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a b s t r a c t

We describe a forward-time haploid reproduction model with a constant population size that includes
life history characteristics common to many marine organisms. We develop coalescent approximations
for sample gene genealogies under this model and use these to predict patterns of genetic variation.
Depending on the behavior of the underlying parameters of themodel, the approximations are coalescent
processes with simultaneousmultiple mergers or Kingman’s coalescent. Using simulations, we apply our
model to data from the Pacific oyster and show that our model predicts the observed data very well. We
also show that a fact which holds for Kingman’s coalescent and also for general coalescent trees – that
the most-frequent allele at a biallelic locus is likely to be the ancestral allele – is not true for our model.
Our work suggests that the power to detect a ‘‘sweepstakes effect’’ in a sample of DNA sequences from
marine organisms depends on the sample size.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Coalescent processes provide a framework for studying genetic
variation in a random sample of DNA sequences. These gene-
genealogical models describe the impact of the genetic drift on
the ancestry of a sample. Genetic variation is regularly observed in
samples frommost species, and interest in explaining this variation
focuses attention on the ancestry of the sample. However, themost
natural starting point for population genetic analyses is to consider
evolutionary processes in the entire population, forward in time.
Backward-time, genealogical processes are derived from forward-
time reproduction models. The Wright-Fisher model and the
Moran model are two commonly used forward-time reproduction
models,while the Canningsmodels provide amore general setting;
see Cannings (1974, 1975). Kingman (1982a,b) showed that for
a subset of the Cannings models, and for the Moran model, the
genealogy of the sample can be approximated by a coalescent
process when the variance of the number of offspring of an
individual, σ 2

N , has a finite limit as N → ∞. We adopt the common
terminology and call this Kingman’s coalescent.

Life history characteristics common to many marine organisms
can lead to a high variance of offspring number, because few
individuals may contribute to highly-successful reproduction
events. Many marine organisms, from a wide variety of taxonomic
groups, have the potential for great fecundity but also suffer
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high early mortality (Hedgecock, 1994). Breeding adults release
gametes into thewater columnwhere fertilization takes place. The
larvae are planktonic. Successful reproduction is a chance event,
depending on oceanographic conditions favorable to spawning,
fertilization, larval survival and successful recruitment. The
majority of larvae are lost due to predation and other factors such
as currents carrying them away from suitable benthic habitats.
Disturbance can also be an important factor in opening up habitat
patches for re-colonization (Witman, 1987; Dayton, 1971; Paine
and Levin, 1981). Another feature of these organisms that bears
upon modeling efforts is that generations overlap. Adults live for
a number of years, and successful breeding events may come only
in the most favorable years. These life history characteristics put
constraints on the family sizes, such that a few individuals may
have very large family sizes while others will have a few offspring
or none (Hedgecock, 1994; Beckenbach, 1994).

Kingman’s coalescent is a powerful tool for understanding
patterns of genetic variation in a sample of DNA sequences.
However, itmaynot be appropriate formarine organisms that have
the above life history characteristics, because they may violate
the underlying assumptions of the model, in particular regarding
σ 2
N . There is some evidence for this in genetic data. For example,

the haplotype-frequency distribution in a sample of mitochondrial
DNA (mtDNA) data from Pacific oyster shows an excess of common
haplotypes, a deficiency of haplotypes at intermediate frequencies
and toomany singletonhaplotypes (Beckenbach, 1994; Boomet al.,
1994; Reeb and Avise, 1990). As pointed out by Beckenbach (1994),
these patterns are different from the patterns that are predicted
from Ewens’ sampling theory (Ewens, 1972), which holds when
the genealogy of a sample can be approximated by Kingman’s
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coalescent. Thus, it is of interest to develop other coalescent
approximations for cases in which σ 2

N is very large, meaning not
bounded as N → ∞.

To address these concerns, Beckenbach (1994), Flowers et al.
(2002), Wakeley and Takahashi (2003), Hedrick (2005), and El-
don and Wakeley (2006), have all considered forward-time repro-
duction models and their predictions about genetic variation in
a sample. With the exception of Wakeley and Takahashi (2003)
and Eldon and Wakeley (2006), however, all of these studies were
restricted to forward-time dynamics. Eldon and Wakeley (2006)
took a coalescent approach and derived all possible coalescent ap-
proximations for the genealogy of a sample under one particular
model. Here, we take a similar approach: first we define a simple,
forward-time reproduction model which includes the above life
history characteristics, then we study it using coalescent methods.
We relax the condition (Eldon and Wakeley, 2006) that only a sin-
gle individual can have a large family at any one time. We also do
not assume particular functional forms for the parameters in the
limit N → ∞.

The problem of approximating the genealogy of a sample under
Cannings’ models, for cases in which σ 2

N is not bounded, has
been studied by several authors. In the limit of large population
size N , different ancestral processes are obtained depending how
the moments of the distribution of the number of offspring per
individual behave as N grows. While the Kingman coalescent
includes only binary mergers of ancestral lines, other models
result in processes with multiple mergers that are separated
in time (Pitman, 1999; Sagitov, 1999), or with simultaneous
multiple mergers (Möhle and Sagitov, 2001; Sagitov, 2003;
Schweinsberg, 2000). We use these results for classifying the
coalescent approximations under our model.

After developing the coalescent framework for the model in
the next section, we compare predictions from our model to those
of Kingman’s coalescent. Analytical results concerning patterns
of genetic variation are difficult to obtain from multiple-mergers
coalescent processes, so many of our results were obtained using
the simulation algorithm we develop below. First, we show that
our model predicts well the patterns of the mtDNA sequence
variation in Pacific oysters described above. Second, we use
simulations to suggest that, under models such as ours, the most
frequent allele is probably not the ancestral allele, in stark contrast
to the predictions of Kingman’s coalescent. Third, we show that the
ability to detect the signature of a sweepstake effect (Hedgecock,
1994) in a sample of DNA sequences from marine organisms,
or from other species with large variance of offspring numbers,
may depend strongly on the sample size. Very large sample sizes
may be needed to reliably distinguishmultiple-mergers coalescent
processes from the simple Kingman coalescent.

2. Methods and results

We begin with a forward-time reproduction model for a
finite population that includes life history characteristics common
to many marine organisms. The population size N is constant
over time, there are no selective effects, and time unfolds in
discrete steps. At time t , (XN , YN)t is a random variable with joint
distributionπN(·, ·), XN and YN being integers between 1 andN , the
number of individuals who will not survive and who take place in
the reproductive process respectively. For simplicity, we assume
that the joint distribution πN(·, ·) does not change over time. We
select the XN individuals and the YN individuals independently and
at random from the population. XN new individuals are generated
at random as per a Wright-Fisher model: each selects as its parent
one of the YN potential parents, and these replace the XN of the
population chosen to die. When XN = 1 and YN = 1 this is the
Moran model. We shall refer to the case where the model does not
Fig. 1. An example of a successful reproduction event (a single step in the forward-
time process). Here, the population size N is 16, the number of potential parents YN
is 6, and the number of new born individuals XN is 10.

have XN = YN = 1 as an SRE (Successful Reproduction Event) and
we suppose the Moran Model applies with probability 1 − εN , and
the SRE with probability εN .

The biological interpretation of our model is as follows.
Broadcast spawning occurs at regular intervals. Each individual
produces a very large number of offspring, enough to potentially
replace a large fraction of the population. Normally, with
probability 1 − εN , there is little space for these newborns: one
adult dies and is replaced by a single offspring. Occasionally,
with probability εN , a disturbance event occurs that kills XN adult
individuals, allowing XN offspring to settle and survive (an SRE).
Depending on the current conditions, not every adult has an equal
chance to be the parent of these XN offspring. We assume that YN
adults are the only potential parents of the XN offspring. Not every
disturbance event is the same: The numbers XN and YN are drawn
from a joint distribution πN(·, ·) and the particular individuals
chosen to die and to reproduce are selected uniformly at random
from the population. This leads to several types of individuals
which are shown in Fig. 1.

Note that in the above model the family sizes are exchangeable
due to the random choice of the YN and XN individuals. In contrast
to the models in Cannings (1974), in our model generations are
overlapping. This distinction will become important when we
consider mutation, as we will only allow newborns to mutate. The
Wright-Fisher and Moran models are special cases of the above
model when YN = XN = N, εN = 1; and when YN = 1 and XN = 1
(see above) or εN = 0, respectively.

2.1. Ancestral processes

We apply the results of Möhle and Sagitov (2001) and Sagitov
(2003) for characterizing the limiting ancestral processes for a
sample under our model. Note that their results are for Cannings’
models with non-overlapping generations but in our model we
have overlapping generations. However, we can still apply their
results here because our model can be converted into a Cannings
model (see Cannings (1973)), with limiting ancestral processes
identical to those we describe below, simply by replacing the
persistence events in our model with reproduction-and-death
events (see Fig. 1). The exception to this is in Section 2.2 when we
consider mutation, which we will allow to occur only in newborn
individuals.

The results of Möhle and Sagitov (2001) and Sagitov (2003)
are summarized in Table 1 in the form of the following limits:
P1(1, 1) → C0,

P1(1,1,1)
P1(1,1)

→ C1 and P2(2,2)
P1(1,1)

→ C2 as N → ∞.
The quantity P1(1, 1) is the probability that two randomly chosen
individuals coalesce in one time step; P1(1, 1, 1) is the probability
that three randomly chosen individuals coalesce in one time
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Table 1
The limit conditions for approximating the genealogies of samples by the coalescent
processes

Conditions Approximation of the ancestral process

C0 = 0 A continuous coalescent process
C0 6= 0 A discrete Markov chain process
C0 = 0 and C1 = 0 Kingman’s coalescent
C0 = 0, C1 6= 0 and C2 = 0 Coalescent with simultaneous mergers
C0 = 0, C1 6= 0 and C2 6= 0 Coalescent with multiple mergers

step; and P2(2, 2) is the probability that four randomly chosen
individuals have two parents and each of these two parents has
two descendants in these four, again in one time step. We derive
conditions on the limits XN

N H⇒ φ, YN H⇒ Y , and εN −→ ε, by
which we can classifying the various limiting ancestral processes.
By ‘‘H⇒’’ we mean convergence in distribution and by ‘‘→’’ we
mean uniform convergence (here simply of the real number εN ).

Because we will consider two possibilities for YN : YN H⇒ Y
and YN → ∞, we adopt the notion P(Y = ∞) = 0 for YN H⇒ Y .
This is to emphasize that Y is an integer valued random variable.
We do not consider the cases when the definition of the limit
in probability, YN H⇒ Y , includes the case of discrete random
variables Y that have positive mass at ∞. An example of such a
case is when P(YN = 2) = P(YN = N/2) = 0.5 then Y , such that,

P(Y = 2) = P(Y = ∞) = 0.5,

can be considered as the limit of YN in probability. Such cases may
fall under the second possibility above, that YN → ∞. Also, we use
the notion P(φ = 0) = 0 for XN

N H⇒ φ to emphasize that φ does
not have point mass at zero and to separate from the case when
XN
N → 0.

For our model, we obtain

P1(1, 1) = εNE
(
XN(XN − 1)
N(N − 1)

1
YN

+ 2
XN

N
N − XN

N − 1
1
N

)
+ (1 − εN)

2
N

1
N − 1

, (1)

P1(1, 1, 1) = εNE
(
XN(XN − 1)(XN − 2)
N(N − 1)(N − 2)

1
Y 2
N

+ 3
XN

N
XN − 1
N − 1

N − XN

N − 2
1

NYN

)
, (2)

and

P2(2, 2) = εNE
(
3XN(XN − 1)(XN − 2)(XN − 3)

N(N − 1)(N − 2)(N − 3)
(YN − 1)

Y 3
N

+
12XN(XN − 1)(XN − 2)(N − XN)

N(N − 1)(N − 2)(N − 3)
(YN − 1)

NY 2
N

+
12XN(XN − 1)(N − XN)(N − XN − 1)

N(N − 1)(N − 2)(N − 3)
(YN − 1)

N(N − 1)YN

)
. (3)

From the above equations we have the following approximations
when N is very large.

P1(1, 1) ≈ εNE

(
X2
N

N2

(
XN − 1
XNYN

+
2(1 −

XN
N )

XN

))
+ (1 − εN)

2
N2

, (4)

P1(1, 1, 1) ≈ εNE

(
X2
N(XN − 1)
N3YN

(
XN − 2
XNYN

+
3(1 −

XN
N )

XN

))
, (5)
and

P2(2, 2) ≈ εNE
(
3XN(XN − 1)(XN − 2)(XN − 3)

N4

(YN − 1)
Y 3
N

+
12XN(XN − 1)(XN − 2)(N − XN)

N4

(YN − 1)
NY 2

N

+
12XN(XN − 1)(N − XN)(N − XN − 1)

N4

(YN − 1)
NYN

)
. (6)

From here on, all limits and approximations should be understood
to hold as ‘‘N → ∞’’ or ‘‘for largeN ’’ (i.e. wewill usually skip these
phrases).

Since ourmodel is amixture of two reproduction processes, the
probability of coalescence per time step, P1(1, 1), is the sum of two
probabilities: that the two individuals coalesce in the background
of an SRE or that the two individuals coalesce in the background of
a Moran-model reproduction event.

The first case we consider is when a coalescent event is much
more likely to happen in the background of an SRE than in aMoran-
model reproduction event. In particular, we assume that P(Y =

∞) = 0, P(φ = 0) = 0 and εN → ε, ε 6= 0. From Eq. (4)
it follows that under these conditions, when N is large coalescent
events occur almost exclusively in SREs. Then, from Eqs. (4) to (6)
we have the limits

P1(1, 1) → E
(

εφ2

Y

)
,

P1(1, 1, 1) → E
(

εφ3

Y 2

)
,

and

P2(2, 2) → E
(

εφ4(Y − 1)
Y 3

)
.

From these results, and according to Table 1, it follows that
the ancestry of a sample can be approximated by a discrete
Markov chain with simultaneous multiple mergers; for more
details see Sagitov (2003). Note that when Y is a constant and
φ = 1 and εN = 1 we have the model considered by Wakeley
and Takahashi (2003).

The second case we consider (which will be the basis for
the simulation algorithms presented in Section 2.3) is when a
coalescent event may happen in either background. That is, we
assume that P(Y = ∞) = 0, P(φ = 0) = 0, εN → 0, and
N2εN → c , where c 6= 0. We allow c to be ∞, which is equivalent
to saying N2εN → ∞. From Eq. (4) we have

P1(1, 1) ≈ εNE
(

φ2

Y
+

2
c

)
. (7)

In other words, the relative rates of coalescence in the background
of an SRE and in the background of Moran-model reproduction
event are E

(
φ2

Y

)
and 2/c , respectively. Note that when c =

∞ then coalescence will happen only in background of an SRE.
From Eqs. (5) to (6) we have the following limits for the other
probabilities:

P1(1, 1, 1)
P1(1, 1)

→

E
(

φ3

Y2

)
E
(

φ2

Y +
2
c

) , (8)

and

P2(2, 2)
P1(1, 1)

→

E
(

εφ4(Y−1)
Y3

)
E
(

φ2

Y +
2
c

) . (9)
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According to Table 1, it follows that the ancestry of a sample can
be approximated by a continuous-time coalescent process with
simultaneous multiple mergers. Note that when Y 6= 1 there
will be simultaneous mergers, while if Y = 1 there will only be
multiple mergers, asynchronous in time. The case Y = 1, φ 6= 0
and εN = 1/Nγ was studied by Eldon and Wakeley (2006).

Another possibility for the underlying parameters of the model
is the casewhen coalescent events aremuchmore likely to happen
in the background of Moran-model reproduction events. Here, we
assume that P(Y = ∞) = 0, P(φ = 0) = 0 and N2εN → 0.
In this case, from (4) we have P1(1, 1) ≈

2
N2 . Therefore, the ratio

P1(1, 1, 1)/P1(1, 1) converges to zero. Note that for this case the
condition N2εN → 0 simply means that all coalescent events for a
finite sample will occur in the background of the Moran process,
before the first SRE. This occurs because SREs occur on average
every 1/εN time steps but a coalescent event in the background
of the Moran process takes on average N2/2 steps. In this case,
our model behaves like the Moran model. Therefore, the ancestral
history of a sample can be approximated by Kingman’s coalescent.

Finally, we consider the possibility that coalescent events may
occur in either background but, despite the fact that SREs may
dominate the ancestry of a sample, nonetheless the ancestral
process becomes Kingman’s coalescent. In particular, we assume
that YN → ∞ or XN/N → 0. Note that we can use uniform
convergence for random variables because they can be treated as
functions and it is stronger than convergence in distribution. We
show that the ancestral history of a sample can be approximated by
Kingman’s coalescent; a proof is given in Appendix A. Note that this
means that the time scale of the resulting Kingman coalescentmay
be very different that the usual time scale, which is proportional to
N generations.

2.2. Mutation processes

We assume that only newborn individuals can mutate.
Individualswho simply persist to the next time step do notmutate.
Each newborn experiences a mutation with probability µ, and we
further assume that mutations occur according to the infinitely
many sites model, in which every mutation occurs at a unique site.
To model the mutation process for a sample we need to trace the
ancestry of a single individual. It follows directly from our model
that the times between consecutive mutational events on one
lineage looking backwards in time are geometrically distributed.

Our goal in this section is to show how the mutation process
should be scaled and what should be assumed about mutation
probability, such that the mutation process can be approximated
by a Poisson process. Sometimes this involves making the well-
justified assumption that the mutation probability per nucleotide
site per birth event is small, while the details of the modeling
depend on the relative sizes of µ, N , and other parameters, in the
limit N → ∞. Interestingly, a Poisson mutation process can be
obtained in some case even without making the usual assumption
thatµ → 0.Weexpress all results for themutation rate per lineage
as θ/2 = const×θ0/2,where θ0/2 captures our assumptions about
µ and the limiting constant depends on the other parameters of the
model.

In all of the following, we restrict ourselves to cases in which
the genealogy of the sample can be approximated by a continuous-
time coalescent process. That is, we assume that P1(1, 1) → 0
holds. When we trace the mutational history of a single individual
back into the past, the number of time steps back to the first
mutation event on the lineage will be distributed as a geometric
random variable with the following non-success probability per
step:

εNE
(
N − XN

N
+

XN

N
(1 − µ)

)
+ (1 − εN)

(
N − 1
N

+ (1 − µ)
1
N

)

or, after simplification,

1 − E
(

εN
XN

N
+ (1 − εN)

1
N

)
µ.

Since we scale the ancestral process of a sample size n by the
inverse of the coalescence probability, 1/P1(1, 1), we will scale
the mutational process (backwards in time) by this same factor. To
approximate the mutation process by a Poisson process after this
scaling by 1/P1(1, 1), we require that

E
(

εN
XN

N
+ (1 − εN)

1
N

)
µ/P1(1, 1) (10)

has a finite, non-zero limit. In the limit, Eq. (10) becomes the time-
rescaled rate ofmutation per lineage. Following the usual notation,
we denote this limit by θ/2.We derive conditions forµ, depending
on the behavior of XN , YN , and εN , to achieve a finite limit for (10).

The first case we consider is when simultaneous multiple
mergers occur in the limiting ancestral process. Recall that in this
case, we assume that

P(Y = ∞) = 0, P(φ = 0) = 0, εN → 0 and c > 0,

whereN2εN → c; and c could be∞. Under these conditions on the
parameters from Eq. (7) we have P1(1, 1) ≈ εNE

(
φ2

Y +
2
c

)
and(

εNE XN
N + (1 − εN) 1

N

)
µ

P1(1, 1)
≈

µ
(
εNEφ + (1 − εN) 1

N

)
εNE

(
φ2

Y +
2
c

) . (11)

It is helpful here to define another quantity: a is equal to the limit of
NεN as N → ∞. Depending on the limits N2εN → c and NεN → a
we have the following possibilities:

(1) 0 < c < ∞ (or c = ∞ (N2εN → ∞) and a = 0 (NεN →

0)). For this case it follows that a = 0 therefore from Eq. (11),
the limit in (10) is finite if µ 1

NεN
has a finite limit. For the case

0 < c < ∞ the limit requirement becomes that µN has finite
limit θ0/2 and

θ

2
=

θ0

2
1

cE
(

φ2

Y +
2
c

) .

If N2εN → ∞ and NεN → 0 then θ0/2 is the limit of µ 1
NεN

and

θ

2
=

θ0

2
1

E
(

φ2

Y

) .

Note that for the above case we need to assume that µ → 0 holds.
(2) 0 < a < ∞. Under this condition N2εN → ∞ and from

Eq. (11), it follows that we do not need to assume that µ goes to
zero, and we have

θ

2
=

µ
(
Eφ +

1
a

)
E
(

φ2

Y

) .

The second case we consider is when the genealogy of a sample
can be approximated by Kingman’s coalescent. Let us assume that
XN → X , YN → ∞ or YN ⇒ Y , where P(Y = ∞) = 0 and εN → ε.
Under these conditions, from Eq. (4), we have

P1(1, 1) ≈
1
N2

(
εE
(
X(X − 1)

Y
+ 2X

)
+ 2(1 − ε)

)
and(

εNE
XN

N
+ (1 − εN)

1
N

)
µ ≈

µ

N
(εE(X − 1) + 1).
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Therefore, in this case the finite-limit condition in (10) is
equivalent to Nµ having a finite limit θ0/2. In the limit we have

θ

2
=

θ0

2
(εE(X − 1) + 1)

(εE (X(X − 1)/Y + 2X) + 2(1 − ε))
,

where we assume that EX2 < ∞.
A third case for the parameters is εN =

1
N , YN → ∞, YN

N → y,
P(φ = 0) = 0 and YN is a constant. If y = 0, then using
approximation in (1) under these conditions we have

P1(1, 1) ≈
Eφ2

NYN

and(
εNE

XN

N
+ (1 − εN)

1
N

)
µ ≈

Eφ + 1
N

µ.

Thus the finite limit condition in (10) is equivalent to YNµ having
a finite limit θ0/2, and

θ

2
=

θ0

2
(Eφ + 1)

Eφ2
.

If y > 0, then we have

P1(1, 1) ≈
1
N2

E
(
φ2/y + 2φ(1 − φ) + 2

)
and(

εNE
XN

N
+ (1 − εN)

1
N

)
µ ≈

Eφ + 1
N

µ,

and hence
θ

2
=

θ0

2
(Eφ + 1)

E
(
φ2/y + 2φ(1 − φ) + 2

) ,
where θ0/2 is the limit of µN .

2.3. Simulation algorithms

Here,we describe two simulation algorithms for the caseswhen
the genealogy of a sample can be approximated by a continuous-
time coalescent process (that is, we assume P1(1, 1) → 0) with
simultaneousmultiplemergers (or simplymultiplemergers). Both
algorithms generate the genealogy of a sample without mutations.
The mutation process is treated separately, as a Poisson process
with rate θ/2 along each branch of the gene genealogy.

In the second case in Section 2.1, we obtained a continuous
coalescent process with simultaneous multiple mergers when
εN → 0 and N2εN → c, 0 < c ≤ ∞, P(φ = 0) = 0, and P(Y =

∞) = 0. In this caseP1(1, 1) is proportional to εN , following Eq. (7).
Time is measured in units of 1/εN (rather than 1/P1(1, 1)) time
steps in the simulations. With this time scale, we can approximate
the occurrence of SREs by a Poisson process with rate one. Note
that after simulating the genealogy of the sample, the 1/P1(1, 1)
time scale can be retrieved by multiplying the coalescence times
by E

(
φ2

Y +
2
c

)
.

Our first algorithm is for N2εN → ∞ (c = ∞) in which case
the ancestry is dominated by SREs.

Algorithm 1. (1) Start with K = n. (K is the number of the
ancestors of the sample as we follow them back in time.)

(2) Sample (φ, Y ) from a joint distribution π(·, ·).
(3) Generate thewaiting time t to the first SRE (looking backwards

in time): It is an exponential random variable with mean one.
(4) Sample (k0, k1, . . . , kY ) from Mn(K , p0, p1, . . . , pY ), where∑Y

i=0 ki = K , p0 = 1 − φ and pi = φ/Y , i = 1, . . . , Y . (Here
Mn(·) denotes the multinomial distribution.)
(5) If ki 6= 0, i = 1, . . . , Y then randomly choose ki individuals
from K and merge them into a common ancestor.

(6) Reset the number of the ancestors to K = k0 +
∑Y

i=1 1{ki 6= 0},
where 1{x} is one if the x is true and zero, otherwise. Stop if K
is equal to one, otherwise return to Step 2.

Our second algorithm is for 0 < c < ∞, in which case coalescent
events can occur via either an SRE or a Moran-model reproduction
event.

Algorithm 2. (1) Start with K = n.
(2) Sample (φ, Y ) from a joint distribution π(·, ·).
(3) Generate thewaiting time t to the first SRE (looking backwards

in time): It is an exponential random variable with mean one.
(4) Up to time t , run the usual binary, Kingman coalescent with

rate K(K − 1)/c while there are K lineages. Form pairwise
common ancestors as coalescent events occur, and decrement
K by one at each event. Exit the algorithm if K = 1 before time
t .

(5) Using the value of K (> 1) from Step 4, sample (k0, k1, . . . , kY )
from Mn(K , p0, p1, . . . , pY ), where p0 = 1 − φ and pi =

φ/Y , i = 1, . . . , Y .
(6) If ki 6= 0, i = 1, . . . , Y then randomly choose ki individuals

from K without replacement and coalesce them together.
(7) Reset K to K = k0 +

∑Y
i=1 1{ki 6= 0}, where 1{x} is one if the x

is true and zero, otherwise. Stop if K is equal to one, otherwise
go to Step 2.

2.4. Simulation results

Using the simulation algorithms described above, we provide
three examples of how predictions about genetic variation in a
sample can be different depending on whether the genealogy
is given by Kingman’s coalescent or by the coalescent with
simultaneous multiple mergers derived from our model. We
implemented the above algorithms in a program written in the C
programming language, which is available from the authors upon
request.

Example 1. Weconsider the data fromBoomet al. (1994). The data
consist of restriction-site variation in a sample of mitochondrial
DNA sequences from Pacific oyster (Crassostrea gigas) from British
Columbia. Using 9 restriction enzymes, 44 haplotypes were
discovered among 141 samples. For our analysis we assume the
gain or loss of a restriction site is a unique event. Adopting this
assumption in an analysis of the fragment sizes (see Table 2
in Boom et al. (1994)) we find that there are 48 segregating sites
in the sample. We summarize the data in two different ways. First,
we count the frequency of each haplotype, and rank order these.
Second, we classify each segregating site by the number of times
theminor allele at that site is observed in the sample; these counts
are often called the site-frequency spectrum.

We apply a simplified version of our model to the data,
assuming that (φ, Y ) are constants. As in the simulation algorithms
above, we consider the case where N2εN → c, 0 < c < ∞ and
NεN → 0.Weuse a likelihood approach to estimate the underlying
parameters (φ, Y , θ, c) of the model, first assuming that the site-
frequency counts represent counts of mutant alleles (unfolded
case below), that is assuming that the most-frequent allele is the
ancestral allele at each site. However, as we see in Example 2, this
assumption is not necessarily true for populations that have been
evolving according our model. Thus, we also analyze the data as
folded site frequencies (folded case below), that is assuming we do
not know the ancestral type.

We use Algorithm 2 to compute the likelihood of the data for
a particular set of values of the parameters, (φ, Y , θ, c). For the
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Fig. 2. The upper and lower end points of vertical segments represent 2.5% and 97.5% quantiles of the marginal distributions of rank ordered haplotype frequencies. We
used ‘‘−’’ for the means of marginal frequencies and ‘‘o’’ for observed frequencies. (A) Haplotype frequency spectrum under Kingman’s coalescent versus observed data.
Mutation rate is θK = 12. (B) Haplotype-frequency spectrum under simultaneous multiple mergers. The values of the parameters are the following: φ = 1, Y = 2, θ = 1.55,
c = 125. The sample size is 141.
unfolded case, first we generate a gene genealogy of the sample
of size n = 141, then we compute the sums of the lengths of the
branches in the tree that have i, i = 1, . . . , n − 1, descendants
in the sample. We denote these Li. For the folded case, we compute
sums of the lengths of the branches that have i or n−i descendants.
When 2i 6= n the lengths are Li + Ln−i, for i = 1, . . . , bn/2c, where
bxc is the integer part of x; but in the special case 2i = n the lengths
are simply Li.

Given the gene genealogy, the mutation process is an indepen-
dent Poisson process along the branches of the tree. The rate of
mutation is θ/2 along each branch. The probability that there are
ni segregating sites with frequency i is

P(1)
i =

(θLi/2)ni

ni!
e−θLi/2.

For the folded case, the probability, that the number of sites with
frequencies i or n − i is ni + nn−i, is given by the following
expressions: if 2i 6= n, then

P(2)
i =

(θ(Li + Ln−i)/2)ni+nn−i

(ni + nn−i)!
e−θ(Li+Ln−i)/2;

if 2i = n, then

P(2)
i =

(θLi/2)ni

ni!
e−θLi/2.

Note that we make the usual assumption above, that 0! = 1.
For convenience, if both ni and Li are equal to zero we define each
of the above probabilities to be equal to one. The probability of
the data (n1, . . . , nn−1) given the tree is the product P1 · · · Pn−1,
since given the tree the mutation process is independent along the
edges of the tree. In the folded case, the probability is the product
of P(2)

i , i = 1, . . . , bn/2c. We estimate the likelihood by taking the
average of the products of these probabilities over a large number
of gene genealogies generated with Algorithm 2.

We generated 100000 gene genealogies for every possible
combination of the following parameter values:

φ = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0},
Y = {1, 2, 3, 4, 5, 6, 7, 10, 11, 12, 13},
c = {.1, 2, 5, 10, 50, 100, 125, 150, 175, 200, 225, 250,

300, 400, 500, 1000, 10 000},

θ1 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.5, 2,
2.5, 3, 3.5, 4},

where θ1 = θ0/c ≈ 2µN/c .
The mutation rate θ under Algorithm 2 is given by the formula
θ

2
=

θ1

2
1

E
(

φ2

Y +
2
c

) .

The maximum likelihood parameter estimates were identical in
both the unfolded and folded cases: φ = 1, Y = 2, c = 125, θ1 =

0.8, and θ = 1.55. Expected number of segregating sites and the
expected number of haplotypes are 39.31 and 31.41, respectively,
for estimated values of the parameters for our model.

To get a sense of what this means for the genealogy of the
sample, when φ = 1, Y = 2, c = 125, SREs occur with
rate equal to one, while binary mergers due to Moran-model
reproduction events occur c/2 = 62.5 times more slowly than in
the Kingman coalescent. Therefore, many ancestral lineages will
likely be present when an SRE occurs. When an SRE occurs and
φ = 1 the entire population is replaced by the offspring of the
Y successful parents. With Y = 2, the k ancestral lineages that
are present will merge into the two ancestors, each with equal
probability. The number of descendant-lineages of one parent will
follow theBinomial(1/2, k) distribution, and the rest of the lineages
will be descended from the other parent.

We also applied the above approach under Kingman’s coales-
cent, to estimate its single parameter, the mutation rate θ . The es-
timates for unfolded and folded cases were 12 and 8, respectively.
The expected number of segregating sites and the expected num-
ber of haplotypes are 66.36 and 30.98 for θ = 12; 44.18 and 23.84
for θ = 8, respectively.

To further quantify the predictions of our model and of
the Kingman coalescent, we computed the haplotype-frequency
spectrum and the site-frequency spectrum for each of 100000
samples of size 141 using the parameter estimates above. The
haplotype-frequency spectrum is defined as the rank-ordered
frequencies of the haplotypes in a sample. To assess the variability
of our predictions, we used the 100000 pseudo-samples to
estimate the 2.5% and 97.5% quantiles for each frequency class. We
say that the model predicts the observed data well if the observed
haplotype-frequency counts and site-frequency counts fall within
the (2.5%, 97.5%) quantile-intervals obtained from the simulations.

The comparisons for the haplotype-frequency spectrum are
represented in Fig. 2. Under Kingman’s coalescent, some of the
haplotype frequencies are outside the (2.5%, 97.5%) quantile-
intervals (panel A). In particular, under Kingman’s coalescent it
appears unlikely to observe two haplotypes with frequencies as
high as those of the two most-frequent haplotypes in the sample.
Under our model, however, the observed rank ordered haplotype
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Fig. 3. Site frequency spectrum of a sample of size 141 under the simultaneous multiple mergers model. The values of the parameters are φ = 1, Y = 2, θ = 1.55, θ1 = 0.8,
and c = 125. Points marked respectively: ‘‘o’’ for observed data; ‘‘−’’ for 2.5% and 97.5% quantiles and ‘‘+’’ for the means of marginal frequencies. (A) the site-frequency
spectrum for frequencies from 2 to 39; (B) site-frequencies from 40 to 120.

Fig. 4. Site frequency spectrum for a sample size 141 under Kingman’s coalescent. Themutation rate is θ = 12. Points marked ‘‘o’’ for observed data; ‘‘−’’ for 2.5% and 97.5%
quantiles and ‘‘+’’ for the means of the marginal frequencies. (A) the site-frequency spectrum for frequencies from 2 to 39; (B) site-frequencies from 40 to 120.
frequencies are all in the (2.5%, 97.5%) quantile-intervals (panel B).
In ourmodel, with Y = 2, it is not unlikely to observe two frequent
haplotypes.

A similar type of result occurs for the site-frequency spectrum;
see Figs. 3 and 4. Our model predicts the data (Fig. 3). Under
Kingman’s coalescent (Fig. 4) one data point is outside the (2.5%,
97.5%) quantile-interval: the number of singleton polymorphisms.
Interestingly, our model specifically predicts the one middle-
frequency polymorphism (Fig. 3B), which exactly is the restriction-
site polymorphism that distinguishes the two high-frequency
haplotypes in the data.

Example 2. We used simulation Algorithm 1, described above,
to show how the expected site-frequency spectrum under our
model can differ from that under Kingman’s coalescent. Recall that
Algorithm 1 is for the case c = ∞ (N2εN → ∞), in which case
SREs dominate the ancestral process. We considered a number of
different parameters values: Y = 1, 2, 5, 10, 40, ∞, and φ = 0.5
(Y = ∞ corresponds to the Kingman’s coalescent) and a sample
size of 50. Fig. 5 shows the average site-frequency spectra for
each set of parameters. The site-frequency spectra for Y = 1 and
Y = 2 (n = 50) differ dramatically from what we expect under
Kingman’s coalescent. In particular, they are multi-modal, and are
not decreasing, convex functions of the frequency as is the case in
Kingman’s coalescent. This surprising behavior is a consequence
of there being multiple mergers in the ancestry; in Appendix B
we prove that the site-frequency spectrum is a decreasing convex
function of the frequency for the ‘‘general coalescent trees’’
of Griffiths and Tavaré (1998), which have only binarymergers but
may have any distributions of coalescence times.

Next, we show that the presence of multiple mergers also af-
fects the probability that an allele is the ancestral allele at a biallelic
segregating site, as a function of its frequency. In the case where
the expected site-frequency spectrum is a decreasing sequence,
the major allele is more likely to be the ancestral allele, as it is the
case for Kingman’s coalescent and for general coalescent trees. For
our model, this is not necessarily the case. In fact, we show below
that cases exist inwhich an allele in low frequency ismore likely to
be the ancestral allele. It is also possible that alleles with different
frequencies are equally likely to be the ancestral allele.

Using the results of Griffiths and Tavaré (1998) and Nielsen
(2000), it follows that expected number S(i) of mutant sites in
frequency i in a sample of size n, is given by

S(i) =
θ

2
ELi,

and the probability P(i) that a mutant allele at the segregating site
in a sample has frequency i is given by

P(i) =

E
(

µ

2 Lie
−

µ
2 Ln
)

E
(

µ

2 Lne
−

µ
2 Ln
) ,
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Fig. 5. Plots of expected site-frequency spectrum for sample size n = 50, φ = 0.5, Y = 1, 2, 5, 10, 40, ∞, in (A). In (B) Y is equal to 1, 2, 5. In both plots, c = ∞. Here
Y = ∞ gives Kingman’s coalescent. The horizontal axis is the frequencies of the segregating sites that are greater than 1.

Fig. 6. The ratio, P(i)/P(n − i), of probabilities of allele with frequency n − i being ancestral allele versus allele with frequency i = 2, . . . , b(n − 1)/2c. The points are
marked by ‘‘�’’ and ‘‘◦’’ respectively, for simultaneous multiple mergers and Kingman’s coalescent cases. In (A) the sample size is 50, and the values of parameters are Y = 1
and φ = 0.5. In (B) the sample size is 100, and the values of parameters are Y = 2 and φ = 0.7.
where again Li, i = 1, . . . , n − 1 is the sum of the lengths of the
branches in the tree with i descendants in the sample, and where
Ln is the total length of the tree. Then if we think of a nucleotide
site as a very small locus, (specifically, µ → 0), we have

P(i) =
ELi
ELn

.

Therefore,
S(i) ∝ P(i),
which we use below to estimate the ratios P(i)/P(n − i).

Let A and a be two alleles at a biallelic segregating site with
frequencies fA = i and fa = n− i. We can use a Bayesian argument
to predict which allele is more likely to be the ancestral allele. We
denote the prior probabilities for allele A or a to be ancestral as PA
and Pa, respectively. The posterior probabilities can be expressed
as

P(A | fA = i, fa = n − i) =
P(fA = i, fa = n − i | A)PA

P(fA = i, fa = n − i)
and

P(a | fA = i, fa = n − i) =
P(fA = i, fa = n − i | a)Pa

P(fA = i, fa = n − i)
,

where
P(fA = i, fa = n − i) = P(fA = i, fa = n − i | a)Pa

+ P(fA = i, fa = n − i | A)PA.
By definition, we have

P(fA = i, fa = n − i | a) = P(i)

and

P(fA = i, fa = n − i | A) = P(n − i).

Assuming a uniform prior for each allele to be the ancestral allele,
that is Pa = PA = 1/2, then the ratio of the posterior probabilities
is
P(a | fA = i, fa = n − i)
P(A | fA = i, fa = n − i)

=
P(i)

P(n − i)
=

S(i)
S(n − i)

.

We have already observed using simulations (see Fig. 5) that S(i) is
not necessarily a decreasing function of i. We can use simulation
results together with the above equation to estimate the ratios
P(i)/P(n − i), i = 2, . . . , n/2.

To do this, we consider the case c = ∞(N2εN → ∞) and either
a sample size of n = 50 with Y = 1 and φ = 0.5; or a sample
size of n = 100 with Y = 2 and φ = 0.7. The estimated ratios
P(i)/P(n − i) are plotted in Fig. 6. For the comparison, we plotted
the ratios for the case of Kingman’s coalescent. Since for Kingman’s
coalescent case Fu (1995) has shown that S(i) = θ/i hence the
ratios, P(i)/P(n−i) = (n−i)/i, i = 1, . . . , b(n − 1)/2c, are always
greater than one for Kingman’s coalescent, which means that the
major allele is more likely to be the ancestral allele. In the case of
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Fig. 7. In (A) and (B) the sample sizes aren = 10 andn = 200, respectively. Theplots are the expected site-frequency spectrumunderKingman’s coalescent and simultaneous
multiple mergers divided by mutation rate, the points are marked respectively for each case by ’’+’’ and ‘‘o’’. The values of the parameters for simultaneous multiple mergers
case are θ = 20, φ = 0.5, Y = 5; for Kingman’s coalescent, the mutation rate is θK = 23.

Fig. 8. The expected haplotype-frequency spectrum under Kingman’s coalescent and simultaneous multiple mergers, with points for each case marked ‘‘o’’ and ‘‘*’’
respectively. In (A) and (B) the sample sizes are n = 10 and n = 200. In simultaneous multiple mergers case, the values of the parameters are: θ = 20, φ = 0.5,
Y = 5. For Kingman’s coalescent case the mutation rate, θK = 23.
our model, one can see from Fig. 6, that these ratios, P(i)/P(n − i),
can be less than one or very close to one, meaning that the major
allele is not always more likely to be the ancestral allele.

Example 3. In our final example,we show that for fixed parameter
values in our model the difference between the predicted patterns
of genetic variation under our model and under Kingman’s
coalescent can depend crucially on the sample size. To illustrate,
we consider two values of the sample size: n = 10 and n = 200.
The values for the parameters in our model are Y = 10, φ = 0.5,
c = ∞ andmutation rate θ = 20. In this case, the ancestral process
is dominated by SREs, and when an SRE occurs φ = 0.5 of the
population is replaced by the offspring of Y = 10 individuals. For
Kingman’s coalescent we used a mutation rate of θK = 23, which
was chosen to give roughly the same overall level of polymorphism
in the two models.

We used simulations to estimate the expected site-frequency
and haplotype-frequency spectrum under our model and under
Kingman’s coalescent. As one can see from Figs. 7 and 8, when
the sample size is 10 the expected patterns of genetic variation
in the sample (specifically, the expected haplotype-frequency and
site-frequency spectra) from our model are very similar in shape
to the expected patterns under Kingman’s coalescent. However,
when the sample size is 200, then the predictions of our model
are significantly different than those of Kingman’s coalescent. This
implies that the power to reject the Kingman’s coalescent may
depend strongly on the sample size. We note that this effect
depends on Y : the larger Y is the larger the sample size needs to be
in order to detect a difference from Kingman’s coalescent (results
not shown).

3. Discussion

We have presented a forward-time reproduction model that
captures life history characteristics common to many marine
organisms. To understand patterns of genetic variation in a sample
of DNA sequences, we studied a number of different coalescent
approximations. Depending on the behavior of the underlying
parameters in the model, we find three different types of ancestral
processes: Kingman’s coalescent, a coalescent with asynchronous
multiple mergers, and a coalescent with simultaneous multiple
mergers. The model we analyze here is a generalization of the
model presented in Eldon and Wakeley (2006) in which Y = 1
and only asynchronous multiple mergers could occur. The model
in Eldon and Wakeley (2006) is a generalization of Moran model,
whereas our model represents a family of models that form a
continuum between Wright-Fisher models and Moran models.

We have also included the possibility in our model that XN
and YN are random variables. For example, in the case of mussels
living in the intertidal zone of the Pacific Northwest, Paine and
Levin (1981) showed that the habitat patch sizes resulting from
disturbance in winter storms, and other agents such as drifting
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logs, show an approximations log-normal distribution of areas.
Although we do not model spatial structure, this distribution of
patch sizes corresponds to the distribution of XN in our model.

To make some connection with other recent work on multiple-
mergers coalescent processes, when YN = 1 and XN has a
distribution then our model can converge to the so-called Λ-
coalescent processes, which has also been derived from branching
processes (Birkner et al., 2005). Thus, our model is also similar
to the family of coalescent processes currently being used to
approximate the genealogy of a sample from a neutral locus that is
linked to a locus that is under recurrent selective sweeps (Gillespie,
2000; Durrett and Schweinsberg, 2004; Schweinsberg and Durrett,
2005; Durrett and Schweinsberg, 2005).

As we have shown, mainly using simulations, commonly-held
intuitions about genetic variation in a sample, which derive from
Kingman’s coalescent, may not apply in the case of multiple-
mergers coalescent processes. First, our model does not always
predict that an allele in high frequency in a sample is likely to
be the oldest allele in the sample. This can be understood most
simply in the case Y = 2, φ = 1 and c = ∞, in which case
the ancestry is dominated by rather extreme SREs. When the first
SRE occurs in the ancestry of a sample of size n (and let us assume
that no mutations occur during the waiting time to this event),
then the numbers of descendants of the Y = 2 individuals are
determined by a Binomial(n, 1/2) distribution. It will be likely that
one or the other of the two individuals will be the ancestor of the
majority of the sample. The remainder of the ancestry is simply
the waiting time back to a common ancestor of the two ancestral
lineages. If a mutation occurs before this final coalescent event, it
will be equally likely to occur on the branch ancestral to either of
the Y = 2 individuals involved in the first (SRE) event. Thus, each
allele will have a 50% chance of being the oldest allele, regardless
of the frequencies.

We have also shown that when the sample size is small, it
will likely be difficult to detect the signature of sweepstakes
effect (Hedgecock, 1994), that is the presence of SREs. Some
intuition can be gained from our analysis of the case YN → ∞,
where the ancestral process converges to Kingman’s coalescent.
Simply put, when the number of possible ancestors of the sample
is very large, multiple-mergers coalescent events will be unlikely
compared to binary mergers. Our simulations demonstrate the
same kind of effect in the case where, technically, the ancestral
process does not converge to Kingman’s coalescent but rather to a
coalescentwith simultaneousmultiplemergers (Y > 1, but finite).
If the sample size ismuch smaller than Y , the probability of a binary
mergerwill be roughly Y timesmore likely than the probability of a
multiple merger. If only binary mergers happen to occur, then the
ancestry will look very much like Kingman’s coalescent. So, very
large sample sizes may be required in order to detect the presence
of SREs when there are a large number of potential parents at each
SRE.

Appendix A

The proof of the fact that the approximation of the genealogy of
a sample under our model is Kingman’s coalescent if the following
condition holds: YN → ∞ or XN/N → 0.

According to Table 1, the genealogy of a sample can be
approximated by Kingman’s coalescent if the following limit
conditions are satisfied:

P1(1, 1) → 0 and
P1(1, 1, 1)
P1(1, 1)

→ 0.

First, from approximation (4) it follows that P1(1, 1) → 0 as YN →

∞ or XN/N → 0. Second, because of the approximations (4)–(5)
the second limit condition is equivalent to the condition that the
ratio P̃1(1,1,1)
P̃1(1,1)

converges to zero as N → ∞, where P̃1(1, 1, 1) and

P̃1(1, 1) are the expressions on the right in the approximations
(4), (5), respectively. And to prove it, first, we get an upper bound
for the ratio P̃1(1,1,1)

P̃1(1,1)
then we show that the upper bound becomes

small as N → ∞.
One can easily see that

εNE
X2
N

N2

(
XN − 1
XNYN

+
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XN
N )

XN

)
≤ P̃1(1, 1).

Hence we have

P̃1(1, 1, 1)

P̃1(1, 1)
≤
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It is obvious that
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therefore we have
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Now, because of the condition: YN → ∞ or XN/N → 0, it follows
that (XN−1)

NYN
uniformly converges to zero, which means that for any

positive δ the ratio (XN−1)
NYN

is less than δ for big N (more precisely:
there is an Nδ such that the inequality holds if N > Nδ). Hence,
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as N > Nδ . Thus, combining the above estimates we have

P̃1(1, 1, 1)

P̃1(1, 1)
<

3
2
δ, as N > Nδ.

Therefore, the ratio P̃1(1,1,1)
P̃1(1,1)

converges to zero because the right-
hand side of the inequality above can be made arbitrarily small.

Appendix B

The proof of the fact that the probability distribution of the
frequency of a mutant allele in the sample is a decreasing and
convex sequence when the genealogies of samples are approximated
by general coalescent trees.

For the cases when the genealogies of samples are approxi-
mated by general coalescent trees (see Griffiths and Tavaré (1998,
2003)) the probability distribution of the frequency of a mutant al-
lele at a particular segregating site in a sample is

P(i) =

n∑
k=2

kpn,k(i)ETk

n∑
k=2

kETk

where P(i) is the probability that themutant allele at a segregating
site (in a sample of size n) has frequency i; Tk is the waiting time
to the next coalescent event (looking backwards in time) in a
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general coalescent tree when the sample has k ancestors just after
a coalescent event; pn,k(i), i = 1, . . . , n−1 are defined as follows:

pn,k(i) =


(

n−i−1
k−2

)
(

n−1
k−1

) if 2 ≤ k ≤ n − i + 1,

0 if k > n − i + 1.

(12)

We assume that ETk 6= 0, k = 2, . . . , n and n > 2. Under
these conditions, first we show that this probability distribution is
a deceasing and convex sequence. However, if these conditions do
not hold then from the proof below, it follows that the probability
density is a non-increasing sequence.

First we show that pn,k(b) is decreasing with respect to b, b =

2, . . . , n − k + 1, for fixed n and k, k > 2. From the definition of
pn,k(i) one can easily check that the following identity is true:

pn,k(i) − pn,k(i + 1) = pn,k(i)
k − 2

n − i − 1
,

if 1 ≤ i ≤ n− k. From this identity it follows that, for fixed n and k,
pn,k(i) is a decreasing sequence with respect to i, i = 1, . . . , n − k,
when k > 2; if k = 2 then pn,k(i) is a constant with respect to i.
Also, it is obvious that pn,k(i)−pn,k(i+1) ≥ 0 for i, n−k < i ≤ n−1.
Thus, pn,k(i) is a non-increasing sequence for i = 1, . . . , n− 1, but
it is a decreasing sequence if k = 3.

We have that P(i) is the linear combination of non-increasing
sequences, pn,k(i), with non-negative coefficients, therefore P(i)
is non-increasing. Since we assume that ET3 6= 0 and pn,3(i) is a
decreasing sequence, therefore P(i) is a decreasing sequence.

Now, to show that P(i) is a convex sequence we check that the
sequences pn,k(i) are convex with respect to i, i = 1, . . . , n − 1.
Thus, it is enough to see that the following conditions hold (for
fixed n and k): 2pn,k(i) − (pn,k(i − 1) + pn,k(i + 1)) ≤ 0, where
i = 2, . . . , n − 2. From the definition of pn,k(i) one can easily see
that the following identities are true:

2pn,k(i) − (pn,k(i − 1) + pn,k(i + 1))

= −pn,k(i)
(k − 2)(k − 3)

(n − i − 1)(n − i − k + 2)
,

if n − k + 1 < i ≤ n − 1; and

2pn,k(n − k + 1) − pn,k(n − k) =
(3 − k)(

n−1
k−1

) ,

if k > 2. Since from definition (12)we have pn,k(j) = 0, n−k+1 <
j ≤ n − 1, combining this with the above identities we have that
pn,k(i) is a convex sequence. Because P(i) is the linear combination
of pn,k(i) with non-negative coefficients, therefore P(i) is a convex
sequence.
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