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Many short-lived organisms pass through several generations during favorable growing seasons, separated by inhospitable periods

during which only small hibernating or estivating refugia remain. This induces pronounced seasonal fluctuations in population

size and metapopulation structure. The first generations in the growing season will be characterized by small, relatively isolated

demes whereas the later generations will experience larger deme sizes with more extensive gene flow. Fluctuations of this sort can

induce changes in the amount of genetic variation in early season samples compared to late season samples, a classical example

being the observations of seasonal variation in allelism in New England Drosophila populations by P.T. Ives. In this article, we study

the properties of a structured coalescent process under seasonal fluctuations using numerical analysis of exact state equations,

analytical approximations that rely on a separation of timescales between intrademic versus interdemic processes, and individual-

based simulations. We show that although an increase in genetic variation during each favorable growing season is observed, it

is not as pronounced as in the empirical observations. This suggests that some of the temporal patterns of variation seen by Ives

may be due to selection against deleterious lethals rather than neutral processes.
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The populations of many organisms are subject to seasonal fluctu-

ations. This is particularly true of short-lived, semelparous species

in which individuals forming small refugia populations hibernate

or estivate during inhospitable periods of the year, and subse-

quently emerge to found the first of several generations at the

start of the growing season. Because these founding demes are

small and relatively isolated, gene flow in the first generations will

be limited and local genetic drift will be strong. With abundant

resources during the growing season, the population size of each

deme (consisting of descendants of each refugium) is expected to

increase, and along with it, the extent of dispersal and gene flow

between the demes.

As with many insects in temperate climates, the North Amer-

ican populations of Drosophila melanogaster follow the pattern

above, and serve as a well-studied model organism with seasonal

population dynamics that are in many ways representative of the

model. In a series of publications spanning four decades, P.T. Ives

and his colleagues (e.g., Ives 1945, 1954; Band and Ives 1961;

Ives and Band 1986) undertook a detailed analysis of geographic

and temporal variation of allelism (defined by the frequencies of

distinct segregating lethal alleles) of Drosophila at various loca-

tions in the United States, particularly in the vicinity of South

Amherst, Massachusetts. Among the phenomena observed in the

populations was a decline of allelism for lethals in populations
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sampled just before the first frosts (late autumn in New Eng-

land) when compared to populations sampled in the early spring,

implying a seasonal increase in heterozygosity.

In each population sampled by Ives, lines containing lethal

alleles were identified and crossed with one another to determine

whether the lethal alleles were identical in the F2 generation. This

served as a proxy measure for the degree of allelism, and therefore

the inbreeding coefficient for each deme. Ives discovered that

although the frequency of lethal alleles increased between the

first generations of the early spring to the last generations in the

late fall, allelism declined significantly. For example, populations

surveyed in early June of 1969 showed 16.1% allelism whereas

those sampled in late October had 0.3% allelism (Ives 1970).

The extent of change in allelism varied from year to year (e.g.,

4.9% vs. 0.6% in 1966, 34.1% vs. 4.0% in 1968), but all seasonal

changes in allelism were statistically significant.

Ives interpreted these results in the following way: the in-

crease in lethals and semilethals was primarily a consequence of

the accumulation of new mutations in each generation of the grow-

ing season. Given a generation time of approximately 3 weeks in

Drosophila, there would be up to 10 generations between the

spring and fall in New England and other temperate areas, with

potentially more generations per season in the southern popula-

tions. In addition, this would have been facilitated by population

growth, which would decrease the efficacy of selection against

lethals and semilethals due to reduced inbreeding.

The question of declining allelism could be accounted for

by the life cycle, described above, of adult flies overwintering

in isolated refugia then emerging in the spring to form small

demes. The subsequent generation(s) of flies would suffer from

increased inbreeding, with relatively high levels of lethal allelism.

With each generation in the growing season, the size of each

deme increases (conservatively, by a factor of 2 to 3 in flies).

Larger population sizes lead to increased gene flow for a num-

ber of reasons. First, larger populations exchange a greater ab-

solute number of migrants even if the probability of migration

remains constant. Perhaps more importantly, the migration rates

themselves increase with the size of each deme as its boundary

approaches and starts to overlap with other demes. Furthermore,

larger deme sizes lead to greater population densities, which are

known to induce greater dispersal in organisms as a consequence

of resource competition. In the extreme case, it is reasonable to

assume that toward the end of the growing season, the network of

demes approaches the structure of a single, effectively panmictic

population.

The life cycles of many other organisms in seasonal envi-

ronments may differ from Drosophila in the details. Some may

overwinter as seeds, eggs, or larvae rather than as adults, some

may have longer or shorter generation times, or different values

of intrinsic population growth. However, the general phenomenon

of small refugia leading to isolated but subsequently expanding

and overlapping populations may be quite common for a variety

of organisms in environments where temperature or precipitation

is subject to sharp seasonal changes. Therefore, it is important to

investigate the dynamics of changes in allele frequency induced

by seasonal life cycles, particularly with respect to deviations

from the predictions of commonly used time-homogeneous neu-

tral models.

This article focuses on the degree to which evolution in fluc-

tuating populations differs from conventional neutral models. In

general, models of neutral evolution assume nearly constant popu-

lation size. Because increases in population size or migration rate

in metapopulations may lead to changes in allele frequency that

are not consistent with such neutral models, it is critical to take

these differences into consideration. Otherwise, the changes in

allele frequency distribution induced by the population dynamics

may be spuriously attributed to the action of natural selection.

The analysis below will focus on the coalescence times and

expected heterozygosities that arise as a result of the seasonal

expansion and migration of demes founded from small refugia.

It will be argued based on qualitative comparison with numerical

models that the pronounced differences in allelism (and conse-

quently, of effective population size, inbreeding coefficients, and

heterozygosity) observed by Ives and others appear unlikely to

be a consequence of seasonal fluctuations in population size and

migration rate alone.

In the following section, we present an idealized model of

seasonal metapopulation dynamics that takes into consideration

a number of contingencies in a migration pattern. Because our

interest lies in determining the degree to which seasonal fluctua-

tions lead to deviations from the predictions of the neutral theory

in constant populations, the analysis will emphasize how the ex-

pected coalescence times within and between demes, as well as

intra and interdemic heterozygosity, are influenced by seasonal

variation in deme size and migration rates.

The Model
The population processes we consider can be represented by and

idealized scheme of population growth, seasonal decline, migra-

tion, and mutation in a finite island model (e.g., Wright 1931;

Maruyama 1970a,b). As in a conventional island model, we as-

sume that the demes are equivalent to one another in terms of

both population size and migration rate. In other words, there

is no explicit distance or spatial structure, so that any particular

deme has an equal probability of exchanging a migrant with ev-

ery other deme in the metapopulation. However, in contrast to the

usual island model, here it is assumed that deme sizes and ulti-

mately migration rates are subject to seasonal changes, as shown

schematically in Figure 1.
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Figure 1. The schematic illustrates the population dynamics as-

sumed in the Ives model, in which initially small and isolated

demes expand during the course of a season to form a large

metapopulation network with extensive gene flow between

subpopulations.

In this “Ives model,” there are k generations in every growing

season that are separated by a larger break, due to winter, drought,

or any other environmental condition not conducive to the organ-

ism. For each of the D demes, the population size is set to Ng in

the gth generation, where Ng is assumed to be minimal at g = 1

and maximal at g = k. The migration rate mg is similarly subject

to change across generations, and we typically consider it to be

increasing with population size.

As with the standard structured coalescent models of

metapopulations (Slatkin 1987, 1991; Hey 1991; Wakeley and

Aliacar 2001; Wakeley 2004), the reverse time process for a two

allele sample in a diploid population (taken from the same or dif-

ferent demes) can be conceived in terms of three states. In state

1, the two alleles are in the same deme but are not yet coalesced.

In state 2, the two alleles are in different demes. In state 3, the

two alleles have coalesced, meaning that the most recent common

ancestor of the two alleles in the sample has been reached.

In a metapopulation with D demes, each generation’s process

of coalescence during a “growing season” is a Markov chain

defined by a matrix of the form

M(g) =

⎛⎜⎜⎜⎜⎜⎝
a

(
1 − 1

2Ng

)
1 − a

a

2Ng

b

(
1 − 1

2Ng

)
1 − b

c

2Ng

0 0 1

⎞⎟⎟⎟⎟⎟⎠ (1a)

in which the superscript (g) represents a particular generation

within a season, and mg and Ng are the migration rates and deme

sizes in generation g. The coefficients of the matrix are defined

as

a =
(

(1 − mg)2 + 1

D − 1
m2

g

)
,

b =
(

2mg(1 − mg)
1

D − 1
+ m2

g

D − 2

D − 1

1

D − 1

)
.

As with the standard structured coalescent model, the entries Mij

represent the transition probabilities from state i to state j in the

previous generation.

The entries in the matrix in equation (1a) are derived under

the assumption that migrant individuals cannot return to their

home deme. If members of the migrant pool can do so, we can

obtain the corresponding matrix by substituting mi(D − 1)/D in

place of mi, to account for the fact that only a fraction 1 − 1/D

actually leave the source deme (Latter 1973; Takahata and Nei

1984). Thus

M(g) =

⎛⎜⎜⎜⎜⎜⎝
α

(
1 − 1

2Ng

)
1 − α

α

2Ng

β

(
1 − 1

2Ng

)
1 − β

β

2Ng

0 0 1

⎞⎟⎟⎟⎟⎟⎠ , (1b)

where

α =
(

(1 − mg)2 + 1

D

(
1 − (1 − mg)2

))
,

β = 1

D

(
1 − (1 − mg)2

)
.

Although perhaps not a realistic model for Drosophila dispersal,

the matrix in equation (1b) gives a reasonable description for

organisms with “broadcast” reproduction, such as many plants

and marine invertebrates. Furthermore, the difference between

the matrices in equations (1a) and (1b) is trivial when D is large.

Briefly, the terms in the first matrix rows are defined as

follows: M11 is the probability that two alleles in the same deme

now were also together in one deme in the previous generation,

M12 is the probability that two alleles in the same deme now were

in two different demes in the previous generation, and M13 the

probability that two alleles in the same deme now are derived

from a common ancestor in the previous generation (i.e., they

coalesced). The second row terms define transition probabilities

for alleles currently in different demes, having either come from a

single deme in the previous generation without coalescing, having

been in separate demes, or having coalesced. The factor of 1/D

in equation (1b) represents the probability of that a migrant came

from a particular deme. In the third row, coalescence is defined to

be an absorbing state because we are interested in the ancestry of

the sample only back to the most recent common ancestor.

Samples may be taken in any generation, but it is convenient

to represent the overall process on a seasonal (or annual) rather

than a generational timescale. Thus, time 0 means the end of the

current growing season, and times 1, 2, etc., correspond to the ends

of previous seasons. Over the course of a k-generation growing

season, we have the transition matrix

�D = M(k)M(k−1) · · · M(2)M(1), (2)
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where the subscript D signifies the dependence on the number of

demes. In the Section “Separation of Timescales,” we consider

the limit D → ∞.

The entries of the matrix �D represent the backward-time

transition probabilities over all k generations (one season or one

year) rather than over a single generation. The matrix �D can be

derived by multiplying M(2) M(1) and showing by induction that

the entries shown below describe the dynamics over all k time

steps.

�D =

⎛⎜⎜⎝
�11 �12 �13

�21 �22 �23

0 0 1

⎞⎟⎟⎠ . (3)

Assuming that D is large and ignoring terms of with factors of the

order D−1, the first row transition probabilities are

�11 =
k∏

g=1

(1 − mg)2

(
1 − 1

2Ng

)
+ O(D−1),

�12 =
k∑

g=1

(
1 − (1 − mg)2

) g−1∏
j=1

(1 − m j )
2

(
1 − 1

2N j

)
+ O(D−1),

�13 =
k∑

g=1

(1 − mg)2 1

2Ng

g−1∏
j=1

(1 − m j )
2

(
1 − 1

2N j

)
+ O(D−1).

The interpretation of these leading O(1) terms in the entries of

the first row in �D is as follows: �11 is the probability of no

migration and no coalescence for either alleles in a single deme

sample over k generations, �12 is the probability that a migration

event occurred in some particular generation g but not in any other

generation whereas �13 is the probability that in some particular

generation g of the k, a coalescent event occurred.

For alleles sampled from different demes, the second row

entries are

�21 = 1

D

k∑
g=1

(
1 − (1 − mg)2

) (
1 − 1

2Ng

)

×
g−1∏
j=1

(1 − m j )
2

(
1 − 1

2N j

)
,

�22 = 1 − �21 − �23,

�23 = 1

D

k∑
g=1

(
1 − (1 − mg)2

)( 1

2Ng
+

(
1 − 1

2Ni

)

×
g−1∑
j=1

(1 − m j )
2 1

2N j

g−1∏
r= j+1

(1 − mr )2

(
1 − 1

2Nr

))
.

Note that we keep the O(D−1) terms in the second row of �D.

The terms represent exact transition probabilities, and include

such second-order terms as �23, the coefficient for simultaneous

migration and coalescence. We need to retain these O
(
D−1

)
terms

because the ancestral process depends on samples being able to es-

cape from state 2 so that they can coalesce. This is part of our sep-

aration of timescales argument, which we present in detail below.

The entry �21 gives the probability that a migration event

occurred specifically in the gth generation of the k, such that both

alleles are in the same deme in the previous season but have not

coalesced. �23 is the probability that the two alleles sampled from

different demes coalesce within the span of a single season. This

can occur only if one or both alleles is a migrant in some generation

(hence the sums over g) and the two alleles came from the same

deme (hence the factor 1/D); once in the same deme, the two

alleles either coalesced in that generation (hence the probability

1/2Ng) or in some subsequent generation (hence the sum over j

and product over r). The entry �22, which is most easily computed

as the difference between unity and the remaining terms in this

row, is the probability that two alleles sampled in separate demes

remain so through the duration of k generations. Note that they

are required to remain in separate demes only with respect to one

another; they may migrate.

The transition matrix �D can be greatly simplified if Ng �
1 and mg � 1, for every 1 ≤ g ≤ k (below, we use m and N to mean

any mg and Ng). In this case, all terms of the order m2, m/N , and

N−2 can be ignored. The products then reduce to sums as quadratic

terms are discarded, and we obtain the following approximation

to �D for small migration rates and large population sizes.

�D ≈

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − 2
k∑

g=1

mg −
k∑

g=1

1

2Ng
2

k∑
g=1

mg

k∑
g=1

1

2Ng

2

D

k∑
g=1

mg 1 − 2

D

k∑
g=1

mg 0

0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

(4)

�D is distinct from the standard migration-coalescence approx-

imation matrix insofar as the values mg and Ng may change (e.g.,

increasing in the “Ives model”) from the gth generation to the

next. The reason that the term �23 → 0 is that this transition

involves not only a migration event that brings the two alleles

into one deme (which it has in common with the transition from

state 2 to state 1) but also requires a coalescent event to occur

during that same season. Therefore �23 is approximately N times

smaller than �21, and becomes negligible when N is large. In

other words, when m and 1/N are small, a sample of two alle-

les from different demes must, to first-order approximation, go

through at least two seasonal cycles to coalesce: one for migration

and one for coalescence.

SEPARATION OF TIMESCALES

The exclusion of D−1 terms in the first row and their inclusion

in the second row of equation (4) illustrates a key aspect of the
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ancestral process that emerges when the number of demes is

very large: the separation of timescales into a fast and a slow

component. The slow timescale has a relaxation time proportional

to D/m generations due to �21, whereas the fast timescale has

a relaxation time proportional to N or 1/m generations, due to

the magnitude of the entries in the first row of �D. Recall that

�D gives the dynamics over k generations. The slow dynamics

depend on two alleles being placed (backward in time) into the

same deme (forward in time we would say they came from the

same deme) whereas the fast dynamics involve coalescence for

alleles already in the same deme, and migration that does not

place two allele into the same deme.

We now consider the limit D → ∞, so that this separation

of timescales becomes extreme. The method we use was made

rigorous by Möhle (1998, 2000). Its interpretation for samples of

size two from (time-homogeneous) metapopulations is discussed

in Wakeley (2004, 2008 Ch. 6). The matrix �D in equation (2)

can be decomposed into the sum of two matrices plus some small

errors when D is large. Specifically,

�D = A + 1

D
B + O

(
D−2

)
,

in which the matrices

A = lim
D→∞

�D,

B = lim
D→∞

D (�D − A) ,

specify the dynamics on the fast timescale and the slow timescale,

respectively.

The matrices A and B are messy to write down in general,

but under the assumption that all Ng are sufficiently large and all

mg are sufficiently small, they can be approximated (recall eq. 4).

Thus

A ≈

⎛⎜⎜⎜⎝
1 − 2me − 1

2Ne
2me

1

2Ne

0 1 0

0 0 1

⎞⎟⎟⎟⎠ , (5)

where me and Ne are the effective migration rates and the effec-

tive population sizes, over one whole season, resulting from the

changes in deme size. We have

me =
k∑

g=1

mg, Ne = 1∑k
g=1

1
Ng

.

The effective migration rate is proportional to its arithmetic mean

(multiplied by the number of generations per season), whereas the

effective population size is similarly proportional to the harmonic

mean. The matrix A therefore includes the probabilities of all

events that have a nonnegligible probability of being observed

over the course of a single season.

The matrix defining the slow process, that is, events that

are only likely to be observed on the longer timescale of D/me

seasons, is approximated by

B ≈

⎛⎜⎜⎝
b11 b12 b13

2me −2me 0

0 0 0

⎞⎟⎟⎠ . (6)

Note that the terms in the first row above were omitted in equa-

tion (4). As we show later, their effect on the ancestral process

becomes negligible when D is large. The reason for this is that,

for each of these events, there is a nonnegligible probability in

the first row of the single-season matrix A. For these events,

the entries in A will dominate the ancestral process when D is

large.

We will now derive the matrix that characterizes the ances-

tral process over the long timescale. The result will be heuristic

because we will use A and B as given in equations (5) and (6),

thus employing the large Ne, small me approximation informally,

rather than by taking additional limits. Below, we will test our

results against numerical calculations and simulations.

Because of the fast–slow dynamic, the transitions induced by

A over one season will approach a steady-state distribution when

viewed over the timescale of the slow process (∝ D/me seasons)

when D is large. Thus, the transitions captured in A affect the

ancestral process only via the limiting matrix

P = lim
r→∞ Ar

which gives the net effect of the fast dynamic over the long

timescale. Applying the previous definitions, we have

P =

⎛⎜⎜⎜⎜⎝
0

2me

2me + 1
2Ne

1
2Ne

2me + 1
2Ne

0 1 0

0 0 1

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎝
0 pm pc

0 1 0

0 0 0

⎞⎟⎟⎠ ,

(7)

where pm and pc are, respectively, the probabilities that a sample

in the state 1 (two alleles in the same deme) will enter the slow

process represented by B either in state 2 by a migration event or

in state 3 by a coalescence event. These are also the entries of the

first eigenvector for the transition matrix A. Note that it will take

on the order of (2 me + 1/2 Ne)−1 seasons for either a migration

event or a coalescent event to occur.

It was shown by Möhle (1998) that, given the above de-

composition, time can be rescaled by D and the limit taken so

that

V(t) = lim
D→∞

(�D)Dt = PePBPt (8)
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Figure 2. A comparison of coalescence probabilities computed from our Möhle approximation with those calculated from iteration of

exact matrices over 10 generations, with migration rates and deme sizes in each season given by the vectors m and N (as defined in eqs.

12 and 13). The two lower curves compare the approximate and exact interdemic coalescence times Q23 (solid) versus Q̃23 (dashed). The

two upper curves compare estimated and exact intrademic coalescence times, Q13 (solid) versus Q̃23 (dashed) for the same parameters.

gives the transition probabilities over a time of length t, now

measured in units of D seasons. Taking the product, we have

PBP =

⎛⎜⎜⎝
0 pm (b21 pm + b22) pm (b21 pc + b23)

0 b21 pm + b22 b21 pc + b23

0 0 0

⎞⎟⎟⎠ , (9)

in which the bij terms are the entries of B. It can be seen that this

matrix product, and thus also V(t), depends solely on the second

row terms of B. This is because the slow dynamic principally

consists of the process of waiting for a pair of alleles in different

demes to come together into a single deme whereas other transi-

tions operate on a much faster scale and are summarized by the

matrix P.

In all, from equations (8) and (9), when D is large we may

approximate repeated iterations of the exact transition matrix

� = M(k) · · · M(1) with

V(t) =

⎛⎜⎜⎜⎝
0

4Neme

4Neme + 1
e−t 2me

4Neme+1 1 − 4Neme

4Neme + 1
e−t 2me

4Neme+1

0 e−t 2met
4Neme+1 1 − e−t 2me

4Neme+1

0 0 1

⎞⎟⎟⎟⎠.

(10)

The transition probabilities for some arbitrary generation j within

a season, assuming that t seasons have already elapsed, can be

estimated by the product of the exact matrices for the first j gen-

erations, then using V(t) above. Defining the transition matrices

for the entire season as � (eq. 2) and up to the jth generation as

W( j) = M( j)M( j−1) · · · M(1). (11)

The entries of the exact probability matrix

Q̃( j)(t) = W( j)�t

can be compared to that of our Möhle approximation (which

assumes that D is large, but also that all mg are small and all

Ng are large) weighted by exact transition matrices in the jth

generation,

Q( j)(t) = W( j)V(t).

We made calculations of matrix coefficients over k = 10

generations, with an initial migration rate of 0.001 that increases

to 0.01 in the second generation and subsequently increases arith-

metically over units of 0.005. We assumed D = 100 demes, each

initially containing five diploid individuals, after which the deme

size increases by a factor of 3 in every generation. The vectors

characterizing migration rates and deme sizes over the 10 gener-

ations are thus

m = {0.001, 0.01, 0.015, 0.02, 0.025,

0.03, 0.035, 0.04, 0.045, 0.05}, (12)

N = {5, 15, 45, 135, 405, 1215, 3645, 10935, 32805, 98415}.
(13)

These migration fractions and population size values will be used

in later sections for comparison of predicted coalescence times

and heterozygosities with simulation and numerical results.

The upper curves in Figure 2 compare estimated intrademic

coalescence probabilities Q13 to the exact probabilities computed
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Figure 3. As in Figure 2, but for D = 10 demes, illustrating the greater discrepancy between the analytical estimates and numerical

calculations from the exact model when D is an order of magnitude smaller.

from equation (1), Q̃13, which are plotted for j = 1, . . . , 10 gener-

ations to show their changes during the course of a season. The two

lower curves make the same comparison for coalescence proba-

bilities of interdemic samples, that is, Q23 versus Q̃23. The cal-

culations are done over the 10 generations following t = 200/D,

corresponding to 200 seasons.

As Figure 2 shows, with these m and N, the seasonal fluctua-

tions for intrademic coalescence probabilities Q13 have a range in

magnitude of the order 0.1 whereas those for interdemic samples

Q23 are two orders of magnitude smaller, at 0.001. This is due to

the fact that for an interdemic coalescence to occur, the allele pair

must first have migrated to the same deme, which occurs with a

probability that scales with 1/D and thus is relatively unlikely to

occur in a single season when D is very large (here 100). The tran-

sition probabilities for intrademic samples, on the other hand, are

strongly influenced by the sizes of demes in the current season.

The close correspondence between our Möhle approximation

and the exact transition probabilities under a fluctuating deme

size holds even for the moderately high migration rates and a

very small initial population size, provided that the effective rates

m and N are sufficiently small and large, respectively. The other

critical assumption in the approximation is that D is large enough

to allow a timescale separation between the process of migration

(that takes the sample from state 2 to state 1) and process of

migration and coalescence from state 1. In Figure 3, the same

quantities are compared as in the previous figure, but for only

D = 10 demes. Due to the smaller number of demes, the seasonal

fluctuations in Q23 are more pronounced, being only a single order

of magnitude smaller than those for Q13.

Even though the estimated coalescence probabilities are not

quite as close to the exact values as they were for the 100 deme

population in Figure 2, they still provide reasonable first-order

estimates. With these caveats, we now use our Möhle approx-

imation to compute the expected time to most recent common

ancestors and heterozygosities in a two-allele sample for a struc-

tured coalescent with seasonal fluctuations, that is, for the Ives

model.

Coalescence Times
and Heterozygosity
The entries of the matrix V(t) give the transition probabilities

measured in units of D seasons. The term V 13(t) gives the prob-

ability that an intrademic sample of two alleles has coalesced by

time t (i.e., Dt seasons) in the past, and V 23 gives the same for an

interdemic sample. The probability densities are

βi j (t) = dVi j (t)

dt
,

from which we can compute the expected times to coalescence,

E[T̃w] =
∫ ∞

0
tβ13(t)dt = 2Ne (14a)

for a within-deme sample, and

E[T̃b] =
∫ ∞

0
tβ23(t)dt = 2Ne + 1

2me
(14b)

for a between-deme sample. The second (and higher) moments

of coalescence times can be computed similarly, by integrating

higher powers of t. The expectations in equations (14a, b) have the

same form as those computed from standard models of migration

and drift in Nei and Feldman (1972) and Li (1976), apart from

having effective migration rates and effective population sizes in
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place of constant census values. Note also that a factor of kD is

needed to convert these expected times into generations.

For a sample of two alleles taken at an arbitrary generation

during the growing season, coalescence times must also incorpo-

rate the ancestral process during the season in which the sample

was taken. The expected coalescence times for a sample taken in

generation g within a season can be calculated recursively over

generations using the exact transition matrix M(g). We have

E
[
T (g)

w

] = M (g)
13 + M (g)

12

(
E

[
T (g−1)

b

] + 1
)

+M (g)
11

(
E

[
T (g−1)

w

] + 1
)

,
(15a)

E
[
T (g)

b

] = M (g)
23 + M (g)

22

(
E

[
T (g−1)

b

] + 1
)

+M (g)
21

(
E

[
T (g−1)

w

] + 1
)

,
(15b)

Because time in equations (15a, b) is measured in units of gener-

ations, we have as the recursion base case E[T (0)
w ] = k DE[T̃ (0)

w ]

and E[T (0)
b ] = k DE[T̃ (0)

b ], using the expectations given in equa-

tions (14a, b). The transition probability M (g)
i j is the entry in the

ith row and jth column of M(g), defined by either by equation (1a)

or equation (1b) depending on the mode of migration.

Under the infinite-sites mutation model (Kimura 1969), the

expected number of pairwise differences π is simply the twice

product of the per generation mutation rate μ at the locus and the

number of generations since the two alleles diverged from their

most recent common ancestor. For interdemic and intrademic

samples, respectively, we have

πw(g) = 2μE
[
T (g)

w

]
, πb(g) = 2μE

[
T (g)

b

]
,

which we compare to numerical calculations and simulation re-

sults below.

Under the infinite-alleles mutation model (Kimura and Crow

1964), the relevant measure of neutral genetic variation for a sam-

ple of size two is the probability of identity by descent (IBD).

Following the notation above, the probabilities of IBD for intra-

demic samples and interdemic samples are denoted F w and Fb.

These quantities can be computed using our Möhle-approximation

transition matrix in equation (10). For an intrademic sample, we

have

Fw = 1

4Neme + 1
+ 4Neme

4Neme + 1

∫ ∞

0
e−2μe Dtβ23(t)dt

= 4DNemeμe

4DNemeμe + Dμe + me
, (16a)

where we use μe = kμ to denote the mutation rate over an en-

tire season, which we assume is small. The term 1/(4Neme +
1) in the first line is the probability of coalescence rather than mi-

gration for an intrademic sample, or P1,3 = pc in equation (7). It

captures the fact that on the timescale of D seasons, an intrademic

sample may coalesce essentially instantaneously, only entering

the slow process in the case of migration rather than coalescence.

Note that this term, 1/(4Neme + 1), does not include mutation.

Thus, because the duration of the fast phase of the ancestry of

an intrademic sample will be on the order of (2me + 1/2Ne)−1

generations, we have assumed implicitly above that μe �
(2me + 1/2Ne)−1. For any given μe, me, Ne, and D, equation

(16a) will be involve some level of error, which we illustrate using

numerical calculations and simulation results below. Interdemic

samples enter the slow process directly, and we obtain

Fb =
∫ ∞

0
e−2μe Dtβ23(t)dt = me

4DNemeμe + Dμe + me
.

(16b)

by integrating the probability density of interdemic coalescence.

An independent, heuristic confirmation of these results can

be obtained by solving for the expected heterozygosities from

a single generation structured coalescent (e.g., Hudson 1991,

1998) and substituting effective migration rates, mutation rates,

and deme sizes,

Hw = 2μe

2μe + 2me + 1
2Ne

+ 2me
1
D

2μe + 2m + 1
2Ne

Hw

+ 2m D−1
D

2μe + 2m + 1
2Ne

Hb,

Hb = 2μe

2μe + 2me
+

2me
D (D − 1)

2μ + 2me
Hb +

2me
D

2μ + 2me
Hw.

Solving and substituting, we obtain

Hw = 4DNemeμe + 4DNeμ
2
e

4DNemeμe + Dμe + me + 4DNeμ2
e

(17a)

Hb = 4DNemeμe + Dμe + 4DNeμ
2
e

4DNemeμe + Dμe + me + 4DNeμ2
e

, (17b)

which become equivalent to equations (16a, b) if one discards

terms with factors with μ2
e , and also using H w = 1 − F w and

Hb = 1 − Fb.

As with the coalescence times, the probabilities of IBD com-

puted over the long timescale can be weighted by the transition

probabilities in a given generation. The recursions for generation

g are the weighted IBD values, multiplied by the probability of

no mutation in the previous generation, so that

F (g)
w = (1 − μ)2g M (g)

13 + M (g)
12 F (g−1)

b + M (g)
11 F (g−1)

w , (18a)

F (g)
b = (1 − μ)2g M (g)

23 + M (g)
22 F (g−1)

b + M (g)
21 F (g−1)

w , (18b)

where the first term is the probability that no mutations have

occurred during the first g generations of the season in which
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the samples were taken. The heterozygosities for generation g

are given by H (g)
w = 1 − F (g)

w and H (g)
b = 1 − F (g)

b . From the

intrademic and interdemic heterozygosities, one can also estimate

the degree of population subdivision using the fixation index FST

(Wright 1951) for generation g, similarly to what has been done

in island models with constant population size and migration

rates (e.g., Crow and Aoki 1984; Whitlock and McCauley 1999;

Rottenstreich et al. 2007).

The expressions for heterozygosities and coalescence times

in terms of mutation and migration rates (scaled over a season), ef-

fective population sizes, and numbers of demes, provides us with

the tools for comparing the properties of coalescent processes

in seasonally fluctuating populations to those of null models. In

the following section, we will compute these values for metapop-

ulations with varying degrees of seasonal fluctuation to assess

whether the seasonality imposes significant deviations from the

simple predictions of neutral theory.

Model Populations: Numerical
Analysis
In the numerical examples analyzed below, we are not attempting

to replicate the population dynamics in temperate Drosophila or

any other particular system. In any case, the natural history of fruit

fly populations in the wild is not sufficiently well known to pro-

vide anything beyond extremely rough guesses for the parameters

of interest. Instead, we wish to examine the degree to which co-

alescence times and heterozygosities in model populations show

seasonal changes that are qualitatively consistent with empirical

observations, that is, whether the magnitude of fluctuations in al-

lelism observed by Ives can be plausibly replicated in the absence

of natural selection by changes in the migration rates and deme

sizes alone.

To model seasonal fluctuations, we begin with D = 100

refugia and use the values of m and N given in equations (12)

and (13). Each deme emerges with N = 5 diploid organisms.

From one generation to the next, the deme size is assumed to

grow geometrically by a factor of R = 3. Geometric increase is

plausible for population growth, but it is much less clear how

migration rates should changes through the season. Migration

rates might depend on a number of ecological variables, such as

increased dispersal due to density-dependent competition, or as a

consequence of increased gene flow due to closer deme proximity.

For simplicity, an arithmetic increase in migration rates will be

assumed. The migration rate in the first generation is set to m =
0.001, and is increased by 0.005 in every subsequent generation.

In the last generation, the migration rate is m = 0.05 and the

deme size is N = 196830. Note that this final deme size is not

given in equation (13). Genetic variation does not depend on it

because only a small number (here N = 5) of these individuals

survive to reproduce at the start of the next season. Finally, we use

μ = 0.001.

Following the notation that was used in the derivations, we

have Ne = 3.33 and me = 0.275. The effective population size (per

generation) is 33.3, that is, Ne multiplied by a factor of k = 10.

Being proportional to the harmonic mean, Ne is more sensitive to

small values than the effective migration rate, me, which is pro-

portional to the arithmetic mean. However, for initially low values

of either quantity, any estimate of coalescence times or heterozy-

gosities at the end of a growing season may be very different than

those estimated in other generations. Here, we will illustrate the

degree to which estimates made at the beginning or the end of the

season deviate from those in intermediate generations.

Following equations (14a, b), intrademic and interdemic

samples of two alleles have expected coalescence times (measured

in generations, and for the parameter values above), respectively,

E [Tw] = 2DNe = 666.67, E [Tb] = 2DNe + D

2me
= 851.17.

The coalescence times in a particular generation are evaluated

from equations (15a, b) by weighting the seasonal estimates with

migration probabilities in the jth generation.

In a model of migration where migrants cannot return to their

deme of origin (i.e., the matrix in equation 1a) the coalescence

times E[T w] and E[Tb] are computed for each of the 10 genera-

tions of a season. Multiplying the coalescence times by a factor

of 2 μ = 0.002, gives the expected pairwise differences πw and

πb. These are plotted in Figure 4, where the two upper curves

show the (minimal) seasonal changes in πb predicted from the

exact model and the approximation whereas the two lower curves

show the substantial increase in πw predicted during the course

of a season.

The numerical analysis was performed using Mathematica

(Wolfram 1999), the scripts are available from the first author

upon request.

The upper trajectories in the figures represents the coales-

cence calculated by exact iteration of the transition matrices M(i),

computed as weighted sums. The matrix W in equation (11) gives

the exact probabilities for a specific generation after a given num-

ber of seasons t. The within and between deme coalescence times

E[T̃ ] (on the seasonal timescale) are obtained numerically from

the transition matrices as:

E[T̃w] =
∞∑

t=1

t[W13(t) − W13(t − 1)],

E[T̃b] =
∞∑

t=1

t[W23(t) − W23(t − 1)],

where W i j (t) =Wt
i j . Here, the coalescence times T̃ are measured

on a seasonal timescale to convert to generations, we have T =
kT̃ . Defining k E[T̃ ] = E[T (0)], we can obtain coalescence times
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Figure 4. The two lower curves show the average pairwise genetic distances for intrademic samples πw over 10 generations with

population parameters given by m and N with D = 100 and μ = 0.001 per generation. Of the two lower curves, the values obtained from

the exact matrices are slightly larger than those from the Möhle approximation. The two upper curves show the same for interdemic

samples πb, with exact values (dashed) very slightly larger than the approximated pairwise distances (solid).

in generation g recursively from M (g−1), following equations

(15a, b).

Interestingly, the increase in πw with every generation is not

monotonic. This is due to the fact that the maximal loss of genetic

variation takes place when the first small populations of over-

wintering or estivating individuals emerge, mate, and reproduce.

These first individuals inherit the genetic variation from the peak

population before the bottleneck whereas subsequent generations

become inbred, then recover as population size increases.

In comparing the trajectories for interdemic and intrademic

coalescence times in Figures 3 and 4, it is apparent that the sea-

sonal changes to migration rates and deme sizes affect the within

deme coalescence times far more than the between deme coa-

lescence times. Indeed, the difference between the maximal and

minimal values of πw are an order of magnitude greater than the

same differences for πb. The seasonal range in values for πw dur-

ing a course of a season is of the order 0.1 for these parameters, as

opposed to a difference of 0.001 for πb. The significantly greater

seasonal changes for intrademic sample values is due to the fact

that fluctuations in πw are driven principally by M12, which is

of the order of the migration rate, so that as the migration rate

increases, the fraction of individuals in a deme that were origi-

nally in an interdemic sample increases (and consequently so does

the expected coalescence time). In contrast, the input from single

deme allele pairs to πb is determined by M21, which is of the order

of the migration rate divided by D. Therefore, the contribution of

intrademic coalescence times to the expected value of πb changes

only negligibly with an increasing migration rate and deme size.

The heterozygosities computed from our Möhle approxima-

tion are also compared to values computed by numerically from

the exact transition matrices,

H̃w = 1 −
∞∑

t=1

(1 − μe)2t [W13(t) − W13(t − 1)],

H̃b = 1 −
∞∑

t=1

(1 − μe)2t [W23(t) − W23(t − 1)].

As with the analytical approximations, the heterozygosity in gen-

eration g can be computed recursively from the M(g−1) terms

analogously to equations (18a, b).

The expected heterozygosities are shown in Figure 5, which

plots the generational changes in the value of H predicted from

equations (16), under the assumption of no return migration. The

dashed lines show the heterozygosities calculated numerically,

directly by matrix multiplication of the exact transition matrices.

As with the coalescence times, the fluctuations of expected in-

trademic heterozygosities are an order of magnitude greater than

those for interdemic samples.

In this case, the discrepancy between realized and predicted

values of H w is considerable—more than 3%—whereas the dif-

ferent values for interdemic heterozygosities are much closer to

each other. This is principally due to the approximation used for

the first term on the right-hand side of equation (16a), which

requires a (seasonal) effective mutation rate much smaller than

the effective migration rate. In these examples, effective mutation

rate is not very small compared to the effective migration rate

(μe = 0.01 vs. me = 0.275), hence the discrepancy between our

Möhle approximation and numerics even for D = 100. There is a

nonnegligible probability that a mutation occurs prior to the first

migration or coalescence event. Note that the discrepancy will
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Figure 5. This figure plots expected heterozygosities for the same population parameters as in Figure 4. The three nearly superimposed

upper curves compare seasonal interdemic heterozygosities Hb computed from the Möhle approximation, the exact matrices, and the

heuristic approximation from equation (17b). The three lower curves consist of two nearly identical trajectories (thick and dashed lines,

respectively) representing heterozygosity H w calculated from equations (17a) and from the exact transition matrices. The lower (solid)

“outlier” curve shows seasonal H w estimated from the Möhle approximation. The consistent deviation of the order of 0.05 is due to lack

of sufficient timescale separation between mutation and migration/coalescence.

be less significant for E[πw] and E[πb] because these depend

linearly on the expected coalescence times, and the fast phase of

the ancestry is a small fraction of the total as long as D is large

(regardless of μ).

COMPARISON TO INDIVIDUAL-BASED SIMULATIONS

As an independent assessment of the predictions made from the

analytical model, individual-based simulations of the Ives popu-

lation dynamic were run. The C++ code was a slightly modified

version of the ISITES program (Garrigan et al. 2009), which effi-

ciently simulates the processes of mutation, migration and genetic

drift in an infinite sites model by storing the genealogical history

of the population. A documented copy of the modified C++ code

is available from the first author upon request.

To replicate the model population represented in the Ives

process there are D demes, each with a fixed initial number of

individuals N 1 (at the beginning of every growing season, the

size of each deme is reset to N 1). Over the course of the k gen-

erations in a growing season, the migration rates are specified by

a length k input vector whereas the discrete population growth

rate parameter R is constant. The mode of migration in the sim-

ulations assumes that there is no return migration to the deme

of origin. Although the analytical model assumes that there is a

fixed fraction of migrants mi exchanged in each generation, in

the simulations the number of migrants between demes is a Pois-

son random variable with rate parameter mi Ni, so that different

demes need not have identical population sizes during generations

2, . . . , k. Mutation is also modeled as a Poisson process with rate

parameter μ. In addition, the deme sizes in the simulations are

not fixed at the values of Ng given in equation (13). Instead, after

migration, which leads to stochastic changes in deme size, each

deme increases by the factor R.

Because of the computational intensity of this simulation, it

is not practically feasible to execute for a large number of demes,

so they were run with D = 10. The other parameters were as

above: k = 10, R = 3, μ = 0.001, and the arithmetically increas-

ing migration rates are given in equation (12). The simulations

were run for 5000 seasons (corresponding to 50,000 generations)

in order for coalescence times and heterozygosities to approxi-

mate their steady-state values, and results were averaged over 500

independent replicates. Because the goal of this study is to ex-

amine the effects of population parameter changes across genera-

tions within a season, the output of the simulations was separated

by generation (g = 1, . . . , 10) within a season. Average pair-

wise differences were calculated from the site-frequency spectra,

which is stored by default in the ISITES program. Heterozygosi-

ties were computed from samples of size 200 (20 from each of the

10 demes) when the deme sizes were sufficiently large to permit

it, otherwise, they were computed over all individuals in a deme.

The pairwise differences converge within a few hundred sea-

sons to their equilibrium values, as can be seen in Figure 6, which

plots the mean values of πw and πb sampled in the 10th generation

of every season.

The accuracy of the analytical approximations can be as-

sessed by comparing the seasonal values of πw and πb during

the final seasons of the simulation to the values predicted by
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Figure 6. (A) Using the output of individual-based simulations,

this figure plots the average intrademic pairwise genetic distances

πw in the last (10th) generation, over the course of 2000 seasons,

illustrating the rapid approach to equilibrium values. (B) As in

Figure 6A, but for expected pairwise distances πb in an interdemic

sample.

equations (15a, b) for the same set of parameters. Figure 7 plots

πw and πb calculated from the simulations and compare them

both to analytical estimates and brute force calculations of coa-

lescence times based on iterations of the matrix in equation (1a).

Figure 8 do the same for average heterozygosities for diallelic

intra- and interdemic samples.

Because the simulations assume no return migration to the

home deme, the migration rate in every generation for the ana-

lytical and numerical estimates is adjusted by multiplying by a

factor D/(D − 1). In the absence of this migration rate correction,

the trajectory for πb predicted analytically would be greater by

an approximate fraction of 1/D when compared to the numerical

and simulation results. The effect on πw, on the other hand, is

negligible because E[T w] is independent of the migration rate.

With this correction, equations (14)–(16) give qualitatively close

approximations to simulated values of πw.

There are a number of additional factors that contribute to the

discrepancies between simulations and analytical predictions. Be-

cause of the large number of replicates, deviations due to stochas-

ticity in deme size in the simulations is minimized. Indeed, the

standard errors in estimates of both π and H are of the order 0.001.

Hence, the principal sources of error are due to our form of the

Möhle approximation itself, which, in addition to large numbers

of demes, requires mg � 1 and Ng � 1 for all generations g. A

model system with much smaller migration rates throughout the

life cycle would give a substantially better match between theory

and simulations (as was suggested in Fig. 2). However, numerical

and simulation results (not shown) indicate that the approxima-

tions are robust even for a cases in which migration rates are high

and population sizes are large in the final generation of a season,

provided that there are sufficiently many initial generations with

low migration rates.

Discussion
Seasonal increases in migration rates can lead to marked changes

in expected pairwise sequence differences and heterozygosities,

at least in intrademic samples. For example, using the range of

migration rates and deme sizes in the arrays m and N, given in

equations (12) and (13), πw and H w can fluctuate by nearly 0.1,

during the course of a growing season. Because population size,

mutation and migration rates, and other population parameters are

inferred from F ST and π, such estimates will vary depending on

the time of year at which a sample is drawn. Such interferences

are further complicated by the fact that population parameters

cannot be independently estimated, rather, the products Nm and

Nμ are inferred, in which both the migration and population size

parameters are subject to change.

It was noted both in the simulations and the numerical anal-

ysis that the increase in heterozygosities and pairwise distances

over the generations was not monotonic (Fig. 7), because the bot-

tleneck generation inherits the allelic diversity from the end of

the previous growing season, reaching a minimal heterozygos-

ity one generation after the bottleneck. The effect was especially

pronounced when the kth generation approached panmixia. This

was not observed by Ives, although this could be a consequence

of insufficiently dense sampling during the earliest generations.

In contrast, the genetic diversity in interdemic samples is

quite robust to seasonal fluctuations, provided that the number

of demes is large. The fact that average pairwise haplotype dif-

ferences and heterozygosities change minimally about the equi-

librium values implies that tests for natural selection based on

comparisons between demes is more likely to give consistent re-

sults regardless of the time at which the sample is drawn. This

suggests that in making tests for neutrality in a population, it may

be desirable to take samples from sufficiently distant (with respect

to average dispersal) sites.
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Figure 7. (A) Average pairwise genetic distances πw for intrademic samples taken over 10 generations, computed for a seasonal range

of migration rates m and deme sizes N when D = 10, with a per-generation, per-site mutation rate of 0.001. The solid curve shows Möhle

estimates, the dashed curve has values computed numerically from the transition matrices whereas the middle (dotted) trajectory gives

the values of πw from the individual-based simulations. (B) As in Figure 7A, but for pairwise distances πb in interdemic samples. The

dashed curve gives values computed by iteration of transition matrices, the dotted (middle) trajectory shows simulation results, the solid

trajectory gives Möhle estimates.

The other side to these issues is whether the observed fluc-

tuations in genetic diversity during the course of the season can

be entirely accounted for by a neutral model that incorporates

seasonal fluctuations in deme size and other population param-

eters. In a review article summarizing data over several decades

of systematic study (Ives and Band 1986), estimates of percent

allelism in New England Drosophila at different times of the

year were presented. Ranges in the percent of allelism are from

5% to 10% in June samples and 0.6% to 2.7% in October and

November, with the June–July mean at 5.41% and the October–

November mean at 1.75%. An earlier article (Ives 1970), gives

November values as in excess of 20% and June values as low as

0.3%, and another case study with 34% in November versus 4% in

May.

If one takes percent allelism as a proxy measure for ho-

mozygosity, the seasonal fluctuations observed by Ives are often

in excess of the range of heterozygosity values predicted from

the analytical approximation and the simulations alike. This dis-

crepancy could be due an underestimate of the extent to which

migration rates and deme sizes increase during the course of a

growing season. This seems unlikely, because we assumed al-

most minimally small initial deme sizes (N = 5) and a population

growth rate that tripled the population number in every generation.

Furthermore, even when the migration rate in the final generation
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Figure 8. (A) Average heterozygosities for intrademic samples over 10 generations in a season are shown in this figure. The values of

H w computed from the transition matrices are shown in the upper (dashed) trajectory, those of the Möhle approximation are shown in

the lower (solid) trajectory whereas the simulation results are plotted in the dotted (middle) line. (B) As in Figure 8A, but for interdemic

heterozygosites Hb The lowermost (dotted) curve shows the simulation results, the estimates from the Möhle approximation (solid) and

the values calculated from the exact transition matrices (dashed) are almost identical.

is very high (unrealistically approaching panmixia), the fluctua-

tions in Figure 8 fall short of the range in allelism (up to 20–30%

fluctuations) observed by Ives.

A possible explanation for this discrepancy lies in the nature

of the allelic variation in Ives’ study. His estimates of homozy-

gosity are based on the frequency of lethal and semilethal alleles.

Clearly, this is not neutral genetic variation, it is subject to strong

negative selection even if the alleles are completely recessive.

The decreases in allelism seen by Ives during a season are at least

partly due to natural selection eliminating the recessive lethals

and semilethals from the demes at a higher rate than they are

introduced by mutation.

Consequently, to appraise the accuracy of the predictions

from the structured coalescent model, it would be necessary to

conduct a seasonal survey of haplotype variation in Drosophila

populations using presumably neutral markers, such as mi-

crosatellites or noncoding single nucleotide polymorphisms. Ge-

netic variation at such markers would be more likely to show

seasonal dynamics qualitatively consistent with the coalescent

model predicted in this article.

In spite of these caveats in comparing theory and data, it

is likely that seasonal demographic changes can lead to marked

differences in the extent of intrademic genetic variation during

the course of a season. In Garrigan et al (2009), the Ives model
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was used as a canonical example of a nonequilibrium system, in

which standard tests for natural selection based on equilibrium

neutral theory would give an excess of false positives due to devi-

ations from allele frequency distributions predicted from neutral

models at equilibrium. However, because the samples in the study

were drawn only in the last generation of a season, it was unclear

whether these deviations were due to the Ives dynamic per se, or

from the complications of migration in an island model. Equa-

tions (15) and (16) suggest that (at least) in diallelic samples,

the coalescence times and heterozygosities induced by the Ives

model at the end of a season can be very closely approximated

by an island model with constant population size and migration

rates if these correspond to the N, m induced by the Ives popula-

tion dynamic, especially when μ � m, 1/N � 1. Although this

result is for a pair of alleles, it is quite likely that the sampling

distribution of multiple alleles at the end of a season following

an Ives process will closely resemble the distribution induced

by an equivalent fixed parameter model with effective migration

rates and deme sizes. This question invites further simulation and

numerical study.

If one is not restricted to sampling at the end of a season, an

obvious signature of the Ives process should be observable. The

numerical and simulation results presented in this article imply a

seasonal increase in heterozygosity and pairwise genetic distance,

and unpublished results comparing multiallele early and late sea-

son samples indicate greater deviations from neutral equilibrium

sampling distributions (and an excess of false positive selection

test statistics) in the early season. This suggests that studies of

genetic variation in seasonal populations may reach entirely dif-

ferent conclusions about population parameters and relevant pro-

cesses depending on the time of year at which the samples are

drawn.
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