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a b s t r a c t

We show that the number of segregating sites is a sufficient statistic for the scaled mutation parameter
(θ) in the limit as the number of sites tends to infinity and there is free recombination between sites. We
assume that themutation parameter at each site tends to zero such than the total mutation parameter (θ)
is constant in the limit. Our results show thatWatterson’s estimator is themaximum likelihood estimator
in this case, but that it estimates a composite parameter which is different for different mutation models.
Some of our results hold when recombination is limited, because Watterson’s estimator is an unbiased,
method-of-moments estimator regardless of the recombination rate. The quantity it estimates depends
on the details of how mutations occur at each site.

© 2010 Elsevier Inc. All rights reserved.
1. Introduction

One of the main goals of population genetics is to estimate pa-
rameters such as the population scaledmutation rate. For a diploid
organism, this parameter is defined as θ = 4Nµ, where N is the
population size and µ is the mutation rate. For a haploid organ-
ism, it is defined as 2Nµ. The mutation rate µ is defined in one of
two different ways: as a rate per genetic locus or as a rate per nu-
cleotide site. With the additional concept of effective population
size – whereby N is replaced by Ne – the parameter θ = 4Neµ has
been shown to accurately capture the balance between the intro-
duction of genetic variation bymutation and its loss by random ge-
netic drift in a single large population, nearly irrespectively of the
demographic details of the population (Ewens, 1982; Sjödin et al.,
2005). In more complicated scenarios, such as whenmultiple pop-
ulations are connected by migration, other parameters arise and it
is of interest to estimate these as well.
Population parameters are estimated from genetic data that is

sampled from the population. Decades ago, genotypes could only
bemeasured indirectly, usingmethods like protein electrophoresis
or restriction-enzyme digests of DNA, while today it is possible
to obtain genotypes directly, for example by sequencing DNA.
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Statistical models for estimating population parameters have been
developed for the whole range of types of data, and this accounts
for the different definitions of the mutation rate, µ, that appear in
the literature. Earlier models are still in use, althoughmost current
applications use DNA data and the associated statistical models.
The problem of estimating population parameters from genetic

data is complicated by the fact that individuals sampled from the
population are related through common ancestors. These ances-
tries cannot be observed directly, and must be treated as missing
data. One result of common ancestry is that genotypes at two or
more sites among a sample of individuals may not be independent
if the sites are physically close together in the genome. Methods
of estimating population parameters vary from simple method-of-
moments estimators, based on closed-form analytic expressions,
to maximum-likelihood or Bayesian estimators, which ‘‘integrate’’
over ancestries using Monte Carlo methods. Due to the compli-
cated structure of genetic data, induced by common ancestry, the
statistical properties of most estimators are known only through
simulations.
Here,we focus on one particular statistical property called suffi-

ciency. A sufficient statistic for a parameter is one which captures
all of the information in a data set relevant to the estimation of
that parameter; specifically such that the likelihood of the param-
eter does not depend on any other aspect of the data. Although
this is but one of several possible measures of the quality of an
estimator, studies of sufficiency may be of particular importance
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in population genetics due to the growing popularity of approxi-
mate Bayesian computing (Beaumont et al., 2002) and othermeth-
ods of inference based on summary statistics rather than the full
data. If we want to estimate a given parameter, then knowledge
about which aspects of the data contain information about the pa-
rameter will facilitate the choice of summary statistics.
Our concern here is much simpler than this. We focus on

the standard model of population genetics: the neutral, diploid,
monoecious Wright–Fisher model (Fisher, 1930; Wright, 1931).
The population scaled mutation rate for this model is θ = 4Nµ
(becauseNe = N in this case). Note that, implicitly inwhat follows,
µ is defined as themutation rate for all the sites that are genotyped
in the sample. Following a suggestion made by Ewens (1974), our
goal is to show that the number of segregating (or polymorphic)
sites in a sample is a sufficient statistic for θ under a version of
Kimura’s (Kimura, 1969) infinitely-many-sites model.
Two different infinitely-many-sites models have been pro-

posed, one by Kimura (1969) and another by Watterson (1975).
In both models, each mutation occurs at a previously unmutated
site. Conceptually, multiple mutations at single sites will never oc-
cur if θ is finite and there are infinitely-many sites. In contrast, the
two models make very different assumptions about recombina-
tion, which is the process that mediates the dependence between
sites due to common ancestry (Hudson, 1983; Kaplan and Hud-
son, 1985). Watterson’s model assumes that recombination does
not occur between sites, while Kimura’s model assumes that re-
combination is so frequent between sites that their genotypes are
independent.
In Watterson’s infinitely-many-sites model, each new muta-

tion creates a new allele (or haplotype) which is then faithfully
transmitted due to the absence of recombination. Thus, if only al-
lelic states are recorded, Watterson’s infinitely-many-sites model
is equivalent to the infinitely-many-alleles model (Malécot, 1946;
Kimura and Crow, 1964). This is not true for Kimura’s infinitely-
many-sites model because recombination may also create new al-
leles. Ewens (1972) showed that the number of distinct alleles, k, in
the sample is a sufficient statistic for θ under the infinitely-many-
alleles model. The sample frequencies of alleles contain no addi-
tional information about θ . Note that, if the number of possible
alleles is finite and equal to K , then the observed number of alleles
k is not a sufficient statistic for θ . Ewens’ (Ewens, 1972) result is
then seen as a limiting result, as K →∞.
If, rather than the number of alleles, k, one records the number

of segregating sites, k∗, then this too may be used to estimate
θ . As Ewens (1974) showed for the infinitely-many-sites model
with free recombination and Watterson (1975) showed for the
infinitely-many-sites model with no recombination, the quantity

k∗

n−1∑
j=1
1/j
, (1)

where n is the sample size, provides an unbiased estimate of θ . It
is straightforward to show that this remains true with any rates of
recombination between sites. Wewill follow the common practice
of calling Expression (1) ‘‘Watterson’s’’ estimator. The notation k∗
is from Ewens (1974), and is equivalent to the quantity S which
appears in the literature.
In general, k∗ is not a sufficient statistic for θ (Ewens, 1974;

Watterson, 1975), but Ewens (1974) suggested that this would
be true under Kimura’s infinitely-many-sites model. Here, we
adopt Kimura’s assumption that the sites that are genotyped in
the sample are statistically independent of one another, so that
the probability of the full data set is equal to the product of the
probabilities of the data at each site. Unlike Kimura (1969) (and
also Watterson (1975)) who assumed implicitly that the number
of sites is infinite, we consider a collection of L sites and obtain the
infinitely-many-sites model in the limit L → ∞. We will assume
that θ , which again applies to the entire collection of L sites, is finite
in the limit, so that the mutation rate at each site tends to zero.
Then, each segregating site will be the result of its own unique
mutation as in Kimura’s model.
For a number of different pre-limiting models, which differ in

the mutation process at each site, we find that k∗ is a sufficient
statistic for θ in the limit L→∞. This is not true of k∗ in the pre-
limiting, finitely-many-sites models.
We note that the sufficiency of k∗ for θ in the limiting model is

implicit in the Poisson Random Field (PRF) models of Sawyer and
Hartl (1992). This holds in other versions of PRFmodels aswell. The
other versions include Williamson et al. (2004) where dominance
is modeled and incorporated, Wakeley (2003) where population
subdivision is modeled, and Zhu and Bustamante (2005) where
linkage between sites is incorporated; see also Bustamante et al.
(2002, 2005) and Sawyer et al. (2003). However, in these models it
is assumed at the outset that each mutation occurs at a previously
unmutated site, while in our models this is a result that occurs
in the limit L → ∞. Desai and Plotkin (2008) recently studied a
finitely-many-sitesmodel with selection and symmetricmutation,
but did not consider the limit L→∞.
Our results have implications for the analysis of DNA sequences

or other genetic data. In particular, for all the pre-limiting mod-
els we consider, we show that the unbiased maximum likelihood
estimator (MLE) of θ , based on k∗ in the limit L → ∞, is equal
to Watterson’s estimator Expression (1) times by a constant which
depends on the pattern of mutation among alleles at each site.
If there is more than one mutation parameter involved, then the
MLE is a combination of Expressions (1) applied to those parame-
ters (Section 2.3). Therefore, Expression (1) by itself applied to data
does not estimate θ , but rather θ times this constant. For exam-
ple, consider the simple case where K = 2 alleles (‘1’ and ‘2’) are
possible at each site but mutation rates may be asymmetric, then
Watterson’s estimator estimates the harmonic mean of the two
mutation rates, θ12 and θ21. Since Watterson’s estimator is a
method-of-moments estimator based on the expected number of
segregating sites, this result hold for any levels of recombination
between sites. By extension, the ‘‘θ ’’ estimated from a sample of
DNA sequences will depend on the frequencies of the four nu-
cleotides and the rates of mutation among them, in a way that is
not recognized in simple infinitely-many-sites models.

2. Models and theory

We begin this section with a general statement of the model
and our main result, Theorem 1. Subsequently, we apply the result
to some well known models for the mutation process at each site.
We use the word ‘‘site’’ to emphasize the connection to DNA data,
but we do not restrict ourselves to DNA-based (K = 4) models. For
example, in Section 2.1 we allow infinitely-many-alleles mutation
at each site. Although the word ‘‘locus’’ might be better in this
case, we use site in all cases for simplicity and to underscore one
important aspect of our results, which is that all of the models
converge to a version of Kimura’s infinitely-many-sites model in
the limit as the number of sites tends to infinity. We end this
section with a brief discussion of non-independent sites.
Consider L sites. In general, we may think of a sample of size ni

taken at site i. Let ki be the number of allelic types that are observed
in the sample and let θi be the mutation parameter at the site i.
The infinitely-many-sites model with free recombination between
sites (hereafter ISM), as it is usually applied to a sample, involves
four assumptions:

Assumption 1. The allele frequencies in the L sites are indepen-
dent of each other.

Assumption 2. The sample size ni is the same at every site: ni = n
for all i = 1, 2, . . . , L.
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Assumption 3. The totalmutationparameter θ is finite, i.e.
∑L
i=1 θi

= θ <∞, even in the limit L→∞.

Assumption 4. The per-site mutation parameter is the same at
every site: θi = θL = θ/L for all i.
Let us make all four assumptions to study the limiting behavior

of the joint distribution of the allele-counts at the sites. Some of
these assumptions may be relaxed, as noted later in this section.
For the sake of clarity and simplicity, however, we will make all
four assumptions here. Again, the fundamental idea is to consider
a large number of such sites, all independent of one another, and
for which θL is small.
Now, let k∗ be the number of segregating sites, which is the

number of sites among our L sites that have at least two alleles in
the sample. Let k∗0 = L − k

∗ be the number of monomorphic sites
and k∗j , j = 1, 2, . . . , [n/2], be the number of sites with exactly
two-alleles with counts j and n − j (j, n − j > 0). Note that k∗j
includes both sites at which the mutant base is in count j (and the
ancestral base is in count n− j) and sites at which the mutant base
is in count n − j. Thus, we assume that the ancestral state at each
site is unknown, which is appropriate because this information is
essentially never available. Let f2,j(θL) be the probability of a site
having exactly two alleles with counts j and n − j (j, n − j > 0)
and f>2(θL) be that of a site having more than two alleles.

Theorem 1. Suppose that we have L independent sites, where each
site has the same allele distribution satisfying the following conditions:

f2,j(θL) = θLcj + O(θ2L ) j = 1, 2, . . . , [n/2], (2)

f>2(θL) = O(θ2L ). (3)

Then, in the limit L→∞ and holding θ = LθL constant:
(i) the joint probability distribution of (k∗0, k

∗

1, . . . , k
∗

[n/2]) converges
to the distribution of a PRF model, (Sawyer and Hartl, 1992) as
L→∞.

(ii) the asymptotic distribution of the total number of segregating sites
k∗ is Poisson with mean θ

∑[n/2]
j=1 cj.

Moreover, if the cj are known quantities, then in the limit:
(iii) k∗ is sufficient for the parameter θ .
(iv) the MLE of θ based on the distribution of k∗ is

θ̂ =
k∗

[n/2]∑
j=1
cj

,

which is a version of Watterson’s estimator.
(v) each segregating site has exactly two alleles.
Proof. It follows from Eqs. (2) and (3) that the probability of
observing a single allele is

f1(θL) = 1− θL
[n/2]∑
j=1

cj + O(θ2L ).

Thus, for a given L, the distribution of k∗0, k
∗

1, . . . , k
∗

[n/2] differs by
O(Lθ2L ) from the multinomial distribution

Pr(k∗0, k
∗

1, . . . , k
∗

[n/2]|L, θL, n)

=

(
L

k∗0k
∗

1 · · · k
∗

[n/2]

)
(1− c0θL)k

∗
0 (c1θL)k

∗
1 · · · (c[n/2]θL)

k∗
[n/2] , (4)

where c0 =
∑[n/2]
j=1 cj. As L tends to infinity, with θ = LθL fixed,

(k∗1, . . . , k
∗

[n/2]) converges in distribution tomutually-independent
Poissons with parameters θcj, j = 1, 2, . . . , [n/2] (see, for exam-
ple, Feller (1970) page 172). Thus, the joint probability distribution
of (k∗0, k

∗

1, . . . , k
∗

[n/2]) converges to the distribution of a PRF. This
proves (i).
The limiting joint probability mass function of k∗1, . . . , k
∗

[n/2] is,

Pr(k∗1, . . . , k
∗

[n/2]|θ, n)
[n/2]∏
j=1

e−θcj
(θcj)

k∗j

k∗j !

= e

(
−θ
[n/2]∑
j=1

cj
) (
[n/2]∏
j=1

cj
k∗j

k∗j !

)
θ k
∗

.

Using factorization criterion for sufficiency, k∗ is a sufficient statis-
tic for θ in the limiting distribution. This proves (iii).
As k∗1, . . . , k

∗

[n/2] are asymptotically independent Poisson ran-
dom variables with means θc1, θc2, . . . , θc[n/2] respectively,

k∗ =
[n/2]∑
j=1

k∗j

is asymptotically Poisson distributed with mean θ
∑[n/2]
j=1 cj. This

proves (ii).
It follows that theMLE of θ based on the asymptotic distribution

of k∗ is
k∗

[n/2]∑
j=1
cj

.

This proves (iv).
The statement (v) then follows from Eq. (3). �

It is easy to show that a version Theorem 1 will still hold if we
relax Assumptions 2 and 4 in the following way:

Assumption 2′. Suppose that the sample size is ni′ for a fraction γi′
of the sites (i′ = 1, 2, . . . , L′), where ni′ and γi′ are known.

Assumption 4′. Suppose that θi′′ = yi′′θ for a fraction βi′′ of all the
sites (i′′ = 1, 2, . . . , L′′), where yi′′ and βi′′ are known. (The sum of
all the site-specific mutation parameter is θ ; that is

∑
i′′ βi′′θi′′ =

θ .)

2.1. Infinitely-many alleles

Ewens (1972) discovered a now well known sampling formula
under the infinitely-many-alleles model of mutation. In particular,

Pr(k, a1, a2, . . . , an|θL, n) =
θ kL n!

(θL)(n)
n∏
j=1
jajaj!

(5)

is the probability that a sample of size n contains k different allelic
types and that aj alleles are represented j times in the sample, for
j = 1, 2, . . . , n, and where
(θL)(n) = θL(θL + 1) · · · (θL + n− 1).
Using Eq. (5), we have

f2,j(θL) = θL

(
1
j
+

1
n− j

)
+ O(θ2L ) if j 6= n/2, (6)

f2,n/2(θL) = 2θL/n+ O(θ2L ), (7)
which agrees with the result obtained by Tajima (1989) and Fu
(1997) for Watterson’s infinitely-many-sites model.
Thus, the infinitely-many-alleles model conforms to the

conditions in Eqs. (2) and (3) with cj = 1/j+1/(n− j), for j 6= n/2,
and cn/2 = 2/n. Therefore, we may apply Theorem 1. Thus, k∗ is
sufficient for θ . Moreover,

θ̂ =
k∗

n−1∑
j=1
1/j
,
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which is identical to Watterson’s estimator, is the MLE of θ based
on the limiting distribution. It also follows from Theorem 1 that
each segregating site has exactly two alleles in the limit. We do
not distinguish between the ancestral and the derived type in Eqs.
(6) and (7), but this is not relevant to the inference of the mutation
parameters.

2.2. Parent-independent mutation

Next we will consider a multiallelic model with K(<∞) alleles
and ‘parent-independent’ mutation. Under parent-independent
mutation (PIM), the mutation rate from allele i′ to allele i does not
depend on i′, butmay depend on i. Letπi be the probability that the
mutated allele is of the type i, given that amutationhas takenplace,
where

∑K
i=1 πi = 1. Then at each site, the mutation parameter

associatedwith amutation to allele i is θLπi. Note that in thismodel
an allele can ‘‘mutate’’ to an allele of the same type.
Under PIM, the stationary distribution of allele frequencies in

the population is Dirichlet with K parameters, and with parameter
i equal to θLπi (Wright, 1949). The probability of observing ji copies
of allele i (i = 1, 2, . . . , K ) in a sample of size n is multinomial-
Dirichlet, with the probability function
f (j1, j2, . . . , jK−1; n, K , θL, π1, π2, . . . , πK )

=
n!

j1!j2! . . . jK !
DK (j1 + θLπ1, j2 + θLπ2, . . . , jK + θLπK )

DK (θLπ1, θLπ2, . . . , θLπK )

=
n!

j1!j2! . . . jK !
Γ (j1 + θLπ1)
Γ (θLπ1)

Γ (j2 + θLπ2)
Γ (θLπ2)

. . .

×
Γ (jK + θLπK )
Γ (θLπK )

Γ (θL)

Γ (n+ θL)
.

Note that
Γ (j+ θL)
Γ (θL)

= (j− 1)!θL + O
(
θ2L
)
for j > 0, and (8)

Γ (ji + θLπi)
Γ (θLπi)

= πiθL(ji − 1)! + O
(
θ2L
)

if and only if ji > 0. (9)
Therefore, the probability of observing j copies of allele i1 and n− j
copies of allele i2 is
n!

j!(n− j)!
Γ (j+ θLπi1)
Γ (θLπi1)

Γ (n− j+ θLπi2)
Γ (θLπi2)

Γ (θL)

Γ (n+ θL)

=
n!

j!(n− j)!

(
(j− 1)!θLπi1

)(
(n− j− 1)!θLπi2

)(
(n− 1)!θL

)−1
= θLπi1πi2

(
1
j
+

1
n− j

)
+ O

(
θ2L
)
. (10)

Thus, the probability of observing exactly two alleles of counts j
and n− j is

θL

(
K∑
i=1

πi(1− πi)

)(
1
j
+

1
n− j

)
+ O

(
θ2L
)
if j 6= [n/2] (11)

θL

(
K∑
i=1

πi(1− πi)

)
2
n
+ O

(
θ2L
)
if j = [n/2] (12)

which has the form of Eq. (2). Also, from Eqs. (8) and (9) the
probability of observing at least three alleles in the sample isO(θ2L ).
Therefore, we may apply Theorem 1. Each segregating site has

exactly two alleles in the limit,

cj =

(
1−

K∑
i=1

π2i

)(
1
j
+

1
n− j

)
if j 6= n/2, (13)

cn/2 =

(
1−

K∑
i=1

π2i

)
2
n
, (14)
and the statistic k∗ is Poisson with mean

θ

(
1−

K∑
i=1

π2i

)
n−1∑
j=1

1/j.

If π1, π2, . . . , πK are known, then k∗ is sufficient for θ and theMLE
of θ based on the limiting distribution of k∗ is

θ̂ =
k∗(

1−
K∑
i=1
π2i

)
n−1∑
j=1
1/j
. (15)

Note that Eq. (15) is amultiple ofWatterson’s estimator. Applied as
is, Watterson’s estimator Expression (1) would give an estimate of
θ(1−

∑K
i=1 π

2
i ), which wemay think of as the net rate of mutation

to different alleles. This is desirable since it is only formathematical
convenience that the PIM model includes false mutation events
between alleles of the same type.
In the case of symmetric mutation, where πi = 1/K for all i,

Eq. (15) becomes

θ̂ =
k∗

(1− 1/K)
n−1∑
j=1
1/j
,

and direct application Expression (1) provides an estimate of θ(1−
1/K), which in this case is exactly the rate of mutation to different
alleles. If K = 4, then this model is equivalent to the Jukes–Cantor
substitution model (Jukes and Cantor, 1969).
Finally, the cj’s in Eqs. (13) and (14) converge to those from the

infinitely-many-alleles model as long as

lim
K→∞

K∑
i=1

π2i = 0. (16)

This increases the generality of the results.

2.3. Two alleles

Here we consider the simple, special case of two alleles with
possibly asymmetric mutation. Call the two alleles ‘1’ and ‘2’ and
let θ12 and θ21 be the mutation rates from allele 1 to allele 2 and
from allele 2 to allele 1, respectively, at each site. This general two-
allele model can be converted into the PIM model with K = 2 by
setting
θL = θ12 + θ21, π1 = θ21/(θ12 + θ21), π2 = 1− π1.
Then, we may apply the results of the previous subsection.
Recalling that θ = LθL, then k∗ is Poisson distributed in the limit
with mean

θ

[n/2]∑
j=1

cj = L(θ12 + θ21)
2θ12θ21

(θ12 + θ21)2

n−1∑
j=1

1/j

= L
2θ12θ21

(θ12 + θ21)

n−1∑
j=1

1/j, (17)

so that the overall mutation rate estimated using Watterson’s
estimator is equal to L times the harmonic mean of the two rates
of mutation. If mutation is symmetric, and θ12 = θ21 ≡ θ∗, then
Watterson’s estimator estimates Lθ∗.

2.4. Dependent sites

In this subsection we discuss the case of dependent sites, that
is sites without free recombination between them. Note that,
dependence (or lack thereof) between a set of random variables
does not change the expected values. Therefore, any method-
of-moments estimator based on the limiting distribution of
independent sites remains valid for dependent sites, meaning that
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its expected value is equal to the corresponding parameter. More
rigorously, suppose that Y (i)j is the indicator variable that site i has
exactly two alleleswith counts j and n−j. Then k∗j =

∑L
i=1 Y

(i)
j , and

E(k∗j ) = E

(
L∑
i=1

Y (i)j

)
=

L∑
i=1

E
(
Y (i)j
)
,

which shows that the expected number of segregating sites de-
pends only on the marginal expectation of Y (i)j . Also,

E(k∗) =
[n/2]∑
j=1

E(k∗j )→ θ

[n/2]∑
j=1

cj.

All the estimators of θ described above aremethod-of-moments
estimators, in addition to being MLEs of θ when sites are inde-
pendent. Therefore, they will be valid as unbiased, method-of-
moments estimators in the case of dependent sites.

3. Discussion

In this article we have proved that the number of sites segre-
gating among a large number of independent sites is sufficient for
estimating the mutation parameter θ . Our results show that the
common interpretation of this parameter corresponds to particular
highly symmetric models of mutation, when the mutation rate at
each site is very small and there is a very large number of sites. Two
examples are the K -allelemodel with symmetric mutation and the
infinitely-many-alleles model under the condition in Eq. (16). In
these cases, Watterson’s estimator is the MLE of θ if sites are inde-
pendent, and is an unbiased method-of-moments estimator of θ if
sites are not independent.
Watterson’s estimator is often applied to DNA sequence data.

Although such data typically contain non-independent sites, some
general conclusions of our work still apply. In particular, it is well
known that mutation rates among the four nucleotides are not
symmetric; e.g., see Chapter 13 of Felsenstein (2004). Although we
were unable to obtain results for general mutation models with
more than two alleles, the result for a general two-allele model
shown in Eq. (17) and the result for a K -allele model with parent-
independent in Eq. (15) demonstrate that Watterson’s estimator
estimates a net mutation rate which depends on the details of how
mutation operates at individual sites. It is logical to re-define θ as
this net mutation rate (θnet). For example, θnet = θ(1 −

∑K
i=1 π

2
i )

for the PIM model; for the symmetric mutation model θnet =
θ(1− 1/K); for the two-allele model

θnet =
2θ12θ21

(θ12 + θ21)
,

the harmonic mean of the two mutation rates. It is, however,
important to keep in mind that θnet will then be a function of the
mutation model.
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