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Abstract

We show that the number of lineages ancestral to a sample, as a function of time back into the past, which we call the number
of lineages as a function of time (NLFT), is a nearly deterministic property of large-sample gene genealogies. We obtain analytic
expressions for the NLFT for both constant-sizedand exponentially growing populations. The low level of stochastic variation
associated with the NLFT of a large sample suggests using the NLFT to make estimates of population parameters. Based on
this, we develop a new computational method of inferring the size and growth rate of a population from a large sample of
DNA sequences at a single locus. We apply our method first to a sample of 1,212 mitochondrial DNA (mtDNA) sequences
from China, confirming a pattern of recent population growth previously identified using other techniques, but with much
smaller confidence intervals for past population sizes due to the low variation of the NLFT. We further analyze a set of 63
mtDNA sequences from blue whales (BWs), concluding that the population grew in the past. This calls for reevaluation of

previous studies that were based on the assumption that the BW population was fixed.

Key words: coalescent, human population growth, blue whale population, large-sample theory, mitochondrial DNA.

Introduction

Because mutations accumulate over time along genetic lin-
eages within a population, genetic variation in a sample
taken today contains a record of past processes and events.
We can therefore make inferences about the past from
samples of DNA sequences or other genetic data. The cur-
rent astounding pace of improvement in methods of DNA
sequencing and genotyping offers an unprecedented op-
portunity to achieve the long-standing goal of population
genetics, which is to quantify the forces that shape varia-
tion within the genomes of humans and other species. The
technologies of population-genetic inference have also un-
dergone amazing growth recently, especially in the area of
computation, but they cannot be said to have kept pace
with methods of sequencing and genotyping. The impend-
ing availability of immense data sets—such as those from
the 1000 Genomes Project (http://www.1000genomes.org)
and even more ambitious ventures which will no doubt be
undertaken—provides strong motivation to develop infer-
ence methods for data sets that are very large both in the
number of individuals sampled and in the number of base
pairs sequenced.

We contribute to this endeavor by developing a new
method of estimating demographic parameters, especially
two of the principal quantities that determine the fate of
a population: the effective population size and the popu-
lation growth rate. Based on the large-sample asymptotic
properties of gene genealogies, we show how the number
of lineages ancestral to a sample depends on these two

quantities. In striking contrast to the properties of small-
sample gene genealogies, which are subject to high levels
of stochastic variation, we show that the number of ances-
tral lineages declines nearly deterministically as a function
of time in the past if the sample size is large. Our method
of estimation is straightforward to implementand relatively
cheap computationally. It provides point estimates, which
simulations suggest are unbiased, together with confidence
intervals obtained by a parametric bootstrap approach. Al-
though it is a computational method, it is based on a coa-
lescent analysis that illustrates how the availability of large
samples can alleviate the formidable computational burden
of coalescent-based inference.

A coalescent analysis involves modeling the genetic
ancestry of a sample back to its most recent common
ancestor (MRCA). In all, this ancestry is called the gene
genealogy. All members of a sample share the same
gene genealogy, and the resulting nonindependence makes
population-genetic inference particularly difficult. In or-
der to make quantitative estimates of the processes af-
fecting a population, using genetic data, it is necessary to
account for the fact that the true gene genealogy is un-
known (or “missing data”). This requires a statistical model
for sampling gene genealogies. Most current methods of
inference are based on the standard neutral coalescent
(Kingman 1982a,b; Hudson 1983; Tajima 1983), as this
model has proven surprisingly robust to deviations from
its initial assumptions (M&hle 1998; Nordborg and Krone
2002).
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The standard neutral coalescent is a model for a small
sample from a large population whose size is constant over
time. It is a stochastic process that generates a random-
joining tree for the gene genealogy, together with a series of
random coalescence times, one for each node of the tree.
Time is usually rescaled by twice the “effective” popula-
tion size. (This is the robustness of the coalescent: It can be
applied to many different kinds of populations provided one
replaces the actual size of a population with its effective
size; Nordborg and Krone 2002; Sjodin et al. 2005.) After this
rescaling, neutral mutations occur with rate 6 /2 along each
branch of the tree, where 6 is proportional to the product
of the effective population size and the rate of neutral mu-
tation per generation. See Hein et al. (2005) and Wakeley
(2008) for reviews of the basic model as well as its extensions
to include population structure, changes in population size
over time, and selection.

The most exact methods of population genetic inference
are based on the likelihood of a full data set, with the ad-
dition of prior distributions of parameters in the case of
Bayesian methods. The likelihood is the probability of the
data under the model (e.g, the standard neutral coales-
cent) with specific values of parameters (e.g., #). Formally,
the likelihood might be computed by averaging over the
unknown gene genealogy of the sample, considering every
possible gene genealogy in proportion to its probability un-
der the coalescent model. In practice, this is achieved by
Monte Carlo integration—employing simulations to sample
a large number of randomly generated gene genealogies un-
der the coalescent model—using a variety of different tech-
niques. Canonical references to these methods are Griffiths
and Tavaré (1994a,b) and Kuhner et al. (1995), with reviews
by Stephens (2001), Tavaré (2004), and Felsenstein (2007).

The task of averaging over gene genealogies to compute
likelihoods represents a serious challenge due to the enor-
mity of the space of gene genealogies and the fact that only
a miniscule fraction of them contribute significantly to the
likelihood of any particular data set. Further, the computa-
tional burden increases explosively with the sample size, as
the data become more and more complicated. In response
to this, a number of approximate methods have been pro-
posed in which inferences are based on manageably small
sets of “summary statistics” extracted from the data (Fu and
Li 1997; Tavaré et al. 1997; Weiss and von Haeseler 1998;
Pritchard etal. 1999; Beaumont et al. 2002; Leman et al. 2005;
Becquet and Przeworski 2007). The success of summary-
statistic methods depends on reducing the dimensionality
of the data, so that a greater fraction of gene genealogies can
contribute to the computation, while preserving the infor-
mation in the data relevant to the population parameters of
interest.

The approach we take here shares some key features with
summary statistic methods. Our inferences are based on in-
formation extracted from the data rather than on the full
data set itself, and our method involves the simulation of
gene genealogies. It differs slightly in concept because our
summary statistics are indirect estimates of the properties
of the gene genealogy instead of direct summaries of the
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data. However, our approach is primarily distinguished by
the fact that it capitalizes on the special properties of gene
genealogies of large samples. We demonstrate this with
novel analytical results for both stable fixed size and expo-
nentially growing populations. Specifically, we show that the
backward-time dynamics of one feature of the tree—the
number of lineages as a function of time or NLFT—is essen-
tially deterministic when the number of lineages is large. We
obtain expressions for the NLFT that are simple and accu-
rate. The nearly deterministic behavior of the NLFT means
that a relatively small sample of gene genealogies may be
taken as representative of all gene genealogies.

Watterson (1975) initiated the study of large samples,
but subsequent analyses aimed at understanding genetic
variation or improving methods of inference have been few
(Wakeley and Takahashi 2003; Rauch and Bar-Yam 2005).
Our analytical work builds on the analysis in Rauch and
Bar-Yam (2005) in which a rescaled version of the NLFT was
studied under essentially the same assumptions we make
here. In particular, we assume that 1 < ny < N, where
ng is the sample size and N is the population size in an ide-
alized well-mixed population model such as the Wright—
Fisher model (Fisher 1930; Wright 1931). However, simu-
lations and a heuristic analysis show that our analytical
expressions for the NLFT are accurate even when the entire
populationis sampled (ny = N) and much deeper into the
past than might be expected.

Our work is also similar in spirit to lineages-through-
time methods (Nee et al. 1995) and analyses (Stadler 2008),
which have been used to study species diversity (Baldwin
and Sanderson 1998; Moreau et al. 2006; Bininda-Emonds
et al. 2007). The fact that the NLFT contains information
about the effective size of a population over time is the ba-
sis for the several skyline plot methods that are available
(Pybus et al. 2000; Strimmer and Pybus 2001; Drummond
et al. 2005; Minin et al. 2008). Briefly, those methods allow
population size to change over time with few restrictions
and are geared toward relatively small samples in that they
involve extensive computations (Drummond et al. 2005;
Minin et al. 2008). In contrast, our method estimates the
parameters of a specified model of a population and is
less computationally intensive because it makes use of the
nearly deterministic behavior of the NLFT for large sam-
ples. Thus, these approaches are complementary. In the sec-
tions Human Growth Rates and Blue Whale Population,
we present applications in which these two approaches
give similar answers concerning the effective population size
over time.

In addition to the novel analysis and the fact that many
previous methods may not scale up easily to large data sets,
the method we present here is valuable because it provides
unbiased estimates of the population growth rate as well as
the population size. We demonstrate this using simulations.
Previous methods, regardless of whether they use maxi-
mum likelihood (Kuhner et al. 1998) or Bayesian techniques
(Kuhner and Smith 2007) or the skyline plot (Pybus et al.
2000), yield unbiased estimates of the population size but
produce biased estimates of the growth rate.
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Methods and Results

Model

We assume a haploid Wright—Fisher model of reproduction
(Fisher 1930; Wright 1931), with either constant population
size or exponential growth over time. The current popu-
lation size is Ny. Following Slatkin and Hudson (1991) and
Kuhner et al. (1998), we model exponential growth using
N(t) = Nge 7" to give the population size in generation t
in the past. At the present, time 0, a subsample of the whole
population ny < Ny (or simply n and N for a population
of constant size) is chosen at random without replacement.
We study the gene genealogy of the sample at a single locus
under the assumptions that all variation is selectively neu-
tral and there is no intralocus recombination. We use f. to
denote the mutation rate per “locus” per generation (and
not the common notation of mutation per site) and L to
denote the length of the locus, that is, the number of sites
sequenced, which can be finite for the finite site model or
infinite for the infinite site model.

Simulation Procedures

When necessary, we used simulations to produce pseudo
data sets. We did this by first generating the gene genealogy
for a sample according to the haploid Wright—Fisher sam-
pling process backward in time. That is, in every generation,
the parent of each (haploid) individual is chosen uniformly
at random from the whole population as it existed in the
previous generation. Note that in growing populations, the
previous generation may be smaller than the current one. If
two or more individuals have the same parent, they coalesce
and the number of ancestral lineages decreases accordingly.
This procedure is continued until only a single lineage re-
mains, that is, the MRCA of the sample.

Once the gene genealogy is obtained in this way, muta-
tions are placed randomly on each branch of the tree, start-
ing at the root, or MRCA. For purposes of illustrating the
general behavior of the NLFT and of our inference method
under finite sequence lengths, we used the symmetric, four-
state Jukes—Cantor model of mutation (Jukes and Cantor
1969). Under this model, each branch receives a binomially
distributed number of mutations, with a number of trials
equal to the length of the branch in generationsand a prob-
ability of success equal to the per-generation mutation rate,
1. Mutations occur at eachsite in the locus uniformly at ran-
dom, and all the descendents of the lineage on which a mu-
tation occurs inherit that mutation (possibly obscured by
subsequent mutations). In some of the simulations and in
the application to mitochondrial DNA (mtDNA), we used
the more appropriate F84+1" mutation model, which dif-
fers from the previous model in that instead of assuming
symmetric mutations, it allows for transition bias, and it also
allows for rate variation among sites (Felsenstein 2004).

In our examination of the NLFT for data from simu-
lated gene genealogies, we considered three possible ways
in which the NLFT might be obtained. In the first case,
we obtained the true NLFT directly from the simulated
gene genealogy. In the other two cases, we obtained the

NLFT indirectly from a matrix of genetic differences be-
tween every pair of sequences. In the second case, we as-
sumed L = 0o so that the data conform to the infinite site
model of Watterson (1975). For infinite sequence length, we
generated a matrix of pairwise distances between sampled
sequences by counting the number of mutations separat-
ing the two individuals on the gene genealogy. In the third
case, particular values of L were assumed and the distance
between two sequences was chosen to be the Hamming dis-
tance between them for the case of the Jukes—Cantor mu-
tation model, and for the F84+1" model, the Kimura two-
parameter distance was used. Note that also the Hamming
distance is not identical to a simple counting of the number
of mutations due to the possibility of recurrent mutations.

For both infinite and finite sequence lengths, we ob-
tained the NLFT by reconstructing a rooted ultrametric tree
of the sampled sequences, meaning a tree in which the
branch length from every leaf (or sample) to the root (or
MRCA) is the same (Felsenstein 2004). We used the sim-
ple weighted pair group method or WPGM algorithm (Sokal
and Michener 1958; Sneath and Sokal 1973). We tried other
methods as well, including UPGMA and UPGMC, to verify
that these could also be used in our estimation routine (see
Simulation-Based Inference Method below) but found no
compelling reason to prefer these over WPGM. For a given
mutation rate u, we rescaled the genetic distances by mul-
tiplying by the average time to one mutation event, that is,
such that gi; = d;; / is the estimated number of genera-
tions separating sequence i and sequence j given that d;; is
the number of mutations between the two or an estimate
of this number.

The NLFT in Populations of Constant Size
We use n (t) to denote the number of ancestral lineages at
generation t in the past (i.e., the NLFT) given a present-day
sample of size ny = n(0). We begin by considering popu-
lations of constant size. Figure 1 shows two gene genealo-
gies, simulated using the method described above. It can be
seen that for large n(t) and N, gene genealogies may dif-
fer from each other microscopically, yet plotting the num-
ber of lineages versus time produces nearly identical rather
smooth curves. Differences become apparent when n (t) is
small, which occurs when t is large, that is, of order N. This
suggests that if we examine only this feature of a tree, we
can ignore its specific topology. Different trees will behave
the same as long as their demographic parameters (ny and
N) are the same. Thus, figure 1 indicates that fluctuationsin
n(t) among different realizations of the gene genealogy are
weak, so that its behavior appears largely deterministic.
Analytic expressions for n (t) can be obtained using the
well-known results of occupancy distributions (David and
Barton 1962; Johnson and Kotz 1977). In particular, n (t + 1)
under the Wright-Fisher model may be viewed as the re-
sult of tossing n(t) “balls” randomly into N “boxes” such
that each ball has chance 1/N of landing in any particular
box. Then, n(t + 1) is the number of boxes that contain at
least one ball. Watterson (1975) used this formulation in his
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FIG. 1. Panels a and d show two independent gene genealogies, simulated using the procedure described in Methods and Results. In both cases,
N =5 x 10* and ny = 500. Time is measured in generations and is plotted on a log scale for ease of presentation; we also show only the upper
200 nodes of each tree. Clearly, the trees are different but panels b and ¢ show that, with respect to the NLFT, most of the difference is attributable
to only the last 10 or 20 coalescent events. Panel c plots the NLFT for each (entire) gene genealogy and panel b redisplays same data but only for
the very top portion of each tree. The solid lines in b and ¢ correspond to the n (t) of the tree in a, and the dashed lines in b and c correspond to

the n (t) of the tree in d.

pioneering work, making particular use of the expressions

1

Eln(t+1)|n(t)=i]=N—N (1 — —) (1)

N

and

Var[n(t +1)[n(t) =i] = N (1 N l>i

N

2 i , 1 2i
+N(N—1)(1—N> —N (1_ﬁ> 2)

These are exact formulas, which hold for any admissible, that
is, positive, values of ny and N, up to the strong sampling
limit (ng = N), and even beyond (ny > N), as may be true
for growing populations.

Watterson (1975) considered the case where n(t) is of
order N and noted the nearly deterministic behavior of the
normalized variablen (t +1) /N givenn(t) = i in the limit
N — oo. Whenn(t) = O(N ), we have

E[n(t +1)In(t) =]
ii—1) i(i—1(—2)

=i — — .. (3
: 2N * 6N? )

i i
:’_K(HO(N))' (4)

and following a similar expansion for the variance, we have

Varln (¢ + 1)|n(¢) = i] = % (1 +0 (&—)) (s)
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Rauch and Bar-Yam (2005) studied p (t) = n(t)/N for the
case p(0) = 1and obtained an expression for p (t) using a
differential equation that is valid when p (t ) is small.

Here, based on equations (3) through (5), we seek a deter-
ministic approximation for n (t ). As shown in figure 1, sim-
ulations suggest deterministic behavior, at least when n (t)
is not too small. We treat both n(t) and t as continuous
variables, which we justify heuristically by focusing on the
case 1 <€ n(t) < Nor1 < i < N in equations (3)
through (5). In this case, the expected value of n(t + 1) is
large, whereas the variance of n (t + 1) is much smaller be-
cause n(t)/N is small. For the same reason, the expected
change in n(t) is a small fraction of its current large value.

Subtractingn (t) = i from both sides of (3), we write
dn(t) _ n(t)(n(t) = 1) ©)
dt 2N '

The solution of this differential equation, with n (0) = ny,

is
No
n(t) = o = e (7)

which predicts the NLFT for a population of constant size.
Note that the assumption, 1 < n(t) < N, which we
used to justify our approach implies that we should not keep
the O (n(t)/N) term in (6). If we neglect this term, as in
Rauch and Bar-Yam (2005), then we would instead obtain

No
n(e) = 14 not /2N ®)

which agrees very closely with our (7) as longas n (t ) is large.
However, when n (t) becomes small (e.g, for large t), such
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FIG. 2. Panel a shows the expected number of lineages as a function of time in the past for a constant-sized population. The solid line is the exact
recursion equation (1) and the dashed line is the continuum approximation (9), for a sample of the whole population, that is, no = N (here,
ng = N = 5,000). Panels b and c show the quality of approximation (9) as the sample size grows. In b, the solid lines show the number of lineages
obtained by the recursion equation (1) and the points show the continuum approximation, plotted as a function of time for different sample sizes.
In ¢, the ratio between the two is shown. The maximal deviation is about 7% for full sampling (no = N) and the error decreases with time. The
population size is N = 10* and the sample sizes are no = 300; 500; 1, 000; 2, 000; 5, 000; 10, 000, denoted by triangle-up, triangle-down, x-mark,

asterisk, circle, and plus sign, respectively.

that n(t)/2N is not negligible compared with n (t)?/2N,
then (8) and (7) differ considerably. Although the fluctua-
tions in n (t) become substantial in this case (see fig. 1), we
prefer (7) over (8) because keepingthe O (n(t)/N) termin
(6) provides a better description of the “average” behavior
of n(t) when itis small. In view of this, we rewrite (7) as

No

E[n(t)] ~ ©)

no — (ng — 1)e~t/2N"

The results presented below show that (9) predicts the
average value of n(t) with surprising accuracy even for
very short and very long times when we do not necessarily
expect it to fit.

The following heuristic argument provides a sense of the
range of time over which we can expect the behavior of
n(t) to be largely deterministic. Let g, be the chance that
an individual who lived t generations ago has at least one
descendant in the sample. As long as correlations among
such individuals may be neglected—that is, as long as the
typical number of sampled descendants of an individual
does not constitute a substantial fraction of the sample—
we may assume that the probability distribution of n (t) is
binomial(N, 1—g; ). Then, the average scales like (1—g;)N,
and the variancelike g, (1—g; )N. The quantity 1—g;, thus,
must fall in time like 1/t. Accordingly, the standard devi-
ation of n(t) falls, to the leading order, like 1/+/t. There-
fore, the ratio between the standard deviation and the mean
grows like \/t /N. For a large N, this quantity is small, ap-
proaching unity only for t of order N when the number of
ancestors is small and the correlations cannot be neglected
in any case.

A comparison of the continuous equation (9) with the
recursion equation (1) is presented in figure 2a. One can

see that the deviations from the exact recursion formula ap-
pear very small even for a sample of the whole population
ny = N and over the entire range of time. In figure 2b and
¢, we examine more closely the effect of varying the sample
size ny on the correspondence between our continuous so-
lution and the exact recursion, focusing particularly on small
t. This isimportant because our differential equation (6) ne-
glects the possibility of multiple coalescent eventsin a single
generation, whereas these are fairly sure to occur for large
samples from finite populations under the Wright—Fisher
model. However, figure 2¢ shows that even in a full sample,
no = N, the discrepancy is not larger than about 7%, and it
vanishes as time increases into the past.

We have not depicted the way in which n(t) depends
on N, but this is straightforward: When N is smaller, n (t)
will decay faster per generation as we follow the ances-
try of the sample back in time. Because of this and ow-
ing to the nearly deterministic behavior of the NLFT, if we
knew n(t) for the gene genealogy of a given sample, we
could easily retrieve the population size N. The inset of
figure 3 shows the results of estimating the population pa-
rameter N, using a best fit between (9) and the true n (t)
for each single gene genealogy. The distribution of estimates
shown in the inset of figure 3 is clustered tightly around

the true value of N, with a standard deviation (0 = 68)
of only about 1% of the true value of N = 5,000 in
this case.

The NLFT in Growing Populations

Analogous results hold for growing populations. As men-
tioned above, we assume that N(t) = Ngye ", where
No = N(0) is the current total population size, and 7 is the
per-generation growth rate of the population. In this case,
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FIG. 3. The number of lineages as a function of time. The middle solid line is the average taken from 100 realizations of the simulation with
N = 5,000, no = 5,000. The dashed line is the expression for E [n (t)], obtained by iterating the single generation recursion (1). The dots (which
appear as two thick lines toward the end of the graph) are the average number of lineages in the simulated gene genealogies, & the standard
deviation. The inset shows the distribution of estimated N, obtained by fitting the number of lineages as function of time, which is known exactly
in the simulation, to our new expression (9). The distribution was obtained from 5000 simulated gene genealogies.

the gene genealogy is characterized by two demographic population is deterministic, that is, N (t) is not a random

parameters: the growth rate -y and the current population variable. We have

size Ng. As before, we start with a sample of size nyand, again, . _

the fluctuations of n(t) among different gene genealogies Eln(t +1)ln(t) =i] = Noe ’Y(H]).

with the same demographic parameters are weak. This is —a(t4) '

shown in figure 4 and supplementary figure S1, Supplemen- —Noe 1= Nge+1) |7 (10)

tary Material online, which repeat figures 1and 3 for the case

of a growing population. with the formula for Var[n(t + 1)|n(t) = i] (not
Equations (1) and (2) can be easily generalized to growing  shown) obtained similarly by replacing N with N (t + 1) =

populations. Note that we assume that the growth of the No e~ "¢+ in equation (2).

200012 |
1000%%% fﬂmﬁm
) 2 | | | |

500 1000

2000 lﬁl

1500

T

10003

FIG. 4. Similar to figure 1, but for a growing population. The parameters are Ny = 5 x 10°,y = 0.005, and np = 500. Note that here time is
given simply in generations rather than on a log scale as in figure 1. The solid and dashed lines in b correspond to the n (t) of the trees inaand c,
respectively.
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FIG. 5. The distributions of estimated parameters, I\]o and 4, for three
different populations. We simulated 5, 000 independent gene genealo-
gies and estimated Ny and ~y for each one using the true n (t) for three
sets of parameters: Nog = 5 X 10° and v = 0.0044 (circles), No = 10°
and y = 0.005 (squares), and No = 2 x 10° and 7 = 0.0058 (dia-
monds). The sample size was no = 500.

As in the case of a constant-sized population, figure 4
and supplementary figure S1, Supplementary Material on-
line, show that n (t) under population growth has an almost
deterministic behavior, so that we may again employ the an-
alytical approach described above. Analogous to (6), for a
growing population, we have

dn(t) _ n(t)(n(t) —1)

dt 2Ny et

The solution of this equation, subject to the condition
n(0) = no, is
n
n(t) = : : (1)

et —1

ny — (np — 1) e o7

For the replacement of the difference equation by the
differential equation to be valid, the condition n(t) <
2N exp(—~t) should hold. As with (9), we rewrite (11) as

Eln(t)] ~ oo )

no — (np— 1) e Mox

Supplementary figure S2, Supplementary Material online,
shows a comparison of the results of the recursion equation
(10) and the continuum approximation (12). As for the case
of a constant-sized population (shown in fig. 2), the corre-
spondence under population growth is very good.

Since the fluctuations of the NLFT around this average
(12) are weak, we can again very effectively use the val-
ues of n(t) from a single gene genealogy to estimate pop-
ulation parameters, in this case Ny and 7. As in the case
of a constant-sized population, the recovered demographic
parameters change only slightly between gene genealogies
simulated with the same parameters. The quality of the re-
sulting estimates is shown in figure 5, which demonstrates
that populations with fairly similar values of Ny and 7y can

be distinguished easily. Moreover, it appears from figure 5
that the estimates are unbiased in contrast to the biased es-
timates for small samples using a Markov chain Monte Carlo
likelihood approach even for the case where the real geneal-
ogy is known (Kuhner et al. 1998).

Finite Sequence Length—Analyzing Recovered Trees

In the NLFT in Growing Population section, we estimated
parameters using the true gene genealogies, which are
known in simulations. In reality, any information about
the gene genealogy of a sample must be inferred from ge-
netic data, typically DNA sequences. We would only have
perfect knowledge of the gene genealogy if the sequence
length was infinite, so that every mutation was observable
(Watterson 1975), and the mutation rate was infinite, so
that the number of mutations on each branch in the tree
reflected precisely the length of the branch. Then, we could
simply construct a matrix of the number of differences be-
tween each pair of sequences and from these infer the gene
genealogy and n (t ) without error. This suggests the follow-
ing three-stage routine for estimating population parame-
ters from genetic data:

1. Reconstruct the gene genealogy from the sequence data,
for example, using a clustering algorithm.

2. Extract the number of lineages as a function of time, n (t ),
from the recovered tree.

3. Fit the theoretical prediction, for example, (9) or (12), to
the n (t) extracted from the recovered tree.

The parameter estimates are the values that provide the
best fit in Step 3. In trying to implement this technique to
real data, one encounters two major obstacles.

First, the real mutation rate /¢ is finite. There is not a one-
to-one correspondence between genetic and genealogical
distance, and this causes the statistical properties of the tree
recovered from the clustering algorithm to differ from those
of the true tree. Thus, the “estimated” NLFT function, ne(t),
differs from the true function. Figure 6a shows (ne(t))—
the average value of n.(t) over many simulation replicates
with the same population parameters—together with the
true n (t), for different mutation rates in a growing popula-
tion. The deviations become large when f is small and the
data contain less information about the gene genealogy. For
a constant-sized population, the same comparison is shown
in the upper panel of supplementary figure S3, supplemen-
tary Material online, where the effect is less severe but still
considerable.

The second problem comes from the fact that the se-
quence length, L, is necessarily finite, so that there may be
multiple mutations at single sites. This also yields a distor-
tion of the recovered tree with respect to the real one and
is demonstrated in figure 6b for a growing population and
in the lower panel of supplementary figure S3, Supplemen-
tary Material online, for a fixed population. For a given mu-
tation rate, shorter sequences experience more recurrent
mutation, causing the distortion to be greater. As a result
of these two problems, the naive procedure, based on the
idea that we might extract the true n(t) from the data, is
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FIG. 6. Panel a: The average estimated NFLT, (n(t)), plotted against
time for different mutation rates. The data were obtained from sim-
ulations with parameters no = 500, No = 4 X 10°, and v = 0.005.
The solid line is the true NFLT (i.e., infinite mutation rate), the dashed
line is for 1t = 0.01, and the dotted line is for = 0.005. Panel b:
The average estimated NFLT, (n.(t)), plotted against time for differ-
ent sequence lengths. The data were obtained from simulations with
parameters No = 4 X 106, v = 0.005, no = 500, and p = 0.01. Se-
quence lengths are given by shades and styles of lines as in the legend.

not applicable for real data sets such as the one we analyze
below.

It should be stressed, though, that the estimated NLFT,
ne(t), is still strongly indicative of the population param-
eters. As demonstrated in figure 7 for different values of
~ and in supplementary figure S4, Supplementary Material
online, for different values of Ny, ne(t ) depends on both the
size of the population and its growth rate, and the stan-
dard deviations are not large. The noise and systematic de-
viations introduced by finite mutation rate and recurrent
mutations are not strong enough to render ne(t) useless.
However, they do distort the tree so that the retrieved NLFT
differs substantially from the analytical predictions, (9) or
(12). If we had a function—let us call it A, (t), with the
subscripts v and N to emphasize its dependence on those
parameters—which predicted the outcome of the NLFT
measured from the clustering algorithm, then we could re-
turn to Step 3 of the routine described above and calcu-
late the value of the parameters by minimizing x?(ne, 1) by
which we mean the squared deviations between n,(t) and
n,n (t).1tis, perhaps, needless to say that we have not found
any analytic expression for i,y (t ).

Simulation-Based Inference Method

The solution we adopt is to use our simulations themselves
to predict i,y (t), as the average function (n,(t)) obtained
by applying the clustering algorithm to a large number of
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FIG. 7. The average + one standard deviation of the NLFT, ne(t), esti-
mated from simulated data, for a series of different growth rates . The
growth rates are 0.004 (dots), 0.003 (triangles-up ), 0.002 (triangles-
down), 0.0015 (circles), and 0.001 (diamonds). The other parameters
are No = 4 x 10° no = 500, and ;1 = 0.0023.

simulated data sets with given values of N and . The sim-
ulations require a mutation model, and unless mentioned
otherwise, we use the simple Jukes—Cantor model (Jukes
and Cantor 1969) as well as L and g which we assume are
known. We emphasize that we do not take errors in the
estimated p into account. However, for some of the sim-
ulations and in the data application, we use the more re-
alistic F84+-1" mutation model as mentioned above. For a
clustering algorithm, we used the simple WPGM (Sokal and
Michener 1958; Sneath and Sokal 1973). However, we veri-
fied the basic properties depicted in figures 6b through 7 for
other clustering algorithms, including UPGMA and neigh-
bor joining (Saitou and Nei 1987), indicating that any clus-
tering algorithm could be used in our method.

This method—estimating parameters by minimizing the
squared deviations between the n.(t) for a data set and
n,n (t) from simulations—has several advantages. First, it
is general and may be adapted to estimate other quantities.
Thus, although here the analytical work was instrumental
in the development of the method, the method itself is not
restricted to functions for which analytic expressions may
be obtained. Second, it can accommodate any tree-building
algorithm, as the results for n(t) and .,y (t) will be sub-
ject to the same distortions as long as n(t) and i,y (t) are
produced by the same process. Finally, in the present case, it
may be used for large data sets easily because the complex-
ity of the calculation depends only slightly on ng as a result
of the nearly deterministic behavior of the NLFT. For exam-
ple, we can obtain a fairly precise picture of the surface of
squared deviations we wish to minimize by simulating “tens”
of gene genealogies for each pair of values, (N, ).

Two further, technical details of our method for estimat-
ing No and y are as follows.

First, for simplicity, we obtained parameter estimates by
minimizing the squared deviations between simulations and
data based on the times of each of the ny — 1 coalescent
events rather than on n(t) itself. This allows us to avoid
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summing deviations over a very large number of genera-
tions, making an arbitrary decision about when to stop this
sum and having to store the simulation-obtained average
function n.,  (t ) for such a large number of time points. The
ny — 1 coalescent events provide a natural set of anchor
points, and the time to the ith coalescent event is simply
an inversion of the relationship between n and t for which
we found useful deterministic formulas in the previous sec-
tions. For a constant-sized population, it is well known from
coalescent theory that the expected value of this time s, us-
ing our notation, given by

£(i) = 2N (n01—i —nl0>

We note that this equation may be obtained by inverting
(8) but not by inverting (7). However, the equation above
applies only to the true gene genealogy and not to the tree
recovered from data using a tree-building algorithm.

Second, we note that the common methods of find-
ing global minima, such as the Levenberg—Marquardt algo-
rithm, are difficult to apply here. The reason is that these
algorithms require the use of the derivative of the surface
of squared deviations with respect to the parameters. Here,
we can obtain the derivative only by evaluating the squared
deviation at discrete points in the parameter space. This in-
volves averaging over many Monte Carlo realizations at each
point considered, where the variance goes like 1/\/I? if k
is the number of realizations. A good approximation of the
derivative of surface of squared deviations would require a
precise evaluation at two very close points in the parame-
ter space. This would necessitate averaging over a very large
number of realizations at each step in the algorithm proce-
dure and would make the whole process inefficient.

Therefore, in the search for the best parameter estimates,
we used a two-step method that is applicable due to the rel-
atively simple structure of the surface of squared deviations.
Looking at supplementary figure S5, Supplementary Mate-
rial online (as well as fig. 11), one can see that the surface
consists of one global minimum located in a single valley.
We found this to be true in every case we considered. The
shape of this valley reflects the fact that increasing both N
and y results in trees with similar structure. The relevant pa-
rameter space can be scanned first with low accuracy, that
is, using a small number of realizationsk for each (,N) to
locate the region containingthe global minimum. Next, the
minimum can be found more precisely by searching over a
grid of (v, N) values, more closely spaced and with a larger
number of realizations at each point. To save time, we be-
gin by fitting n(t) to (12) to find initial parameters around
which to scan. In the simulations to illustrate the method,
we used one gene genealogy per point in the first pass, then
20 gene genealogies per point to find the minimum. In the
application to the mtDNA data, we increased this from 20
to 40.

We used a parametric bootstrap approach to determine
the error of the estimates. That is, using the estimated values
of Ny and y, we generated a large number of replicate data
sets by running our simulation with different seeds for the
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FIG. 8. The parameters estimated by minimizing the squared devia-
tions for 300 different simulated gene genealogies, each from a dif-
ferent simulation with Ng = 105,7 = 0.003. The average of these
realizations and the 95% confidence intervals are Ny = 1.008 X 10° +
2.05 x 10¢, 7 = 0.00303 £ 0.00052. The sample size used is no = 500,
the sequence length is L = 400 base pairs and the mutation rate is
p = 0.01 per generation.

random number generator. For each replicate, we estimated
No and 7 using our simulation-based technique. Figure 8
shows the results obtained from fitting 300 different real-
izations under the same true parameters N, = 10° and
~ = 0.003. The average estimates are Ny = 1.008 X 10° +
2.05 x 10% and v = 0.00303 = 0.00052, where the range of
error is defined by the approximate 95% confidence inter-
vals assuming a bivariate normal distribution of estimated
No and 7. Our estimates thus appear to be “unbiased” and
the uncertainty in the estimate of the growth rate is quite
small, approximately 28% of the value of 4.

Here, we presented one example of our fitting process.
Before presentinga wide range of results, we should first de-
scribe the limitationsand scope of the technique. Generally,
the time horizon imposed by the use of polymorphism data
is Tmrca. Our method, however, assumes an almost deter-
ministic behavior of NLFT; in the cases that we have studied,
this deterministic approximation works as long as the num-
ber of lineages is larger than five or so, and thus one has to
replace Tyrea With Tgee ~ T,—s. Within this time horizon,
three conditions should be fulfilled.

e (1: The change in the population size should be large
enough to be detectable, and thus 1/ must be much
smaller than Tge;.

e (2: Ty defined above should allow for enough mutations
to occur, and thus the mutation rate must satisfy 1/u <
Tdet~

e (3: When too many mutations occur, the number of re-
peated mutations is large and the information about the
far history is lost. This implies that the mutation rate should
not exceed 4 - Tger K L.

With these conditions in mind, let us take a look at
figure 9. For each pair of v and Ny, we have simulated 1,000
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Growth Rate Estimation

FIG. 9. A contour plot of the log,, of ratio between the average de-
viation from the real values and the real values, with panel a for the
growth ratey and panel b for the effective population size No. The dots
indicate the pairs that were checked. The thick lines are the bound-
aries of the validity region: below the C; line (exp(y - Tmrca = 2)) the
change in the population size is too small. Above C; (Tmrea - £ = 10)
the number of mutations is too small, and below G (Tmrea-ppt = L =
1, 000)) there are too many repeated mutations. The Tmrca Was cal-
culated using a parallel expression to equation (9), which is given in
supplementary equation 1, Supplementary Material online.

genealogies and inferred the parameters using our tech-
nique. An objective measure for the quality of the infer-
ence is the ratio between the real parameter and its recov-
ered value. Contours of this ratio are plotted in the (No, )
plane together with thick black lines for the conditions C1-
C3. One can see that inside the validity region, the error of
the estimates is less than 5% of the real values, indicating
that our method is not biased. Even outside the validity re-
gion, the estimates are not bad. In supplementary table S1,
Supplementary Material online, we present the average esti-
mate and 95% confidence interval for each of the points in
figure 9.

Figure 10 shows how the inference quality depends on
the mutation rate. The average estimates for Ny and -y are
shown, together with their standard deviation, for different
values of p. Clearly seen is a wide “validity region,” where the
estimates are unbiased and quite tight. Again, even beyond
the validity region, the bias and the errors are not terribly
large, and the true values are within one standard deviation
of the average estimated value.

We have focussed on the case of an exponentially grow-
ing population, but our method of estimation can easily be
applied to populations of constant size. As above, we define
the fitting function 71 (t ) to be the average over many simu-
lation replicates, 11 (t) = (ne(t)). Supplementary figure S6,
Supplementary Material online, shows the average best fit
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FIG. 10. The average estimated parameters, with error bars repre-
senting one standard deviation, as a function of the mutation rate.
The parameters were inferred from simulated data, where all histo-
ries share the same current population size (N = 10°), growth rate
(y = 0.001), and sequence length (L = 500). One thousand histories
were produced for each mutation rate, and the parameters of each
were inferred from the polymorphism data. Inside the “validity zone”
both the effective population size (upper panel) and the growth rate
(lower panel) are estimated without a significant bias. Outside the va-
lidity region the estimates are reasonable but slightly biased. The sam-
ple size used was no = 100; for larger samples, the validity zone is even
wider.

N and its standard deviation (over 200 replicates) for popu-
lation sizes ranging from N = 25,000to N = 190,000in in-
crements of 1,000. The average best fit N wasin all cases very
close to the true population size, and the standard deviation
was about 20%. This whole process took only about 10 cpu
hours on a regular desktop. The sample size was n, = 50,
and even so the estimates are reasonably good.

A third demographic scenario to which we will briefly
relate is the case of a stepwise growth model. This model
assumes that the population size was fixed in the past at
N,, and then at time T,, the population suddenly grew to
a new size N;. We use this model as an example of a case
for which there is no elegant analytic solution for the NLFT,
yet the simulation-obtained function can be used. (Also, we
choose to analyze this model because in the coming section,
we will consider how to differentiate between an exponen-
tial growth model and a stepwise growth model as done by
Polanski et al. (1998).

In this case also we define the function i (t) to be the av-
erage over many simulation replicates, i1 (t) = (n.(t)) and
scan the (three dimensional) parameters space to find the
global minima of 2. From this procedure, all three param-
eters, Ny, T, and N,, are inferred. In table 1, we present of
the average estimates and 95% confidence intervals (over
1,000 replicates) for a few sets of parameters. These es-
timates appear to be good and with a small error range.
A more thorough study of the stepwise growth model is
outside the scope of this paper.
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Table 1. Stepwise Growth: The Average Estimates of the Parameters for the Stepwise Growth Model. For Each Set of Parameters, We Used
1,000 Replicates. The Rest of the Parameters are np = 200, 4 = 0.01,L = 1000, K = 20, and o = 0.25.

Real N, Real T, Real N, E(N,) E(T,) E(N,)
5% 10° 8 x 103 8 x 103 5.2x10% [2.5 X 10°-1 x 10°] 8.3 x 103 [4 x 10°-1.2 x 10%] 9.2 x 103 [316 - 2.5 x 10%]
1.5 x 10° 1x103 1.5. x 10 2.4 % 10° [3.1 x 10°-7.9 x 10°] 1.2 x 10° [4 x 102-2 x 103] 1.9 x 10% [5 x 103 = 3.9 x 10%]

Model Differentiation

Throughout this paper, we have assumed a model for
the population demography (for example, an exponential
growth at a fixed rate) and have tried to infer the real rates
from the observed data. One question needed to be asked
is about the ability of our technique to distinguish between
demographic scenarios. Obviously, it is easy to differentiate
between very different scenarios like an exponentially grow-
ing population and a fixed population. On the other hand,
one cannot distinguish between an exponential growth and
a growth occurring through many small steps. Here, we
compare an exponential growth model with the stepwise
model we presented above. It has been shown by Di Rienzo
and Wilson (1991) and Slatkin and Hudson (1991) that it is
indeed difficult to differentiate between these two scenar-
ios. Methods like Polanski et al. (1998) that do not assume a
specific growth model are able to discriminate between the
two scenarios, but we will show that despite the fact that
our technique assumes a model, it can still differentiate be-
tween the two.

One of the problems in assuming a model is that even
when the modelis wrong, it supplies some results. For exam-
ple, if a data set from a population that underwent a step-
wise growth is taken and fitted to an exponential growth
model, the fitting procedure will find the values of Ny and y
that minimize the value of the x?. These wrong values will
be considered the description of the history of the popula-
tion. However, there is a way to detect this false procedure
and to identify that the model is incorrect.

When a wrong model is assumed to describe the his-
tory, the function of squared deviations between the model
and the data, x3, will be relatively large. By saying large, we
mean relative to the x}, between the model and a data
set that was obtained from this model. Ideally in order to
determine this, the distribution of the x}, (i.e, the distri-
bution between all the possible data sets obtained from
the model with specific parameters and the model) should
be used. If the x3 of the data is in the (very)upper end
of this distribution, this means that the model does not
describe the data set well and thus should be rejected.
However, if it is in range, the model should not be re-
jected but rather be kept as a plausible description of the
history.

Practically, we implement this test in the following way
which we will explain by way of example. Assume we ob-
tain a data set from a stepwise growth model and are try-
ing to fit it to an exponentialgrowth model. The fitting pro-
cess will produce some values of v and Ny rendered by our
algorithm. We then simulate 50 replicates of exponentially
growing populations with these parameters and fit them to

the exponential growth model obtaining the minimal x? of
each replicate. Thus, instead of the whole distribution of x3,,
we have a set of X7, between the model and the replicates.
A model is rejected if X3 is larger than the maximum X3,
which is equivalent (on average) to saying that a model is re-
jected if less than 2% of the X1, are larger than the x3. This
procedure may be used, of course, for any possible model.
Note that we cannot use the standard P -value test because
this test requires knowledge about the error estimates of the
data set.

Table 2 summarizes the results of our rejection test. We
have generated 1,000 replicates of the exponential growth
model and 1, 000 of the stepwise growth model and fitted
both models to both data sets in order to see the rejection
percentages of the wrong model and of the true model. One
clearly observes that the wrong model has been rejected al-
most certainly, whereas the chance of the right model being
rejected is small.

One last point that we should emphasize about our rejec-
tion test is that it cannot positively confirm a model but can
only reject or not reject it. If the model is not rejected, it is al-
ways possible that another model fits the data as well. Thus,
when one compares a data set to two models, both models
can be rejected, one can be rejected but not the other one
or neither be rejected.

Human Growth Rates

As afirst illustration of our method, we applied the method
to sequences of hypervariable region 1 (HRV1) of human
mtDNA for which a very large number of sequences is avail-
able at HvrBase++ (http://www.hvrbase.org) (Handt et al.
1998; Kohl et al. 2006). Specifically, we obtained 1,212 se-
quences of HVR1 from China and aligned them using the
tools available at HvrBase++. The aligned data set contains
377 sites, and is available from the authors upon request.
We used an HVR1 mutation rate of . = 0.0024 per 377 bp
sequence per generation (Sigurdardottir et al. 2000) as the
mutation rate in our simulations to estimate Ny and 7.

We estimated the growth rate and effective size for China
using the methods described above. The one modification
we made was to correct the pairwise sequence differences
in HVR1 for multiple mutations. We used the F84 model
with gamma-distributed rates across sites (Felsenstein
2004), as it is implemented in Dnadist (http://evolution
.genetics.washington.edu/phylip/doc/dnadist.html)  with
equal base frequencies, k = 20, and o = 0.25 (Rosset et al.
2008). We used this same mutation model in the simula-
tions for estimating No and v and obtaining confidence
intervals.
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Table 2. The Percentage of Rejections (out of 1,000 realizations) of a
Model When Applied to Simulated Data. The Parameters for the Ex-
ponential Model Are no = 200, Ny = 8 X 105,7 =2X 1074,p = 0.01,
L = 1,000, K = 20, and o = 0.25. For the stepwise growth, the pa-
rameters are N; = 8 X 10°, T. = 8,000, and N, = 8, 000. The Rest of
the Parameters Are the Same.

w Model Exponential Growth Stepwise Growth
True Model —

Exponential growth 0.033 0.999
Stepwise growth 0.980 0.165

Figure 11a shows the surface of squared deviations
for these data. The estimates from the global minimum
correspond to Ny = 210,000 + 46,000 and v = 0.0021 =+
0.0005, where the ranges represent the approximate 95%
confidence intervals for each parameter assuming a normal
distribution of errors estimated using our parametric boot-
strap approach. We also show the global minima of 100
replicates from our bootstrap simulations (i.e., estimating
Ny and v from data sets simulated with Ny = 210, 000 and
~ = 0.0021) for a visual sense of the error of our parameter
estimates. Figures 11b and ¢ demonstrate the approximate
normality of the distributions of our estimates obtained us-
ing our parameter bootstrap method.

We applied the rejection test presented above to the ap-
plication of the exponential growth model to the Chinese
data. We built the 3, distribution from 10, 000 replicates.
The X&pin, Of the data was compared to this distribution
and 2% of the values were larger than xgp,,- Thus, we
conclude that the exponential growth model is plausible.

We also fitted the data set to the stepwise growth model.
We found that the xZ,,, between the NLFT and the step-
wise growth model was larger than all the 3, of the stepwise
growth replicates. From this, we conclude that the stepwise
growth model is not a plausible explanation for the data.
Our idealized model of the exponential growth of a sin-
gle population does not likely fit the truth for the ancestry
of these samples from China. Thus, we may call our esti-
mates of Ny and -y the current effective population size and
growth rate. Note that here we mean a very short-term ef-
fective population size, that is, inbreeding or variance effec-
tive size (Crow and Denniston 1988) and not a long-term
effective size such as might be estimated from genetic poly-
morphism data. Figure 12 compares our predictions for the
effective population size in the ancestry of these 1,212 sam-
ples from China to the results (Atkinson et al. 2007) ob-
tained using 28 mtDNA sequences from “North and Central
Asia” using a Bayesian skyline plot. The agreement between
the median estimates is very good indicative of a strong sig-
nal of population growth in these human data. Our esti-
mates of the approximate 95% confidence intervals for past
effective population sizes are quite narrow, reflecting the
size of the data set and the nearly deterministic behavior of
the NLFT for large samples. We obtained percentiles for es-
timates of past effective sizes by sorting the population sizes
predicted from our model of exponentialgrowth for each of
10,000 bootstrap replicates at each generation in the past.
We should mention that the confidence interval estimates
that we obtained assume a model without any stochasticity.
However, the history of the real population is probably more
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FIG. 11. Panel a: The surface of squared deviations (on a log scale) for the mtDNA from China. The asterisk is the global minima at N = 210, 000
and v = 0.0021. The dots are parameters estimated for 40 Monte Carlo realizations with the same parameters. Panels b and c: Comparison of the
distribution of estimates of Ny and -, from 10,000 realizations, with the best fit normal distributions. The 95% approximate confidence interval
obtained from these realizations yields No = 210, 000 4 46,000 and v = 0.0021 + 0.0005.
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FIG. 12. Comparison of predicted effective population sizes backward
in time for our estimates from HVR1 sampled from China with the pre-
historical effective population sizes inferred by Atkinson et al. (2007)
for North and Central Asia (includes China). The solid curve shows our
median estimate of the effective population size, whereas the lower
and upper dashed curves show the 2.5% and 97.5% cutoffs at each
time. We assumed an average generation time of 25 years. The curves
in the background are the median and 95% highest posterior density
from a Bayesian skyline plot analysis and are redrawn from figure 1c
of Atkinson et al. (2007).

complicated, and thus the error range of the estimated pa-
rameters for real data are larger than for simulated data.

Note that our model of growth, which has been used by
others as well (Slatkin and Hudson 1991; Kuhner et al. 1998),
is not realisticin another sense, which is that the population
size will approach zero if followed sufficiently long into the
past. This is exemplified by the fact that our predictions con-
tinue to decline linearly (on a log scale) with time at the far
right of figure 12. Thus, we consider this a model only for
the recent growth of a population, and in this sense, our es-
timates are in good agreement with those of Atkinson et al.
(2007). Itis also for the most recent times that our estimates
of past effective sizes show the least variability.

Note also that there is considerable uncertainty in the
literature concerning the mutation rate in human mtDNA
(e.g., see Howell et al. 2003). In general, using a smaller (re-
spectively, larger) value of p in our method would result
in larger (respectively, smaller) predicted values for the ef-
fective population size in the past. In terms of the param-
eters, smaller past values of effective size are achieved by
smaller values of Ny and larger values of y. Our predictionsin
figure 12 also depend on the number of years per human
generation, which we assume to be 25 years. Adopting a
shorter generation time would predict a steeper decline of
past effective population size.

Blue Whale Population

As a further illustration of our technique, we have analyzed
the blue whale (BW) data. We used 63 sequences of the
control region of the mtDNA with L = 299 obtained
from GenBank (Benson et al. 2005). The sequences were
aligned using ClustalW Larkin et al. (2007), with its default

0.5 1 1.5 2 25 3
T (years)

FiG. 13. Comparison of predicted effective population sizes backward
in time for our estimates from HVR1 sampled from BWs with the
estimates of the Skyline plot in BEAST using the same data set. The
solid curve shows our mean estimate of the effective population size,
whereas the lower and upper dashed-dotted curves show the 2.5 and
97.5 cutoffs at each time. We assumed an average generation time of
15 years. The dashed line is the average estimate obtained by using
BEAST, and the dotted lines are the 95% highest posterior density from
a Bayesian skyline plot analysis.

parameters. The mutation rate per sequence per generation
is = 0.00035 (Jackson et al. 2009). We again used the
F84 model with I'-distributed rates across sites as imple-
mented in Dnadist with equal base frequencies, K = 20,
and o = 0.25.

An exponential growth fit, when applied to the BW data,
yields Ny =650,000 [135,000-1,575,000] and v = 0.00067
[0.00024-0.0012]. The confidence intervals have been pro-
duced using 10, 000 replicates. Note that the BW parameters
are slightly outside the validity region, so the average esti-
mate is weakly biased. In figure 13, we compare our results
with the estimates of population size through time obtained
from this data set using the Bayesian skyline model in the
BEAST package (Drummond et al. 2005). One can see that
both methods give more or less similar results. Our rejection
test has been applied to the exponential growth model for
the BW growth using 10, 000 replicates. We found that 1.3%
of X1, were larger than Y3, and thus the model is plausi-
ble. It isimportant to explain that the timescale that we are
dealing with is much larger than the timescale of the mas-
sive whaling of the previous century. Thus, we cannot detect
this event. In addition, taking samples from a population a
short time after a catastrophe is like sampling from a rep-
resentative sample of the whole population (if of course the
whaling was not biased) and thus it takes time until the poly-
morphism of the survivor population will be effected by the
change in the population size.

We also fitted the stepwise growth model to the BW
data and obtained the following results: N; = 1.4 x 10°
[12 X 10%°-6 x 10°], T, = 3,548 [2.2 X 10°-6.3 x 10|,
and N, = 5 x 10° [1 x 10*-1.2 x 10°]. The error range
was obtained from the bootstrap technique using 10, 000
replicates. We applied the rejection test to this model and
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the X of the data was smaller than 15% of the x3, of the
model. Thus, this model was not rejected either. The reason
neither of the models were rejected is thatin a small sample
the stochasticity of the system is large, resulting in a large x*
even when a true model is applied. In addition, most proba-
bly, the history was somewhere between the two models (as
suggested by the skyline method result). We can, however,
negate the fixed population assumption suggested by some
authors (Jackson et al. 2009). In particular, our results call
for a reexamination of previous statements regarding the
genetics and demographics of the BW, like the value of the
mtDNA mutation rate (Jackson et al. 2009) obtained under
the assumption of a fixed population size.

Discussion

We have presented a new method of estimating the effec-
tive size and growth rate of a population using a large sample
of sequences from a single genetic locus. As a key part of this,
we obtained new analytic expressions for the number of lin-
eages ancestral to a sample, as a function of time back into
the past. Our simulations and analyses show that the be-
havior of the NLFT is largely deterministic for a large sample
from a large population, suggesting that estimates based on
the NLFT will be relatively efficient. Importantly, estimates
of the population growth rate using our method appear,
from simulations, to be unbiased. Applying our technique
to a large sample of human mtDNA from China gives an es-
timate of the trajectory of the ancestral population size that
agrees with other recent estimates. Likewise, our estimate of
the BW population agrees with that we obtained by apply-
ing another method to the BW data set.

Clearly, our simple population model lacks many impor-
tant features it would be desirable to include, for exam-
ple, in the context of our application to human mtDNA
from China. As noted in the Blue Whale Population sec-
tion, its utility diminishes for long times in the past. In addi-
tion, for reproduction, we have used the idealized Wright—
Fisher model of a single well-mixed population in which all
genetic variation is selectively neutral. We have further ig-
nored the fact that China is connected to other regions
via complicated migration patterns that have probably also
changed over time. We use the phrase effective popula-
tion size to cover some of the deviations from our model
(M&hle 1998; Nordborg and Krone 2002; Sjodin et al. 2005),
but future work will be needed to fully deal with popula-
tion structure and migration, natural selection, and other
complications.

Our general aim has been the development of methods
of inference tailored to large data sets, such as those that are
rapidly accumulating for humans and several other species.
Within population genetics, it has been known for some
time that taking larger and larger samples, in terms of the
number of sequences, is not necessarily the best strategy
to improve estimates of population parameters (Pluzhnikov
and Donnelly 1996; Felsenstein 2006). However, as we have
shown here, some properties of large samples are very de-
sirable and can lead to new approaches to data analysis.
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Our overall strategy of focusing on certain aspects of genetic
variation in large samples, and avoiding those parts of the
data that are strongly stochastic, appears to be a fruitful way
to extract reliable information from sequence data. Given
the phenomenal accumulation of sequence data, methods
geared toward large samples may be key to the further de-
velopment of studies of genetic variation.

Supplementary Material

Supplementary figures S1-S6 are available at Molec-
ular Biology and Evolution online (http://www.mbe
.oxfordjournals.org/).
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NLFT for an exponentially growing population

Eq. 11 of the main text governs the deterministic evolution of the NLFT in the case of an expo-
nentially growing population. This ordinary differential equation takes into account terms of order
O(\(L)/N (1)), as in the case of a fixed population. When these small terms are neglected, the

NLFT is:

_ 2N0’)/TLO
2N,y + no(exp(yt) — 1)

n(t) (1)

As long as n(t) is large there is no difference between the expression and the result of equation
11 in the main text. However, for long times when n(¢) becomes smaller the difference becomes
apparent. Of course Eq. 11 yields a better description of the average number of lineages as a
function of time. However, the expression (1|fits better the average time of the i'th coalescent event

(including the Thsrc ), and thus it has been used in figure 9 of the main text.
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SUPPLEMENTARY FIG. S1—Similar to figure 1 in the main text, but here for a growing population,

with parameters Ny = 5 x 10, = 0.005 and ng = 500.
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SUPPLEMENTARY FIG. S2—The upper panel shows the NLFT from the recursion equation (red
line) and the continuum approximation (black dashed line), for the full sample ng = Ny. The lower
panel, which shows the ratio of the two, illustrates that this difference is always less than about 5%.

In both panels, Ny = 4000000 and y = 0.005.
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SUPPLEMENTARY FIG. S3—Dependence of the average estimated NFLT, (n.(¢)) on the mutation
rate (upper panel) and the sequence length (lower panel) for a constant-sized population. Each line

is the average of 500 simulation replicates.
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SUPPLEMENTARY FIG. S4—The average + one standard deviation of the NLFT, n. (), estimated
from simulated data, for a series of different current population sizes Ny. The populations sizes are
5 x 10* (turquoise), 10° (black), 5 x 10° (blue), 10° (red), 2 x 10% (magenta), 10" (brown) and

4 x 107 (green). Other parameters are v = 0.002, ng = 500 and & = 0.0023.
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SUPPLEMENTARY FIG. S5—A contour plot of surface of squared deviations over the demographic
parameter space. The simulation runs with growth rate v = 0.003. When the size of the population
reaches N = 10°, ng = 50 individuals were sampled and their genetic sequences were used to
establish n.(t) using the WPGM algorithm. The color scale is from red (larger deviations) to blue
(smaller deviations). The black star is the location of the global minimum, i.e. this gives us the
estimated demographic parameters (N = 8 x 10%, 4 = 0.0027). The black triangle marks the

location of the real parameters (N = 10°, v = 0.003).
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SUPPLEMENTARY F1G. S6—Estimated size of the population (middle line) and its standard devia-

tion plotted against the real V.
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