimate the DNA sequences; see Stephens (2001) and Tavaré (2004)
strength of selection associated with genetic differences for reviews.
(Sawyer and Hartl 1992; Bustamante et al. 2002). The coalescent is robust to many kinds of deviations
Recent statistical inferences made from such data em- from its underlying assumptions (Kingman 1982b; Möhle
phasize the importance of selection and show that selec- 1998c), but it does not hold when members of the sam-
tive advantages or disadvantages on the order of the ple, or the ancestral lineages of the sample, are not
reciprocal of the population size may be fairly common exchangeable. In fact, the relative simplicity of the neu-
(Sawyer et al. 2003). tral coalescent process flows directly from the exchange-

The methods used in these works to estimate selection ability of the lineages. Exchangeability, which results
parameters from intraspecific genomic data rely on pre-

in the model from the assumptions of neutrality and
dictions of sample allele frequencies derived from for-

panmixia, means that the statistical properties of a sam-ward-time diffusion theory. They do not use the ances-
ple do not depend on how the sampled items are labeledtral genetic process known as the coalescent, which was
(Kingman 1982b; Aldous 1985). Possible “labels” in-introduced in the early 1980s by Kingman (1982a,b),
clude the geographic locations where the samples were
collected or the allelic states of the samples if these are
known. When samples are not exchangeable, a related1Corresponding author: School of Mathematical Sciences, University

of Adelaide, SA 5005, Australia. E-mail: paul.slade@adelaide.edu.au but more complicated model called the stuctured coa-
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lescent exists (Slatkin 1987; Strobeck 1987; Noto- able to identify cases in which simple models may be
applied even though the underlying dynamics appearhara 1990; Wilkinson-Herbots 1998), and computa-

tional methods of inference are being developed for complicated. We present a rigorous derivation of the
ASG with very many demes (subpopulations) in an is-this model as well (Nath and Griffiths 1996; Beerli

and Felsenstein 1999, 2001; Bahlo and Griffiths land model of migration (Wright 1931) and show that
it possesses a simple structure akin to that under neutral-2000; De Iorio and Griffiths 2004).

Genealogies in the presence of strong selection, i.e., ity (Wakeley 1998). Five parameters collapse into just
three (one each for migration, selection, and mutation)with selective advantages or disadvantages much greater

than the reciprocal of the population size, can be mod- in the limit as the number of demes tends to infinity.
Interestingly, the population rates of selection and mu-eled using the structured coalescent with the subdivi-

sions being the alternative alleles (Kaplan et al. 1988, tation scale differently (see below) in the presence of
population subdivision. This was found previously in1989). For weak selection, Krone and Neuhauser

(1997) and Neuhauser and Krone (1997) showed that forward-time analyses (Wakeley 2003; Wakeley and
Takahashi 2004), but the result is more intuitive in thethe genealogy of a sample taken at random with respect

to allelic variation is described by an exchangeable an- present case. We also describe a newly enhanced process
for the simulation of genealogies conditional on thecestral process. The ancestral selection graph (ASG) is

a branching-coalescing random graph within which the frequencies of alleles in the sample. We show using con-
ditional simulations that population subdivision and mi-simple, bifurcating genealogy of a sample is embedded.

The elegant exchangeability of the ASG comes with a cost: gration among very many demes accentuate the action
of selection on the genealogy.it lends itself only to very computationally intensive tech-

niques. In addition, there appears to be very little about
genealogies in the ASG that differs greatly from genealo-

THEORY
gies under neutrality (Krone and Neuhauser 1997).

For these reasons, and also to be able to control for The structured ancestral selection graph is the ances-
tral process for a class of forward-time models. Followingsampling, recent extensions to the ASG have modeled

genetic ancestry conditional on the frequencies of se- Krone and Neuhauser (1997) we begin by describing
a continuous-time model in which reproduction occurslected alleles in the sample (Slade 2000a,b; Stephens

and Donnelly 2003; Barton et al. 2004). This leads according to the Moran (1958, 1962) model, but where
the population is subdivided into demes (subpopulations)to dramatic improvements in computation time while

preserving some degree of exchangeability among the connected by migration. There are D demes, and in a
general model these might have sizes Ni , i � 1, . . . , D.sampled lineages (Slade 2000a). The conditional simu-

lation of selected genealogies by Slade (2000a,b) en- We assume that each of the � D
i�1Ni lineages in the popu-

lation can be in one of two possible allelic states, A 1ables the timing structure of common ancestry to be
quantified. In contrast to the unconditional ASG, gene- and A 2, with relative rates of reproduction �1 and �2,

respectively. However, as in Krone and Neuhauseralogies conditional upon allele frequencies in the sam-
ple may be either larger or smaller on average than gene- (1997), we begin with a description in which the states of

lineages are not specified and so each lineage undergoesalogies under neutrality (Slade 2000a); see also the review
of Slade and Neuhauser (2003). The extent of these two kinds of reproduction (birth/death) events. Type

2 birth/death events occur with rate �2 � �1 per lineage.differences depends strongly on the initial sample con-
figuration of alleles, particularly for small mutation These represent the action of selection since they are

realized only if the lineage that reproduces is of therates. Under neutrality, samples in which there are ap-
proximately equal numbers of each allele have longer favored allelic type at the time of the event. Type �

birth/death events occur with rate �1 per lineage. Thetimes to common ancestry than more unbalanced sam-
ples. However, the selective effect on genealogies for sam- majority of birth/death events will be of this type, and

they can be thought of as neutral in the sense that theyples in which there are approximately equal numbers of
each allele is greater than that of more unbalanced are realized regardless of the allelic type of the parental

lineage. Note that at this point, without specifiying thesamples. We show that restricted migration can cause
unbalanced samples to be converted to balanced sam- allelic types, lineages are exchangeable within demes

but are not exchangeable between demes. Note alsoples, via the instantaneous sample-size adjustment men-
tioned above, and thus the time to common ancestry that, while this is a model of directional selection, it is

possible to include frequency dependence (Neuhauserunder selection is reduced.
Our purpose is to consider the ASG in the presence 1999) or general diploid selection (Slade 2000a).

Subdivision is mediated by a collection of D � Dof population subdivision and migration. Population
structure is evident in many genetic data sets but model- migration probabilities, mij , for i , j � 1, . . . , D. When

a lineage in deme j reproduces, either by a type � oring it presents difficulties (Slatkin 1985; Avise 2000;
Hey and Machado 2003), creating impediments both by a type 2 event, the individual its offspring will re-

place (i.e., the individual picked to die) is chosen uni-to inference and to understanding. Therefore, it is valu-



1119Many-Demes Ancestral Selection Graph

formly at random from among the Ni lineages in deme Neuhauser (1997) refer to as the percolation diagram.
This is shown in Figure 1 and is the structured analogi with probability mij . With probability 1 � m , where

m � � D
i�1mij , the individual to die is chosen uniformly of Figure 1 in Krone and Neuhauser (1997). Following

a single lineage, either forward or backward in time,at random from within the same deme as the reproduc-
ing individual. As usual in Moran-type models, the indi- 2-arrows are encountered at rate �1sD and �-arrows are

encountered at rate �1. Each arrow has a probability mvidual chosen to reproduce might also be the one cho-
sen to die. Although the model does allow “migration” of connecting to a lineage sampled uniformly at random

from the entire population and probability 1 � m ofback to the same deme (with probability mii) the effect of
this becomes negligible in the large-D limit we consider connecting to a lineage sampled uniformly at random

from the same deme. Thus, there are four kinds ofbelow.
The general model described above forms the basis branches and these appear repeatedly in the history of

every lineage with rates �1(1 � m), �1m, �1sD(1 � m),for a structured ancestral selection graph. This would be
obtained via the usual large-N limit, with D finite, in the and �1sDm . Note that �1 is simply a scaling factor that

specifies the units in which time will be measured; �1 �same way that the structured coalescent is obtained in
the neutral case (Notohara 1990; Wilkinson-Herbots 1 corresponds to the usual notion of measuring time

in generations.1998). That is, we would let N � � D
i�1Ni and assume that

ci � Ni/N, Mij � Nimij , � � �2 � �1, and � � Nu, where The dual or ancestral process is obtained by following
lineages back in time, i.e., up the graph in Figure 1.u is the neutral mutation rate, are all finite as N → ∞,

and time is measured in units of N generations, where Because 2-arrows are realized only if the parental allele
is of the favored type, both lineages must be followeda generation is defined to be �1

�1 time units. Note that
a crucial assumption of the structured coalescent is that in the ancestral process. A single genealogy is obtained,

in the unconditional ancestral process, by tracing lin-migration occurs only between the D demes enumerated
in the initial sample, and the ancestry is therefore always eages back to the ultimate ancestor, assigning its type

from the equilibrium distribution of allele frequenciesrestricted to those particular demes.
We do not pursue this large-N limit here, but instead (see below), and then following lineages forward in

time, with mutation, and trimming off branches appro-consider a limiting ancestral process that approximates
the behavior of a population divided into very many priately (Krone and Neuhauser 1997; Neuhauser and

Krone 1997). Rather than this unconditional ancestraldemes and in which selective differences are small.
Thus, we assume that the sample size is small relative to process, we consider the genealogy of a sample contain-

ing known numbers of different alleles. This leads tothe number of demes in the population, rather than to
the deme size. Historically, migration can take ancestors more efficient simulation of selected genealogies. Using

the conditional approach, it is possible to label ancestralto any deme within the population. This follows recent
coalescent work under the assumption of neutrality lineages as either virtual or real, and it is necessary to

trace lineages back only to the most recent common an-(Wakeley 1998) and work on the forward-time diffu-
sion approximation for allele frequencies in the pres- cestor of the sample, i.e., among the real lineages, rather

than all the way back to the ultimate ancestor (Sladeence of selection (Wakeley 2003; Wakeley and Taka-
hashi 2004). We set �2 � (1 � sD)�1, and we use �1sD 2000a). There is also a minimal representation of the

ancestral process that reduces the number of possiblein place of �2 � �1 for the rate of type 2 birth/death
events below. This corresponds to a model in which events required at each ancestral transition (Slade and

Neuhauser 2003). We describe how this is done in thethere are two alleles, A 1 and A 2, and allele A 2 has fitness
equal to 1 � sD while A 1 has fitness equal to 1. We put present, structured model in methodology.

The essence of the large-D result here, as in the neu-a subscript on the selection coefficient in recognition
of the fact that the limit we seek has Ds (and Du) finite tral case, is that the rates at which events occur that

affect the history of a sample from the population areas D → ∞. Following Lessard and Wakeley (2004), the
large-N, large-D limit can also be studied. Similar limit very different when every lineage is in a separate deme

than when at least one deme contains more than oneresults here require more stringent conditions: roughly,
that D goes to infinity faster than N (see appendix a). lineage. The dependence on D is such that a separation-

of-timescales result applies, as, for example, in MöhleFor simplicity, we assume that migration occurs ac-
cording to Wright’s (1931) island model, but adapted (1998a,b). Because of this, the history of a sample can

be divided into two phases (Wakeley 1999). The firstfor Moran-type reproduction as in Wakeley and Taka-
hashi (2004). That is, we assume that mij � m/D for all is a short scattering phase in which coalescent events

occur between samples from the same deme and migra-i and j , and that Ni � N for all i . Thus, we have a model
in which there are D demes, each of size N, and each tion events in which lineages move to unoccupied demes

(i.e., demes that do not contain any ancestral lineages).of which receives a migrant from the total population
with probability m at each birth/death event. As in the The scattering phase occurs on a fast timescale and be-

comes an instantaneous sample size adjustment in theunstructured ancestral selection graph, it is helpful to
consider a graphical representation, which Krone and limit as D tends to infinity. The scattering phase ends
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Figure 1.—Graphical depiction of the struc-
tured selection process for the case of D � 3
demes.

when all remaining lineages are in different demes. At used to show that the collection of demes is always suf-
ficiently close to 	 that changes in X depend only onthis point, the collecting phase begins in which pairs of

lineages come together into a single deme and coalesce, the ensemble properties E	[K] � � N
k�0k	k � Nx and

Var	[K] � x(1 � x)N 2/(Nm � 1 � m) and that the dif-eventually finding a common ancestor of the entire sam-
ple. The migration events that could be ignored in the fusion of X is identical to the usual unstructured diffu-

sion except that the timescale is increased by the factorscattering phase, i.e., those in which lineages move to oc-
cupied demes, are now essential since a coalescent event 1 � (1 � m)/(Nm) (Wakeley and Takahashi 2004).

By considering overall limiting rates of type � andcan occur only between a pair of lineages if they are in
the same deme. We use the scattering/collecting termi- type 2 birth/death events—which are �1ND and �1sDND

(1 � x), respectively—and conditioning on the numbernology even though we have incorporated selection.
Forward-time analysis: To simulate genealogies in both of copies of allele A1 in the deme where the reproduc-

tion event occurs, it can be shown thatthe conditional and the unconditional ASG, it is neces-
sary to know the equilibrium distribution of the frequen-
cies of A 1 and A 2 in the population. In fact, the ASG is
a model specifically for a sample from such an equilib-
rium population. There will be no equilibrium without
mutation, and here we follow Krone and Neuhauser
(1997) in assuming that there is a probability of muta- X →

⎧
⎪
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎪
⎩

X �
1

ND
with rate �1NDx(1 � x)

Nm
Nm � 1 � m

� �1ND(1 � x)uD�1 � 2x
Nm

Nm � 1 � m �
� O(sDuD)

X �
1

ND
with rate �1NDx(1 � x)(1 � sD)

Nm
Nm � 1 � m

� �1NDxuD�1 � 2(1 � x)
Nm

Nm � 1 � m �
� O(sDuD).

tion uD per birth/death event. We note that asymmetric
mutation can also be accommodated (Slade 2000a).
The forward-time dynamics of allele frequencies in a

(2)subdivided population may be complicated, but in the
case of a large number of demes they are nearly as simple

We letas in an unstructured population (Wakeley 2003). In
a model very similar to the one we consider here, Wake-

�1 �
ND
2 �1 �

1 � m
Nm � (3)ley and Takahashi (2004) showed that the frequencies

of alleles in the total population change according to
and we further assume thata diffusion process that is identical to the diffusion pro-

cess in an unstructured population, only with a different NDsD → � and NDuD[1 � (1 � m)/(Nm)] → �
timescale. Further, as these frequencies change (slowly)

as D → ∞. (4)the collection of demes closely tracks an equilibrium
distribution of allele frequencies. Then, the diffusion process for the frequency of allele

Let the random variable X(t) be the frequency of A 1 has drift parameter a(x) � �(�/2)x(1 � x) �
allele A1 at time t, and let x represent a particular value (�/2)(1 � 2x) and diffusion parameter b(x) � x(1 �
of X(t). Because we consider the limit D → ∞ while DsD x). This process has a unique stationary distribution
and DuD remain finite, mutation and selection do not
appear in the equilibrium h(x) � Bx��1(1 � x)��1e��x, (5)

where B is a normalizing constant; that is, h(x) satisfies
	k � �N

k �� Nmx
1 � m �

(k )
�Nm(1 � x)

1 � m �
(N � k )

�� Nm
1 � m �

(N )

(1)

0 �
1
2

d 2

dx 2
[b(x)h(x)] �

d
dx

[a(x)h(x)] (6)
(Wakeley and Takahashi 2004), which here is the
fraction of demes in the population that contain k copies (Wright 1949; Kimura 1955). With reference to Fig-
of allele A1 and in which a(k) � a(a � 1) · · · (a � k � 1) ure 1, the two-part equilibrium (1) and (5), which pre-
is an ascending factorial. Clearly, the equilibrium vector dicts the distribution of A 1 among demes and across
	 does depend on the frequency of allele A 1 in the total the total population, is what would be observed by as-
population, and this will change over time. However, signing A 1’s and A 2’s to the lineages and then running

the process forward a very long time.Theorem 3.3 of Ethier and Nagylaki (1980) can be
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TABLE 1

The nine possible results of type � and type 2 birth/death events in the history of n lineages currently in n different demes

Rate Event Outcome Magnitude

U1 � �1n(1 � m) �, no migration No change O(1)

U2 � �1nm
D � (n � 1)

D
�, migration to u-deme No change

U3 � �1nm
n � 1

D
1
N

�, migration to o-deme, coalescent Coalescent event O(1/D)

U4 � �1nm
n � 1

D
N � 1

N
�, migration to o-deme, no coalescence Possible coalescent

U5 � �1sDn(1 � m)
1
N

2, no migration, coalescent No change (self-collision)

U6 � �1sDn(1 � m)
N � 1

N
2, no migration, no coalescence Possible branch

U7 � �1sDnm
D � n

D
2, migration to u-deme Branch event

U8 � �1sDnm
n
D

1
N

2, migration to o-deme, coalescent Collision O(1/D 2)

2, migration to o-deme, no coalescence Possible branch
U9 � �1sDnm

n
D

N � 1
N

U-deme and o-deme mean unoccuppied deme and occupied deme, respectively.

The collecting phase: Consider the case in which n coalescence as we follow the history of the sample back
in time.lineages are in, or are sampled from, n different demes.

By tracing the lineages back in time without knowing It is appropriate that we have ignored mutations
above and in Table 1 because here we are dealing withtheir allelic types, we find a simple ancestral process in

the limit D → ∞ and generate an intuitive understanding the unconditional ancestral process. Mutations will oc-
cur with probability uD , 0 
 uD 
 1, at both types offor the different scaling of mutation vs. selection in (4)

and in Wakeley (2003) and Wakeley and Takahashi arrows or reproduction events. Along a single lineage,
they occur with rate �2uD � ND(1 � sD)uD[1 � (1 � m)/(2004). The four kinds of arrows, or reproduction events,

discussed above will be encountered by these n lineages (Nm)]/2, which becomes �/2 in the limit D → ∞. As in
Krone and Neuhauser (1997) and Neuhauser andand will sometimes move them to occupied demes so

that they might coalesce. We can recognize nine possible Krone (1997), we superimpose this mutation process
on the unconditional ancestral process. In the conditionalevents for such a sample, and these are listed in Table 1.

For example, the fourth kind of event is that a �-arrow ancestral process we consider below, it is necessary to treat
mutation, coalescence, and branching simultaneously.takes one of the n lineages to one of the other n � 1

occupied demes but does not connect to the resident When D is large, the first two events in Table 1 will
account for the vast majority of events. These eventsancestral lineage. The result is that now the n lineages,

while still distinct, reside in n � 1 demes. Thus, at the have rates of O(1), which here means that they have a
finite and nonzero limit as D → ∞ for a given �1. It isnext event the two lineages that reside together in one

deme can coalesce. The interpretations of the other easy to see that this is true because the rates of these
events depend on D only through �1. These events areevents in Table 1 are equally straightforward. Note that

the events are categorized according to their effect on lineage switches within and between demes, but ones
that preserve the basic sample structure of n lineagesthe ancestral lineages and also by their probabilities of

occurring with reference to the limit D → ∞ (while in n different demes. They do not change the rates at
which events occur and Table 1 continues to apply.DsD remains finite). As in the unstructured ancestral

selection graph, when a 2-arrow is encountered, both Note that with other kinds of (non-island) population
structure, these events would change the state of thepaths are followed and the lineage splits into two lin-

eages. We are interested in the rates of branching and sample by moving lineages among different types of
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demes (Wakeley and Aliacar 2001). Here, they can where �n
2 � � n(n � 1)/2 and � � NDsD. Again, the first

be ignored due to the symmetry of the island model. two types of events do not change the state of the sample,
The next most numerous events will be events 3–7, and so it is not problematic that their rates become infinite.
these have rates of O(1/D), which means that these It simply means that the ancestral lineages will encoun-
rates will approach zero as D → ∞ for a given �1, but ter many birth/death events before anything of rele-
that their rate of approach to zero will be inversely vance happens to the sample. Event 3 is a coalescent
proportional to D. Again, the limiting process we seek event in which the number of lineages decreases from
is for DsD finite as D → ∞, so that sD is of O(1/D). Four n to n � 1 and these n � 1 lineages are all in different
of these events—3, 4, 6, and 7—do fundamentally alter demes. Event 7 is a branching event, in which case the
the state of the sample. These are migration events to sample goes from n to n � 1 lineages, and a migration
occupied demes, both with and without coalescence, event leaves all n � 1 lineages in different demes. In
and branching events, both with and without a migra- event 4 the number of lineages remains n, but now two
tion event to an unoccupied deme. of them are in the same deme, while in event 6 the

Krone and Neuhauser (1997) and Neuhauser and number of lineages increases to n � 1, and again two
Krone (1997) use the term collision to denote the event are in the same deme. To summarize, the first step that
that an ancestral lineage splits and immediately co- matters in the limiting (D → ∞) process for n lineages
alesces with another ancestral lineage. In the unstruc- in n different demes can be a coalescent event or a
tured ancestral selection graph, all collisions become branching event, but in either case the remaining lin-
negligible in the limit (N → ∞ and D � 1), and it is eages are all in different demes; alternatively it can be
not necessary to distinguish between different kinds of a migration event or a branching event that results in
collisions. Here, because N is finite, some collisions will two lineages residing together in the same deme while
occur with rates comparable to regular coalescent events. the rest are in separate demes.
Event 5 in Table 1 is of this sort and has a rate of O(1/ We note that Equations 13 and 14, correspond to
D). However, event 5 is a collision in which the lineage events that would disrupt the dual process or greatly
splits and then immediately coalesces with itself. Both complicate the branching structure, respectively. The
forward and backward in time, this has no effect. The zero rates with which we have described them above
descendant lineage has the same parent regardless of refer to their instantaneous rates in the limiting process,
whether the parental allele is A 1 and the 2-arrow is not but do not fully reveal that even over the entire graph,
followed or the parental allele is A 2 and the 2-arrow is until the ultimate ancestor is reached, these events will
followed. We refer to this event as a self-collision. Only occur with probability zero in the limit as D → ∞. Proof
self-collisions have the potential to occur with rates com- of this that allows us to omit these events without loss
parable to regular coalescent events. Other kinds of of generality is deferred to appendix a.
collisions, for example, event 8 in Table 1, which in- With the same level of detail as in Table 1, 27 different
cludes some self-collisions, have rates of O(1/D 2). The events can be distinguished for a sample of n lineages
number of occurrences of all events with rates of this in n � 1 demes, i.e., where a single pair resides in one
magnitude is shown later, in appendix a, to be negligi- deme. However, it is unnecessary to distinguish all of
ble in the limiting (D → ∞) process. these, and Table 2 shows them grouped into just four

Now, consider what happens in the limiting process. kinds of events. The important difference from Table 1
By substituting the value of �1 from Equation 3 into the

is that events with rates of O(1) now have the potential
entries of Table 1, the limiting rates become

to affect the state of the sample. The O(1) events in Ta-
ble 2 are a coalescent event between the two lineagesU*1 � lim

D→∞
U1 � ∞ (7)

that share a deme and a migration event that sends one
of these two lineages to an unoccupied deme. The otherU*2 � lim

D→∞
U2 � ∞ (8)

events that can change the sample are of O(1/D) or
smaller, and these are branching events and migration

U*3 � lim
D→∞

U3 � �n
2 � Nm � 1 � m

N
(9) events to occupied demes. These fast events would be

problematic if they were to actually occur in the limiting
process, but whenever a pair of lineages resides in theU*4 � lim

D→∞
U4 � �n

2 � (N � 1)(Nm � 1 � m)
N

(10)
same deme events with rates of O(1) will dominate.
These events, 1 and 2 in Table 2, end with all remaining

U*6 � lim
D→∞

U6 � n
�

2
(1 � m)(N � 1)(Nm � 1 � m)

N 2m lineages in different demes. This guarantees that there
will never be more than one multiply occupied deme
and, that when there is, it will contain just two lineages

(11)

U*7 � lim
D→∞

U7 � n
�

2
Nm � 1 � m

N
(12)

(appendix a). That is, in the limiting process, either a
V1 or a V2 event always preempts a V4 event during theU*8 � lim

D→∞
U8 � 0 (13)

state where precisely one deme contains two lineages.
U*9 � lim

D→∞
U9 � 0, (14)

Once in the resulting state, Table 1 applies and the highest
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TABLE 2

The 27 distinguishable type � and type 2 birth/death events in the history of n lineages
currently in n � 1 different demes, grouped into just four kinds of events

Rate Outcome

V1 � �12m � O(1/D) Migration (n lineages in n demes)

V2 � �12(1 � m)(1/N) � O(1/D) Coalescence (n � 1 lineages in n � 1 demes)

V3 � �1[(n � 2) � 2(1 � m)(N � 1)/N] � O(1/D) No change (n lineages in n � 1 demes)

V4 � �12sD � �1(n � 2)m(n � 2)/D � O(sD /D) Two or more lineages in at least 1 deme

rate events that affect the sample configuration are of U*7 � P2(mig)U*6 � n
�

2
, (18)

O(1/D).
Thus, in a relatively short time, a sample of n lineages

respectively. Therefore, the rates of coalescence andin n � 1 demes will be converted to a sample of k
branching in the limiting (D → ∞) ancestral processlineages in k demes. The value of k depends on whether
become identical to the rates of coalescence anda coalescent event or a migration event occurs. If it is
branching in a panmictic ancestral selection graph, but

a coalescent event, then k � n � 1, and if it is a migration
where time is measured in units of �1 generations. From

event, then k � n. On the timescale above, with �1 �
Equations 3 and 15 we can write �1 � ND/(2P2(mig)).

ND[1 � (1 � m)/(Nm)]/2, these events become instan-
Since we assume that 0 � m 
 1 and N � 1, we have

taneous because their rates approach infinity in the limit 0 � P2(mig) 
 1 and �1 � ND/2. With a migration rate
D → ∞. The result is an instantaneous adjustment that of m � 1, the present model reduces to a panmictic
has two possible outcomes, with probabilities model with timescale �1 � ND/2. Otherwise, the effect

of island-model subdivision is to lengthen the timescale
P2(mig) � lim

D→∞

V1

V1 � V2

�
Nm

Nm � 1 � m
(15) of the ancestral (and the forward-time) process.

Note that the processes of selection and mutation
respond differently to subdivision. Mutation scales withand
�1, while the selection parameter � scales simply with
ND/2. In other words, there are different effective popu-P2(coal) � lim

D→∞

V2

V1 � V2

�
1 � m

Nm � 1 � m
. (16)

lation sizes for selection and for mutation. The effective
size for selection is smaller and is equal to P2(mig) �

This will act as a filter on the four-rate Poisson process Nm/(Nm � 1 � m) times the effective size for mutation.
described by Equations 9–12. Starting with the sample The reason for this is that, when a branching event
of n lineages in n different demes, whenever a migration creates a new lineage in the ancestral process, it has a
event to an occupied deme occurs without immediate P2(coal) � (1 � m)/(Nm � 1 � m) chance of being
coalescence (event 4), there is a chance P2(mig) that erased by a coalescent event, so only P2(mig) of them
the sample will be returned to its original state. The are observable. In the present model, this cancels, ex-
rest of the time, i.e., with probability P2(coal), event 4 is actly, the factor 1/P2(mig) by which the number of
converted to event 3, which is a coalescent event. When- branching events that occur in the limiting process is
ever a branching event occurs where both parents stay increased relative to the number under panmixia. For
in the same deme (event 6), there is a chance P2(coal) the same reason, there is also a difference between the
that it is converted into self-collision, so that the sample scalings for recombination, which splits lineages, and
returns to its original state, and a chance P2(mig) that it mutation in similarly structured populations (Nord-
is converted into an observable branching event (event 7). borg 2000; Lessard and Wakeley 2004).

It is straightforward to show that a Poisson process The scattering phase: The results obtained above ap-
filtered in this way is equivalent to a Poisson process ply to the history of a sample of n lineages in n different
with an adjusted rate; for example, see Wakeley (1999). demes. They follow from the fact that coalescent events
Thus, the probabilities P2(mig) and P2(coal) narrow the within multiply occupied demes and migration events
relevant number of O(1/D) events to just two. Using from multiply occupied demes to unoccupied demes
Equations 9–12, and simplifying, the limiting rates of occur with rates that are D times larger than the rates
coalescence and branching become of branching events and migration events to occupied

demes. Because of this, whenever multiple samples are
U*3 � P2(coal)U*4 � �n

2 � (17) taken from one or more demes, there will be a brief
scattering phase and this will leave the remaining lin-
eages in different demes (cf. Table 2) so that the collect-and
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ing-phase results above apply. The number of lineages with each remaining lineage in a separate deme, E[Y |n
]
is the expected value of Y for a sample of size |n
| in ourthat remain at the end of the scattering phase, and that

then enter the collecting phase, will depend on the rescaled, unstructured, collecting-phase ASG. Below, we
use the framework of Equation 21 both analytically andnumber of coalescent events that occur within the multi-

ply sampled deme or demes. In the limit as D → ∞, the in simulations, where our results are also consistent with
keeping track of allelic configurations during the scat-duration of the scattering phase becomes negligible so

that it can be treated as instantaneous when time is tering phase.
A compression of the Markov process that describesmeasured in proportion to D generations.

Because we have assumed that sD is O(1/D), whereas the conditional evolution of the unstructured ASG is
found. This continuous-time Markov jump chain is anthe rates of within-deme coalescence and migration to

occupied demes depend only on N, m , and the sample extension of the conditional ancestral selection graph
of Slade (2000a) and is derived with new clarity. Thesize(s), the scattering phase here is the same as that in

a population in which all genetic variation is selectively result is a maximal compression of the ancestral selec-
tion graph in which the timing properties of the graphequivalent. As in Wakeley (1998), the scattering phase

for a sample of size n all from a single deme is equivalent are retained. This continues, and improves upon, a sim-
ilar enhancement of the conditional graph by Sladeto a series of n Bernoulli trials with probabilities of

success (2000b) that reduces its branching rate. This is an alter-
native version of the minimal representation of the con-
ditional graph as discussed in Slade and NeuhauserPk(mig) �

�

� � k � 1
, (19)

(2003). Without the timing structure of the graph in
place, results that describe some probabilistic propertiesfor k � 1, 2, . . . , n, and in which � � Nm/(1 � m).
of a single ancestral lineage within the ASG are obtainedNote that k � 2 yields P2(mig) given in Equation 15.
by Fearnhead (2002). The details of our general deriva-Success is defined to be the migration of one of the
tion are deferred to appendix b.lineages to an unoccupied deme, and each of these

The simulations presented in results are performedincreases by one the number of lineages that will enter
using the corresponding adaptation of a computationalthe collecting phase. If we use n
 to denote the number
Monte Carlo method as in Slade (2000a,b). The pur-of lineages that will enter the collecting phase, then
pose of such a simulation scheme is the calculation of
an approximate probability distribution over the realiza-P[n
|n] �

|S(n
 )
n |�n


�(n )

(20)
tions of the genealogy. For a particular genealogy then,
a weight is attributed to its associated time to the mostis its probability function (Wakeley 1998), in which
recent common ancestor (TMRCA), and the weighted aver-the |Sn

(n
 )| are unsigned Stirling numbers of the first kind
age is evaluated upon completion of a large number ofand �(n ) � �(� � 1) · · · (� � n � 1). Finally, the
repetitions. The improved efficiency in having attainedscattering phase occurs independently among demes, so
the maximal compression of the genealogical Markovthat we can multiply the probabilities (20) over samples
chain is substantial; running time until convergencefrom different demes.
that was previously required is now at least fully halved.
The feasibility of at least doubling the branching and

METHODOLOGY mutation rates is also achieved. The performance gets
better still when calculating statistics of the TMRCA distri-We have shown that the ancestry of a sample from a
bution, as it would also do for properties of subtrees ofsubdivided population, with equal deme sizes and is-
the genealogy. Our compression reduces the number ofland-type migration, and in which two alleles are subject
possible transitions required to describe the conditionalto selection and mutation, includes an instantaneous
ASG at any event, from 10 to only 6. Thus, the size ofscattering phase and then enters a collecting phase,
the state space of a realization of the conditional graphwhich is equivalent to the unstructured ASG with muta-
decreases exponentially. Hence, variance of any corre-tion and selection parameters scaled appropriately. This
sponding simulation technique is reduced. Dependingmeans that if Y is any measurement on the sample, such
on the parameter combinations, to produce the com-as the time to common ancestry or the total length
posite PDFs in results with a Pentium 3.06GHz Xeonof the genealogy, we can compute properties of Y by
processor, computing time ranged from a few hours toconditioning on the outcome of the scattering phase.
several days.For example, if E[Y |n] is the expected value of Y for

the sample n � (n1, . . . , nd) of size |n | � � d
i�1ni from d

different demes, then RESULTS

E[Y |n] � �
n


E[Y |n
]P[n
|n], (21) From Equation 21 we can see that simple estimators
of the migration parameter � are as usefull when weak
selection is present as they are when all variation iswhere P[n
|n] is the product of probabilities like (20)

over demes. Because the scattering phase always ends neutral. For example, let q0 and q1 be the probabilities
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of identity in state for samples of size two taken from the collecting phase. Low migration rates yield sample con-
figurations at the start of the collecting phase that con-same deme and from two different demes, respectively.

Taking the scattering phase into account, we have sist of close to d A 1 alleles and d A 2 alleles, provided all
of the d demes initially sampled contained at least one
of each allele. The highest sensitivity to selection there-1 � q0 �

�

� � 1
(1 � q1), (22)

fore is achieved when the population is structured be-
tween very many demes connected by an exceedinglyand if q̂0 and q̂1 are estimates of q0 and q1 from some
low migration rate. Note that this effect is independentdata, then
of whether the initial sample contains mostly the favored
or the unfavored allele.

�

�

� �1 � q̂1

1 � q̂0

� 1 �
�1

(23) To convert a coalescent time unit into years, it is nec-
essary to calculate the product of the (estimated) effec-

is an estimate of � . Note that (23) has the same form tive population size and number of years per repro-
as the various estimators of gene flow based on FST or pair- ductive generation. When the migration rate � � 1 we
wise sequence differences under the assumption of selec- compare the structured model only since according to
tive neutrality; see, for example, Hudson et al. (1992). the factor calculated in theory, 1 � ��1, a coalescent

Neither the unstructured ASG nor our slightly more time unit in the unstructured ASG represents incompa-
complicated structured ASG lends itself to analytical rably fewer numbers of generations. On the other hand,
computations much more involved than the above. when � � 1 there is a meaningful comparison between
From Equation 21 it is clear how analysis of our struc- results with and without very many demes. When � �
tured ASG is related to analysis of the unstructured 0.01 in the structured genealogies (both neutral and
graph. So, for example, it is possible to average such ex- selected) every generation that elapses according to coa-
pressions as Krone and Neuhauser’s (1997) Equation lescent time translates as 100 additional generations
3.5 for the expected time to the ultimate ancestor of in an unstructured genealogy. Population subdivision
the sample over n � |n
| at the start of the collecting magnifies the extent of changes to coalescence times
phase. Instead of this, we have used simulations that and thus immediately accentuates the effect of selection
include the scattering phase and the maximal compres- on genealogical time depth.
sion of the ASG described in appendix b to compute The interaction between migration and selection as
the probability density function of the time to the most it affects the distribution of the conditional TMRCA is
recent common ancestor of a sample (TMRCA). shown in Figures 2 and 3. The mutation rate is set at

In unstructured nonneutral genealogies with small three levels, � � 0.01, 0.1, and 1. Low mutation rates
mutation rates certain sample configurations, among a are appropriate since we consider alleles corresponding
sample of size n, have reduced mean coalescent times to amino acid replacements at a hypothetical nucleotide
when compared to their neutral counterparts, and other site within a single locus. (We note that � � 0.001 yields
sample configurations have enlarged coalescent times a distribution of the TMRCA under neutrality that is ex-
(Slade 2000a; see also Slade and Neuhauser 2003). tremely similar to that obtained for � � 0.01.) The
The mixtures of reduced sample configurations at the selection rate in our three cases is chosen in accordance
start of the collecting phase in the structured model with the weighted average predicted to be operating at
result in novel distributions of the TMRCA under selection. nucleotide sites by Sawyer et. al (2003), namely � � 5
This mixture is the same under neutrality as it is with and 7.5. The migration rate is set to two levels, � �
selection. The effect of the scattering phase under neu- 0.01 in Figure 2 and � � 10 in Figure 3.
trality is governed by the level of mutation in the collect- The probability density function (PDF) for the low
ing phase. Although the sample size is reduced, it can migration rate and low mutation rate case is presented
easily correspond to an increased TMRCA because the ad- in Figure 2A. A substantial change in the shape of the
justed sample configuration requires longer to assimi- PDF is clear under selection. Increasing the mutation
late its ancestors (particularly for low mutation rates). rate, the next lowest migration rate case is shown Fig-

In the unstructured ASG as the mutation rate decreases ure 2B. The extent of the effect of selection appears to
the conditional genealogy becomes more sensitive to diminish at our highest level of the mutation rate in
the presence of selection (Slade 2000a). However, the Figure 2C. The parameters (mean and standard devia-
sample configurations that yield the greatest selective tion) of these distributions are compared in Table 3.
effect are also the samples least likely to be obtained, In the last case just mentioned, we have a particularly
having extremely small sampling probabilities. The sam- novel result as the mean starts to increase again, i.e.,
pling distribution is increasingly U-shaped as � de- toward neutrality, with the selection strength above
creases, and under selection, samples dominated by the some threshold. In both Figure 2 and Table 3 it is as-
favored allele are more likely than those dominated by sumed that samples of size 12 were taken from each of
the unfavored allele. Introducing population subdivi- four demes, and that each of the four samples included
sion makes the most sensitive samples accessible because one copy of allele A1 and 11 copies of allele A2, or (1, 11)

for short.the scattering phase delivers adjusted samples to the
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Figure 3.—PDFs for the TMRCA of a sample of size 48 spread
evenly among four demes, but comparing two sample distribu-
tions of alleles A 1 and A 2: (1, 11) as in Figure 2 and (11, 1).
In all cases, � � 10 and � � 0.1. As in Figure 2, the solid
curve shows the PDF for � � 0; the long-dashed curves, for
� � 5.0; and the short-dashed curves, for � � 7.5.

(11, 1), respectively. The effect on the shape of the
PDFs can be discerned; however, in Table 4 comparisons
of the parameters of the distributions under panmixia
are also shown. With a migration rate as high as � �
10, the effects of many-demes population structure in
Table 4, for both neutral and selected genealogies, can
still be distinguished. In the neutral case (Table 4, left
column), even with the sample size adjustment the mean

Figure 2.—PDFs for the TMRCA of a sample of size 48 spread TMRCA is considerably higher than it is for panmixia.
evenly among four demes and with sample allele counts (1 A 1, Comparing the two rows of Table 4, we can see that this
11 A 2). A–C depict results for three different mutation rates

also reflects the 10% lengthening of the genealogiesas indicated. The migration parameter was � � 0.01, and the
expected when � � 10. The difference in the selectivesolid curve shows the PDF for � � 0; the long-dashed curves,
effect between the two completely different initial sam-for � � 5.0; and the short-dashed curves, for � � 7.5. The

case of � � 0.01 and � � 7.5 could not be completed due to ples is only minor.
prohibitive computational requirements.

DISCUSSION
In contrast, when the migration rate is high the sam-

ple size adjustment is moderate, and the initial sample We have obtained a simple structured ancestral selec-
tion graph in the limit as the number of demes tendsconfigurations show very similar responses to selection.

The PDFs shown in Figure 3, A and B, correspond to to infinity and with island-type migration among demes
of equal size. The result is understood as an approxima-different initial samples within each deme of being

either all (1, 11) of A 1 and A 2 alleles or vice versa all tion to the ancestral process for samples in the presence
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TABLE 3 model (Wakeley 1998). In other words, migration
structures selected variation within and between demesThe means and the standard deviations (in parentheses)
in a way that is identical to the way it structures neutralof the PDFs depicted in Figure 2
variation. This can be seen as a consequence of the fact
that the model applies to 0 � m 
 1 while sD → 0 as�

D → ∞, so that migration is stronger than selection
� 0.0 5.0 7.5 within demes. However, using the improved algorithm
0.01 2.425 (0.361) 2.023 (0.494) — for simulation of selected genealogies conditional on
0.10 2.291 (0.376) 1.998 (0.517) 1.878 (0.414) the frequencies of A1 and A2 in the sample, we have also
1.00 1.888 (0.722) 1.618 (0.804) 1.744 (0.730) shown a strong effect of migration on the TMRCA of some

samples. Namely, limited migration can convert even very
unbalanced samples into balanced ones, e.g., (1, 11) →

of weak selection from populations composed of a large (1, 1), and place the collecting-phase ancestral sample
number of demes. Convergence to the simpler process into the range of samples for which the TMRCA is reduced
occurs due to the difference in timescales between mi- by selection. This happens because there are no muta-
gration and drift within demes on the one hand and se- tions during the scattering phase, while coalescent
lection and mutation across the entire population on the events between like alleles can occur. However, we note
other. Under neutrality, results of this sort can be proven that although unbalanced samples, like (1, 11), within
using the technique developed by Möhle (1998a,b) for demes are more likely to be obtained than balanced
calculating the transition rates of (ancestral) Markov samples, like (6, 6), when the migration rate is small it
processes with a separation of timescales. For ancestries will be even more typical for single-deme samples to be
under weak selection, the framework of birth-death pro- fixed for one allele or the other. This can be seen in
cesses is more appropriate because the addition of new Equation 1, which converges to 	0 � 1 � x and 	N � x
lineages at type 2 branching events increases the dimen- in the limit m → 0.
sionality that would be required in Möhle’s analysis. We We note also that if we had not assumed the mutation
have shown that one can truncate the system by ignoring rate to be small (uD → 0 as D → ∞), we would have
the transitions of very small rates to obtain a closed obtained a neutral limiting graph. When the mutation
approximated system; we then found the correct transi- rate in the ancestral selection graph is infinite the
tion rates in the limiting process were provided by the branching-coalescing structure collapses to a neutral
corresponding calculation. coalescent process (Neuhauser and Krone 1997).

Our analysis does not provide an estimate of the error Allowing mutation in the scattering phase of the struc-
incurred in applying the limiting model to real (i.e., tured ancestral selection graph also yields a neutral (coa-
finite) populations. One way to address this is using sim- lescent) ancestral process, since this would render an
ulations, such as those reported in Lessard and Wakeley infinite mutation rate in the collecting phase. That is,
(2004). In that article, simulations demonstrated the if the mutation probability � is O(1) instead of O(1/D)
rapid convergence of the distribution of the total length then mutation is a fast timescale event and will occur
of the gene genealogy of a sample of size two to that in the scattering phase amid the rapid migration and
predicted by the limiting (D → ∞) ancestral recombina- coalescent events also of O(1). Whenever the process
tion graph with island model migration among demes. switches over to the slower transitions, such as those in
Populations composed of 100 or more demes were Table 1 that are O(1/D), mutation still occurs at a fast
closely approximated by the limiting model. rate and � → ∞, as D → ∞.

It is clear that any quantity of interest can be com- We would like to clarify the case of zero mutation
puted using the framework of Equation 21, that is, by con- rate that leads to a neutral coalescent in the ASG. When
ditioning on the outcome of the scattering phase. In � � 0, ancestors are always of one type only, but in the
fact, in the case of weak selection and mutation consid- dual process 2-arrows occur at a faster rate than �-arrows.

If all ancestors are A 1 only the slower-rate �-arrows areered here, there is a lot of parity with the strictly neutral

TABLE 4

Comparison of the means and the standard deviations (in parentheses) of the TMRCA in
the unstructured ASG to those of the PDFs depicted in Figure 3 rescaled by

the factor 1 � ��1 so that they are measured in the same units

(1, 11) � 4 demes (11, 1) � 4 demes

� � 0 � � 5 � � 7.5 � � 5 � � 7.5

� � 10 2.318 (0.432) 2.195 (0.408) 2.173 (0.377) 2.271 (0.889) 2.165 (0.752)
� → ∞ 2.060 (0.368) 1.986 (0.350) 1.972 (0.330) 2.008 (0.837) 1.918 (0.738)
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APPENDIX A

We first consider a process that omits U 8, U 9, and V4; a branching-coalescing graph results similar to the one
described in theory but without any problematic events. We show that in our original process, each of these three
events will occur with probability zero, by the TUA, in the limit as D → ∞.

Analogously to that of Krone and Neuhauser (1997), for the structured ancestral selection graph with many
demes collisions and such can be ignored. Due to the similarity of the techniques employed to this end we present
an outline of the proof only.

Couple the original limiting ancestral process with another limiting ancestral process that has a higher branching
rate � � �/2. This produces an exact copy of all events in the original process, except for the addition of branching
events that result from the higher rate.

Let Mn denote the maximum number of ancestors that can be present in the graph. Equation 2.4 in Theorem 3
of Griffiths (1991) allows the following calculation, the details of which are apparently new,

P(Mn � ⎣εn⎦) �
�n�2

j�0 ��j j !

�⎣εn⎦�1
j�0 ��j j !




⎧
⎪
⎭
⎫
⎪
⎩

(n � 1)!
(⎣εn⎦ � 1)!

� ⎣εn⎦�n�1 if 0 � � 
 1

(n � 1)!

(⎣εn⎦ � 1)!
� ⎣εn⎦�1 if � � 1,

(A1)

where ⎣x⎦ is the integer part of x and ε � 1 is any constant. The probability above is largest when � � 1, and we
need only consider that case in what follows, without loss of generality. Applying Stirling’s formula, we then have
the following upper bound on the probability in question,

C� ⎣nε⎦ (n � 1)n�1/2

(⎣εn⎦ � 1)⎣εn⎦�1/2
e ⎣εn⎦�n 
 C̃� ⎣εn⎦e ⎣εn⎦�nn�⎣εn⎦�n → 0, (A2)

as n → ∞. One may then deduce the expression given by Griffiths (1991) that Mn/n → 1, in probability, as n →
∞. Furthermore, we know that throughout the graph Mn is bounded above by some constant Kn dependent on n,
but independent of ND and time.

Theorem 4.7.1 in Karlin and Taylor (1975) yields an upper bound on the expected total time until the ultimate
ancestor (TUA). That is, some constant Kn , independent of time and ND, exists such that E(TUA) � Kn. The combination
of events {U 8, U 9} occurs with rate �1sDnm(n/D) in the original ancestral process. Fix a constant 0 � � � 1⁄5 . At most
(ND)� units of time elapse before the ultimate ancestor is found. The number of ancestors in the graph is perpetually
bounded above by (ND)� prior to finding the ultimate ancestor. Therefore, in the dominating coupled limiting
process, the probability of {U 8, U 9} occurring prior to the ultimate ancestor being reached cannot be greater than

(ND)�� �1 �
1 � m

Nm �(ND)�m
D

(ND)� � m�N 3�D�(1�3�) �1 �
1 � m

Nm �, (A3)

the right side of which tends to zero as D → ∞, since � � 1⁄5 .
The other event that could spoil the integrity of the ancestral process with an instantaneous proliferation of

ancestors is V4. Events U4 and U 6 in Table 1 lead to the collection of events in Table 2, {V1, V2, V3, V4}. Note that
since the former occur with a rate O(1/D), instead of O(1), there is a bound on the total number of entries into
the set of V· events that does not depend on D. The event {(U4 � U 6) � V4)} occurs with rate

�1 �mn
n � 1

D
N � 1

N
� (1 � m)sDn

N � 1
N � �

V4

V1 � V2 � V4

. (A4)
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As in the previous paragraph, in the limiting process up until the ultimate ancestor is found, the probability that
an event such as this ever occurs cannot be greater than the following:

(ND)�(m(ND)�((ND)� � 1)(N � 1)/2 � (1 � m)�(ND)�(N � 1)/N)

� �1 �
1 � m

Nm � 2sD � ((ND)� � 2)2(m/D)
2m � 2(1 � m)(1/N) � 2sD � ((ND)� � 2)2(m/D)

. (A5)

One may verify that the expression above does indeed tend to zero as D → ∞, since � � 1⁄5 .
For a finite N there is no need to restrict the migration probability m for our zero limit results to hold. For the

large-N limits, we assume a very small m such that Nm → M as N → ∞. Let us also replace sD by sND � �/(ND) in
(A5). Three limits are separated into two types for us to describe. A limit with respect to both N and D that converges
to zero can be obtained by setting N � D�, where � � (1 � 5�)/(5�). When passing both to the limit, we could
instead allow N � D and fix � � 1⁄10 . After the substitutions just referred to, the limit is then taken with respect to
the single variable represented in the equation, D. There are two iterated limits where we first pass to the limit with
respect to D and then with respect to N, and vice versa. In the former we easily have convergence to zero, as required.
In the latter, D is held constant while N passes to infinity and we find that (A5) would diverge. This is a consequence
of our notation and we address this problem below.

We have already proven a bound on the maximum number of ancestors and on the E(TUA) and that this bound
depends on sample size but is independent of population size ND and time. [See (A2) and Karlin and Taylor’s
theorem.] We have expressed this bound relative to N and D by writing (ND)�. Thus when D is passed to the limit
first (or together with N) this all works out according to (A3) and (A5), and the limits do indeed converge to zero.
That one of the iterated limits corresponding to (A5) diverges, namely as N → ∞ before D, is technically consistent
but violates the earlier proven bounds. This failure of notation indicates that the technique cannot be applied to
the iterated limit of N before D. In that case an expression of the form (Kn)5/D describes its growth as N and then
D are passed to the limit. Thus, we have now ensured eventual convergence to zero of all limits. We have shown
that, over the entire graph until the TUA, the collision probabilities are bounded above by a term O(1/D). These
probabilities then converge to zero in all cases as D → ∞.

APPENDIX B

A realization of the conditional graph can include the exact ancestral relationships that describe the ancestors
involved at each event and the waiting times between events. An arbitrary but fixed order is required among the
ancestors to identify which particular ancestors participate in any event. Combinatorial factors used subsequently
to remove this order among the ancestors are valid provided that the transition probabilities and boundary conditions
are translated accordingly (Slade 2000a). Our formulation here uses an unordered allelic configuration and an
ordered decomposition into real and virtual ancestors.

As the conditional graph evolves backward in time, given an initial sample configuration, branching events add
ancestors to the graph, but these are not actual ancestors of the sample. These virtual ancestors are contained within
the graph for the probabilistic purpose of representing selective evolution and do not belong to the genealogy; the
remaining actual ancestors are real ancestors of the genealogy. Define the pair r � (r 1, r2) as the number of real
ancestors of types A 1 and A 2, respectively. Define also the pair v � (v1, v2) as the number of virtual ancestors of
each allelic type. Then, r 1 � v1 � n1 and r2 � v2 � n 2 . Let ei be the ith unit vector.

The continuous-time Markov jump chain identified in Slade (2000b) makes transitions as

(r, v) →

⎧
⎪
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎪
⎩

(r � ei , v) with rate ri(ri � 1)/ni ,
(r, v � ei) with rate vi(vi � 1 � 2ri)/ni ,

(r � ei � ej , v) with rate �
ni � 1

n
rj/nj ,

(r, v � ei � ej) with rate �
ni � 1

n
vj/nj ,

(r, v � e1) with rate �(n1 � 1)/(n � 1),
(r, v) with rate �n2/n,

(B1)

where n � n1 � n 2, we have factored out n/2 from the above rates, and i, j � 1, 2 for i � j . Now the transitions
just described occur with probabilities given by their relative rates, directly obtained as quotients with the sum of
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the rates in the denominator. The waiting time between transitions is distributed exponentially with a rate parameter

�n2 � � n�/2 � n�/2, when there are n ancestors (in total) in the graph.
Note a null transition that leaves the ancestral configuration unchanged can occur. Events such as these can be

removed with the use of generating functions. Removing an event in the (embedded) Markov chain above does
not, however, filter the entire waiting time by the corresponding factor. The Markov chain contains dependencies
among the set of possible transitions that can occur at any particular time. These dependencies correspond to the
ancestral process and in particular to the percolation diagram as in Figure 1. Each member of the population pro-
duces two types of arrows, as events of independent Poisson processes. That is, these arrows occur independently
of other members of the population and between both types of arrow. The null transition referred to above shows
that certain 2-arrows are ignored and can be omitted from our consideration of the ancestral process. In fact, when
the ancestor in the dual process from which the 2-arrow emanates is known to possess the A 2 allelic type, it is in
effect ignored. (Note that looking forward in time this is then the ancestor hit by the 2-arrow.) That is, no branching
event corresponding to that 2-arrow need occur. This omission is of no consequence for coalescence or mutation
rates, since coalescence corresponds to �-arrows, and mutation occurs on an arrow with probability zero. The adjusted
rate of branching for the new waiting-time distribution is n�/2 � n1/n, the rate of branching in the original graph
multiplied by the proportion of A 1 ancestors in the graph at the time the branching event occurs. The (unconditional)
rate of a generic branching event in the new Markov chain is unchanged since we have simply omitted the null
transition from the original Markov chain.

Consider also a mutation event from a virtual A 1 to a virtual A 2 ancestor; a recursive term is given in Slade and
Neuhauser (2003). However, without the unordering factor, the expression is

n
�

2
n2 � 1

n
v1

n1

q(r, v � e1 � e2) � n
�

2 �v1

n1

q(r, v � e1) �
v1

n
q(r, v)� , (B2)

where q(r, v) is the stationary sampling probability of the marginal allelic configuration (r 1 � v1, r 2 � v2). This
equation shows that the event just described can be separated into two distinct probabilistic components, a coalescent-
type event and another null transition type of event. Operating in reverse to that which removed the null branching
event, add a term v1�/2 to the mutation rate in the waiting-time distribution. This introduces another null mutation
transition to the Markov chain that would occur with this same rate. Thus, in the Markov chain that results, a null
transition occurs with a sum total rate of zero.

Therefore, the minimal continuous-time Markov jump chain that describes the unstructured ASG, and the
collecting phase here, makes transitions as

(r, v1) →

⎧
⎪
⎪
⎨
⎪
⎪
⎩

(r � ei , v1) with rate ri(ri � 1)/ni ,
(r, v1 � 1) with rate v1(v1 � 1 � 2r 1)/n 1 � �v1/n 1 ,

(r � ei � ej , v1) with rate �
ni � 1

n
rj/nj ,

(r, v1 � 1) with rate �(n 1 � 1)/(n � 1),

(B3)

where again we have factored out n/2 from the above rates, and i , j � 1, 2 for i � j . These transitions occur with
probabilities given by their relative rates. Note that the only virtual ancestors that ever exist in this formulation of
the graph are A1. The waiting time between transitions in (B3) is now exponential (�n2 � � n�/2(1 � v1/n) � n1�/2).




