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The population-scaled mutation rate, 6, is informative on the effective population size and is thus widely
used in population genetics. We show that for two sequences and n unlinked loci, the variance of Tajima’s
estimator (¢), which is the average number of pairwise differences, does not vanish even as n — oc. The
non-zero variance of 6 results from a (weak) correlation between coalescence times even at unlinked loci,
which, in turn, is due to the underlying fixed pedigree shared by gene genealogies at all loci. We derive the
correlation coefficient under a diploid, discrete-time, Wright-Fisher model, and we also derive a simple,
closed-form lower bound. We also obtain empirical estimates of the correlation of coalescence times
under demographic models inspired by large-scale human genealogies. While the effect we describe is

small (Var [@] /0% ~ O (N;l)), it is important to recognize this feature of statistical population genetics,

which runs counter to commonly held notions about unlinked loci.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The population-scaled mutation rate, 6, is defined as 4N.u,
where N, is the effective population size and u is the mutation
rate per locus per generation (Wakeley, 2009). Two classic esti-
mators were developed for 6, Watterson’s (based on the number
of segregating sites Watterson, 1975) and Tajima's (based on the
average number of pairwise differences Tajima, 1983, 1989). For
a single pair of sequences, both estimators are identical (denoted
here as é) and equal to the number of differences between the
sequences.

Increasing the number of sampled individuals has limited abil-
ity to improve these estimates of 6, because shared ancestry re-
duces the number of independent branches on which mutations
can arise (Rosenberg and Nordborg, 2002). Felsenstein (2006)
showed that the variance of maximum likelihood estimates of 6
decreases approximately logarithmically with the number of indi-
viduals sampled. In contrast, the variance decreases inversely with
the number of independent loci. Thus, to increase the accuracy of
estimates of 0, it is generally more effective to increase the number
of independent loci than the sample size at each locus (see also
e.g., Edwards and Beerli, 2000; Pluzhnikov and Donnelly, 1996 and
references within).
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Consider a set of n unlinked loci located on different (non-
homologous) chromosomes. We show here that even as n —
00, the variance of the resulting estimate of & does not converge
to zero, in contrast to what we may have naively assumed. This
behavior results from the fact that coalescence times, even at
unlinked loci, are in fact weakly correlated, due to the sharing of
the same fixed underlying pedigree across all loci (Wakeley et
al.,, 2012). By conditioning on the number of shared genealogical
common ancestors, we derive a simple approximate lower bound,
as a function of N, on the variance of 6 (Sections 2 and 3).

Unlinked loci may also be sampled from the same chromosome,
separated by an infinitely high recombination rate. The correlation
of coalescence times in such a case is higher, as the two loci may
travel together for the first few generations. Therefore, the extent
of the correlation, and thereby, the variance of 6, also depend on
the sampling configuration. In Section 4, we derive the correlation
coefficient analytically, as a function of the configuration and the
effective population size, using a diploid discrete time Wright-
Fisher model (DDTWF). This model is an extension of the haploid
DTWF model, previously advocated by Bhaskar et al. (2014) for the
study of large samples from finite populations.

Our results for the variance of 6 were obtained under the
Wright-Fisher demographic model. To shed light on the vari-
ance of 6 under more realistic demographic models, in Section 5
we run simulations based on real, large-scale human genealog-
ical data (Kaplanis et al.,, 2017). The pedigrees inspired by dif-
ferent human populations differ from each other and from the
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Wright-Fisher pedigrees in a number of ways, for example in the
variance of the relatedness of any two randomly chosen individ-
uals. These differences lead to differences in the variance of 6 for
each population, even if they have the same effective population
size. Finally, we study some properties of linked sites in Section 6.

We note that the dependence of gene genealogies at unlinked
loci has been previously recognized, most recently in the con-
text of matching probabilities. Specifically, the probability of the
genotypes of two individuals to match at two or more loci was
computed under the Wright-Fisher and other models, and shown
to differ from the product of the corresponding one-locus proba-
bilities (Laurie and Weir, 2003; Song and Slatkin, 2007; Bhaskar
and Song, 2009). In earlier literature, this effect was demonstrated
in the context of identity-by-descent probabilities at unlinked
loci (Weir and Cockerham, 1969) and implicitly in results on
linkage disequilibrium (Ohta and Kimura, 1969). However, the
treatment of this effect in the context of effective population size
estimation is to our knowledge new.

2. The relation of the variance of 8 to the correlation of the
coalescence times

For a sample of size two (haploids) at n loci, the estimator of 6
can be expressed as

n 1<
9(n)=E29i, (1)
=1

where 6; is the number of differences at locus i. If we assume the
loci are exchangeable, we have:

R Var I:é,:l
wfin] - 2

Under the standard coalescent model (Wakeley, 2009), o; is
Poisson distributed with mean 2uT;, where T; is the time until
coalescence at locus i in generations and y is the mutation rate per
locus per generation. Using the law of total covariance,

Cov [éi, éj] —E [COV [é,», dIT, Tj]]
+ Cov [E [éim, Tj] E [éjm, T,]]
= 4u*Cov [T, T], (3)

1
+ = Cov [9,»,9]-]; i ] )

since conditional on T; and Tj, f; and éj are independent. Thus, for
infinitely many sites,

Var [é] = lim Var [é(n)] = 4% Cov [T, T}] . (4)
n—oo

Under the standard coalescent model (Kingman, 1982; Tajima,
1983), T; is distributed exponentially with rate 1/(2N,) and
Var|[T;] = 4N?. Since Cov [T;, T;] = Corr [T;, T;] x Var|[T;], we can
write

Var [é] = (41N, )*Corr [T;, Tj]
= 6°Corr [T}, Tj] . (5)

Studying the correlation instead of the covariance will allow us,
later on, to visually compare the results across different effective
population sizes. )

We note that the variance of 6 is calculated over independent
replicates over the entire evolutionary process, including both the
population pedigree (family relationships between all individuals)
and the gene genealogies. We elaborate below on this important
point (Sections 3 and 5, and the Discussion).

3. Modeling the effect of the shared pedigree

In this section, we study the role of the shared underlying
pedigree in the non-zero variance of 6. We first provide a formal
derivation of the statistical inconsistency of 9, followed by an intu-
itive derivation of an approximate lower bound. Exact calculations
appear in Section 4.

3.1. Statistical inconsistency of 0 due to the underlying pedigree

We begin with a general analysis of the inconsistency of the es-
timator of 6. An estimator is consistent if its sampling distribution
converges in probability to the true parameter value (Wasserman,
2004). The value of 6 is a function of the pedigree that connects
the two individuals in our sample, where the pedigree itself is
randomly drawn from a demographic model (e.g., the Wright-
Fisher model) with parameter 6. If the sampled individuals happen
to be more closely related than average, then 6 will tend to under-
estimate the true value of 6. The opposite is true if the sampled
individuals are less closely related than average.

To formally analyze the consistency of 8, recall that a sequence
of random variables X, converges in probability to C if, for every
€ > 0, limpoP(|Xs — C| > €) = 0 (Wasserman, 2004). To
show that 6,y does not converge in probability to 6, it is sufficient
to show that there exist ¢ > 0 and § > 0, such that for each n,
P(|0ny — 0] = €) > &. Let § be the probability that a randomly
sampled pair of individuals is as closely related as full siblings. Let
€ be some arbitrary value smaller than the difference between 6
and 6*, where 6* is estimated from a sample of full siblings. By
sampling sufficiently many loci (or gene genealogies), we could
theoretically infer the common ancestry of the sampled pair to any
desired accuracy. However, this would not provide information
about the pedigree beyond the ancestry of the sampled pair, and
as the sampled pair is related more closely than average, 6* would
underestimate 6. For those fixed € and 8, we therefore cannot find
n large enough such that Prob(|6;) —6| > €) < 4. This implies that
there is no convergence in probability to ¢, and thus, this estimate
of 6 is not consistent. Since 6y is unbiased (from Eq. (1) and the

discussion that followed, E [é(n)] = E [@i] = E [E [éﬂT,-]] =
E[2uT;] = 4uN, = 6), its inconsistency implies that its variance
does not tend to 0 as n increases (Wasserman, 2004 Theorem 6.10).

3.2. A lower bound on the limiting variance

Next, we derive an intuitive lower bound on the limiting vari-
ance of 6 for a sample of two loci on two non-homologous chromo-
somes, where according to Eq. (4), we only need the covariances
of T; and T;. To compute these covariances, we condition on a
vector of variables {x} = xq, X2, ..., X, where X, is the number of
shared ancestors g generations ago. The vector {x} is, in a sense,
a low dimensional representation of the shared pedigree, and
can be used to compute the probability of coalescence at each
generation. For example, if x; = 2 (full siblings), then all loci have
the same 25% probability of coalescing within a single generation.
We only consider the first G = log,N, generations, where N,
is the (constant) effective population size, as it was shown that
the effect of the shared pedigree is important only up to ~log,N,
generations (Wakeley et al., 2012; Derrida et al., 2000; Chang,
1999). Beyond that time, almost all ancestors are shared, and the
distribution of the contribution of each ancestor to the present day
sample is approximately stationary.

By the law of total covariance, we have:

Cov[T;, Tj] = Eqq [Cov[Ti, Til{x}]]
+ Covig [E[Til{x}]. E[TiI{x}]]. (6)
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Ey [Cov[T;, Tjl{x}]] ~ 0, because conditioning on the pedigree in
the first few generations, the loci are approximately independently
segregating. Therefore:

Cov [T;, Tj] =~ Covyy [E[Til{x}], E[T;l{x}]]
= Vary [E[Til{x}]]. (7)

To compute E[T;|{x}], we condition on whether coalescence has
occurred in the first G generations. If it has not occurred, we assume
that the process then behaves just as the standard coalescent, or
E [T;|no coal] &~ 2N, + G. We can write:

E[Ti|{x}] = (2N, + G)P (no coal by G|{x})

G
+ ZgP (coal at g|{x}) . (8)
g=1
As computed in Wakeley et al. (2012), the coalescence probability
is roughly given by P (coal atg|{x}) = oz(g)]_[ﬁ,_:]1 [1-a(g))].
where «(g) = x,/2%%! and Prob {no coal by G|{x}} = ]_[g,zl
[1—a(g))] Since a(g) <« 1 (see below), we approximate
P (coal at g|{x}) ~ a(g) and P (no coal by G|{x}) ~ 1 — Zg=la(g).
Thus,

G
EITI{(x}] ~ (2Ne +G) — > 2Ne + G — ) a(g) 9)
g=1
and
G
Varyy [E[Til{x}]] & Var | " (2N, + G — g) a(g)
g=1
c X
~ 2 g
A 4N2Var Z it | (10)
g=1
since G < Ne.

In Supplementary material Section S1, we provide a numerical
method to calculate the covariances of the x,’s under a diploid,
discrete-time Wright-Fisher model (see the next section for defi-
nitions). To proceed here, we assume that the x,'s are independent.
While the x,’s are clearly positively correlated, the independence
assumption allows us to derive a lower bound on Cov [Ti, Tj],
and thereby, the variance of 6. Under that assumption, Eq. (10)
becomes

Var [xg]
24

G
Varg [E[Til{x}]] 2 N2 Y (11)
g=1

To compute the variance of x,, we note that the distribution of xg
is roughly hypergeometric with parameters 28 potential successes
(the number of ancestors of one individual), N — 2¢ potential
failures (all individuals in the population who are not ancestors of
thatindividual), and 28 draws (the number of ancestors of the other
individual), giving Var [x;] ~ 2%(N, — 2¢)?/N. We provide the
exact distribution of the variance of x, in Supplementary material
Section S1. Substituting the hypergeometric variance in Eq. (11),
1 o= (N, — 2¢)?2
Var [E(T I 2 - 3 e 20 (12)

g
€ g=1

2 2
Using G = log, N,, we have Z§:1 (Nez’zﬁg) = <N7€ — 2N, + 31135215 +
5

2
5) ~ N?e for large N,, and hence, using Eq. (7),

Cov[Ti. Tj] 2 N

3 (13)

Using Eq. (4) and 6 = 4uN,, we finally obtain
~ 62
Var [9] > 7 (14)
12N,

In summary, the variance due to the shared pedigree is of order
6% /N,, independently of the number of regions n. Thus, as argued
above, even for a large number of chromosomes, the variance of 6
does not decay to zero, but rather to a constant that depends on
the effective population size as &« 1/N,. To intuitively explain the
non-zero variance, we note that the pedigree itself is the product
of a stochastic model (Wright-Fisher or another). Thus, even a fully
specified pedigree (for the two individuals under consideration),
as obtained by sampling infinitely many loci, leaves uncertainty
regarding the value of 6. In other words, the uncertainty in the
estimate of 6 results from having at hand only a single instance of
a pedigree generated from the stochastic model governed by that
parameter (see also Ralph, 2015).

In yet another way, given that we are sampling infinitely many
loci, and using Eq. (1), the assumption that 6; has mean 2uT;, and
the law of large numbers, 6 converges to a fixed value, which
is twice the mutation rate times the empirical mean TMRCA in
the pedigree connecting the two individuals. This limit still has
some degree of randomness about the model parameter 6, since
different instances of the pedigree will have different empirical

means. The variance of the estimator, Var [é] is thus proportional

to the variance of the realized mean TMRCA within the pedigree,
as in our Eq. (7).

We could not find simple reasoning to the observed 1/N, scal-
ing. However, we can speculate that the dependence between the
genealogies at the two loci results mostly from the rare events
in which the two sampled individuals are closely related. Under
the WF model, the probability of relatedness in the first O(1)
generations is O(1/N,), which may lead to the observed scaling.
This result may also have some connections to the O(1/N,) scaling
of the acf measure of linkage disequilibrium for unlinked loci (Ohta
and Kimura, 1969).

4. Exact results for the correlation of the coalescence times at
unlinked loci

In this section, we provide an exact derivation of the correlation
of coalescence times at unlinked loci under a diploid, discrete-time,
Wright-Fisher model. Further, we consider multiple sampling con-
figurations for those loci, as explained below.

4.1. The sampling configurations

To compute the correlation of coalescence times at a pair of
unlinked loci, we first note that there are multiple ways by which
two such loci can be sampled from two sequences of present-
day individuals. We focus on six particular sampling configurations,
shown in Fig. 1. Four of these configurations involve a sample of
two individuals, and we start by describing these.

In the first configuration, the loci are located infinitely far apart
on the same chromosome in both individuals. This means that
these loci will be coupled for the first few generations, going
backwards in time, until separated by a recombination event. Once
separated, they may later back-coalesce onto the same chromo-
some, and again resume percolating together through the pedigree
for a period of time that is expected to be short. (In the event of
back-coalescence, two ancestral loci not sharing genetic material
come to be located on the same chromosome, which essentially
undoes the effect of recombination.)

In the second configuration, the loci are on different homolo-
gous chromosomes, meaning they will necessarily be present in
different parents in the immediately preceding generation. It is
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then also possible for them to back-coalesce in later generations.
The third configuration is a mixture of the first two: the loci are
located on the same chromosome in one individual, and on ho-
mologous chromosomes in the other. In the fourth configuration,
the loci are sampled from non-homologous chromosomes in both
individuals. This configuration is different from the previous three
in that back-coalescence is not possible.

In the fifth and sixth sampling configurations, all sequences
are sampled from a single individual. This is common in practice,
as measuring the heterozygosity in a single individual does not
require haplotype phasing. In configuration 5, we sample the two
loci from the same chromosome. Given that each homologous
chromosome must originate from a different parent, in one gen-
eration the sampled loci will transition to configuration 1 with
probability 0.25, to configuration 2 with probability 0.25, and to
sampling configuration 3 with probability 0.5. In sampling con-
figuration 6, the sampled loci are on different (non-homologous)
chromosomes. This configuration is reduced in one generation to
sampling configuration 4, and therefore has the same correlation
properties as that configuration.

4.2. The DDTWF model

To study the correlation of coalescence times under the dif-
ferent sampling configurations, we use a discrete-time Wright-
Fisher (DTWF) model. This class of models has been advocated
as an alternative to the coalescent when the sample size is large
relative to the population size, as it can accommodate multiple and
simultaneous mergers (Bhaskar et al., 2014).

In our case, we assume non-overlapping generations, a constant
population size of N, diploid individuals, half of which are males
and half of which are females, random mating between the sexes,
no selection, and no migration. There are three possible events
when going one generation backwards in time: recombination,
coalescence, and back-coalescence. Because the population size
is finite, combinations of these events can occur in a single gen-
eration. We also keep track of whether lineages are in the same
individual or not, as this determines their trajectory in the im-
mediately preceding generation. We refer to this model as the
2-sex (diecious) DDTWF. (Later, we also consider a simplified
(1-sex) DDTWF). The dynamics of this 2-sex DDTWF model can
be summarized by a Markov transition matrix (Supplementary
material Section S2) with 17 states, where the initial state is one
of the sampling configurations 1, 2, 3, or 5.

The model described above represents pairs of loci sampled
from either the same chromosome or homologous chromosomes,
as the notion of back-coalescence and recombination only applies
in these cases. Nevertheless, we found that the same transition ma-
trix applies to sampling configurations 4 and 6 (non-homologous
chromosomes), albeit with a different interpretation of the states
(not shown).

Given the transition matrix, we can write a system of equations
using a first step analysis for all states q such that E[T;Tj|q] > O:

E[TiTjlq] = ) pgEL(Ti + 1XT; + 1)IK]

k

=1+ ) paEITiIKI+ ) paEIT;Ik1 + ) paEITT;Ik]
k k

k
=E[Ti|Q]+E[Tj|Q]+ZquE[TiTj|k]_ 1, (15)

k

where pg is the transition probability between states q and k. This
system of equations is conceptually similar to that used by Laurie
and Weir (2003), Song and Slatkin (2007), and Bhaskar and Song
(2009) to calculate the probability of matching genotypes at two
or more unlinked loci.

Individual 1

Sampling configuration 2 @ @
Sampling configuration 3 @ @
Sampling configuration 4 @ @

Sampling configuration 5

Individual 2

Sampling configuration 1

Sampling configuration 6

Fig. 1. The sampling configurations. Sampling configurations 1 to 4 involve a
sample of two individuals, depicted by two circles. Sampling configurations 5 and
6 involve a single individual, depicted by a single circle. The lines within each circle
correspond to two pairs of homologous chromosomes. The two loci are indicated
by squares and diamonds.

Solving this system of equations allowed us to obtain exact
results for Cov [T,-, leq]. As a note, E[T;|q] can be different from
E[T;|q], depending on the state g. For example, if the pair of lineages
at locus i is located on two homologous chromosomes in the same
individual, whereas the pair of lineages at locus j is located in two
different individuals, then E[T;|q] = E[Tj|q] + 1. See more details
in Supplementary material Section S2. To obtain the correlation
coefficient, we then normalize the covariance by the variance of
the coalescence time at a locus, which is the same regardless
of whether the lineages were sampled from the same or from
different individuals. The variance can be calculated using the
aforementioned system of equations withi = j.

Fig. 2 shows the correlation coefficient of the coalescence times
for each sampling configuration. The highest correlation is found
for configuration 1. As the two loci are located on the same chro-
mosome in both sampled individuals, they must have originated
from the same parent in the previous generation. Therefore, the
two loci either both coalesce to the same parent or both do not,
introducing correlation between the coalescence times. The effect
of this sampling configuration then persists, as long as the two
loci remain on the same chromosome. As N, increases, the correla-
tion decreases, as it is much more likely for the two loci to split
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Fig. 2. Correlation of coalescence times for a sample of size 2. We plot the correla-
tion coefficients for the different sampling configurations under the 2-sex DDTWF
and the simplified DDTWF vs the effective population size N,. The calculations are
described in detail in Supplementary Section S2.

(probability 1/2 at each generation) before a coalescence event
occurs. Sampling configuration 3 (two loci located far apart on
the same chromosome in one individual, and on different chromo-
somes in the second individual) shows the lowest correlation. In
fact, it is slightly negative for very small values of N,, for if one of
the loci coalesces in the first generation, then it is impossible for
the other locus to coalesce. The correlation in other configurations
is intermediate between those of configurations 1 and 3.

Fig. 2 also shows results for a simplified DDTWF model, which is
similar to the 2-sex DDTWF, except that individuals are monecious
and we do not keep track of whether any two lineages are in the
same individual or not. There are fewer states in this model than in
the 2-sex DDTWEF, and it is therefore significantly easier to analyze.
The simplified model displays a slightly higher correlation com-
pared to the 2-sex model for N, < 40, but is a good approximation
otherwise (as we also show in Section 6). More details on both
models are given in Supplementary material Section S2.

5. Simulations
5.1. Wright-Fisher simulations

In this section, we use simulation of the 2-sex diploid, discrete-
time Wright-Fisher model to support our analytical results from
Section 3.2. To estimate the correlation coefficient of the coales-
cence times at two loci, we first simulate many Wright-Fisher
pedigrees. We then sample, for each pedigree, two individuals
from the current generation. We set the population size N, to be
the same in every generation, with equal numbers of males and
females. We then consider two loci on non-homologous chromo-
somes and simulate the path through the pedigree that connects
the two lineages at each locus to their most recent common ances-
tor. In each generation and for each locus, lineages that are found
in the same individual coalesce with probability 1/2, in which case
the coalescence time is recorded. Loci on different chromosomes in
the same individual coalesce neither in that generation nor in the
previous generation.

We repeat this process multiple times for other pedigrees and
pairs of individuals to obtain an estimate of E [T|ped]. We then
compute its variance over many simulated pedigrees to obtain
Varpeq [E[T|ped]]. By the same logic as Eq. (7), Varpeq [E [T|ped]] is
equal to Cov [T,~, Tj]. To obtain the correlation coefficient, we divide
Cov[T;, Tj] by Var[T] = Varpeq [E[T|ped]] + Epeq [Var[T|ped]].
The simulation results are shown in Fig. 3. Our analytical lower
bound, which, based on Egs. (14) and (5), can be written as

0.009

® © Simulation results
0.008 |

—— Analytic lower bound results

0.007 ¢

0.006

0.005

Correlation

0.004

0.003 ¢

0.002

0.001

20 40 60 80 100
Ne

Fig. 3. Analytical lower bound for the correlation of coalescence times at unlinked
loci. We plot the correlation coefficient of the coalescence times at unlinked loci
sampled from non-homologous chromosomes under the 2-sex, diploid, discrete-
time Wright-Fisher model (circles) as a function of the effective population size N,.
The analytical lower bound (Corr ['ﬂ, Tj] > 1/(12N)) is plotted as a solid line.

Corr [T;, T;] = 1/(12N), is well supported by the simulations, and
is in fact relatively tight.

5.2. Simulations based on real human pedigrees

The Wright-Fisher model is only one way to generate pedigrees
having a given effective population size. In real human popula-
tions, pedigrees have complex structures that depend on their
geographical region. For example, there are different rates of con-
sanguineous marriages in different countries (Bittles and Black,
2015), different distributions of the number of children per family,
and different mating structures, leading to differences in the num-
ber of full-siblings and half-siblings. To gain insight on the effect
of these differences on the ability to estimate 6, we constructed a
Wright-Fisher-like model, but which is constrained by patterns of
real human pedigrees. Specifically, we used the FAMILINX database,
compiled by Kaplanis et al. (2017), which carries information on
about 44 million individuals from different countries.

We extracted genealogical data for three countries (Kenya, Swe-
den, USA) from FAMILINX; these countries were arbitrarily selected
among those with sufficient data. We then used these genealogies
to simulate pedigrees by breaking down and reassembling small
family units, as previously described for a different dataset (Wake-
ley et al., 2012). Specifically, we first split the genealogies into two-
generational family units of children and their parents. To belong
to a unit, a child must share at least one parent with at least one
other child in the family unit. As FAMILINX contains data on more
than the three countries we chose, and in order not to create a bias
in favor of smaller, simpler family units, we only require that the
first sampled child is in the corresponding country dataset. These
family units then serve as building blocks to generate pedigrees
with the same mating patterns and distribution of the number of
children as in the reference population.

Under the above-described scheme, the effective population
size N, is not guaranteed to equal the census population size (as
is in the WF model). We thus defined N, for each country-inspired
model, as half the empirical average time until coalescence across
randomly sampled pairs and random pedigrees. We could then
fine-tune the census size, for each country, until reaching a pre-
specified N.. We note that other definitions of N, are possible, for
example, based on the variance in the number of offspring (Wake-
ley, 2009). Once the pedigrees were generated, we simulated ge-
nealogies through those pedigrees as described in Section 5.1.
Additional details are provided in Supplementary material Section
S3.
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Fig. 4. The correlation coefficient of coalescence times at two unlinked loci in
models inspired by the FAMILINX dataset. To generate the figure, synthetic pedi-
grees were constructed under Wright-Fisher-like models with single-generation
genealogical patterns imitating those observed in FAMILINX. Results are shown for
three countries, as well as for the 2-sex DDTWF model. The correlation coefficient
is plotted vs the effective population size, N,, defined here as half the mean
coalescence time across randomly generated pedigrees (see the main text). The
two loci were sampled from non-homologous chromosomes. It can be seen that
the correlation depends on the structure of the pedigree in ways that cannot be
summarized by N, at least according to its definition used here.

For each country and for a range of N.’s, we then used the
simulated data to compute the correlation coefficient of the coa-
lescence times, as in Section 5.1 (i.e., Varpeq [E [T|ped]] divided by
Var [T]). The results, shown in Fig. 4, demonstrate that Corr [T,-, Tj],

and consequently, Var [é] vary across populations and between

the FAMILINX-inspired models and the Wright-Fisher model. One
plausible biological explanation for the differences is a different
frequency of half siblings compared to full-siblings across the mod-
els. However, we note that a number of other factors could have af-
fected the observed differences. For example, as mentioned above,
N, was defined as the mean coalescence time over pedigrees; using
a different definition of N, or a different method for fixing N, in
the model (see Supplementary material Section S3) could have led
to different conclusions. Additionally, our FAMILINX-based models
are not necessarily a truly faithful representation of actual human
populations. For example, the real populations we considered are
likely growing, while we have coerced the genealogies into a
constant size population. Moreover, since FAMILINX is based on
voluntarily donated data, different countries may differ in both the
sub-populations represented, as well as in the genealogical error
rate.

6. Linked sites and model comparisons

We have so far only studied unlinked sites; however, our analyt-
ical results for the DDTWF models can be relatively easily extended
to the case of linked loci. Such an extension is important, since, for
example, the covariance of coalescence times at two loci is directly
related to the r? measure of linkage disequilibrium (McVean,
2002). Quantifying the behavior of different models in terms of
the covariance of coalescence times can provide insight into the
importance of certain modeling assumptions.

In the DDTWF model with linked sites, the transition probabil-
ities are expressed in terms of the per generation recombination
fraction, r, which has been so far set to 0.5. The transition matrix
of Supplementary material Section S2 is straightforward to adapt
for any r < 0.5, and the covariance or correlation coefficient of
the coalescence times can be computed. The correlation coefficient
under the 2-sex DDTWF model is plotted in Fig. 5 vs the scaled
recombination rate p = 4N,r, showing perfect agreement with
simulations.
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Fig. 5. The correlation coefficient of coalescence times at two linked loci under the
2-sex DDTWF model. The correlation coefficients are plotted as lines, for two values
of N, vs the scaled recombination rate p = 4N,r. Simulation results are shown as
+ symbols. The two loci were sampled in configuration 1. Note that since the x-axis
corresponds to p = 4N,r (as opposed to just the recombination fraction r), the
correlation for higher values of N, need not be smaller.

These results enable us to compare the exact 2-sex DDTWF
model to the simplified DDTWF model, as well as to the coalescent
with recombination and its Markovian approximations. Let p =
4N,r. Under the ancestral recombination graph (ARG) (Griffiths
and Marjoram, 1997), which is the standard model for the coales-
cent with recombination, the covariance of coalescence times at
two loci satisfies (e.g., Simonsen and Churchill, 1997),

18+ p

COVARG [Tl, ’1}] = m (16)
Under the Sequentially Markov Coalescent (SMC) (McVean and
Cardin, 2005), each new genealogy, following recombination, de-
pends only on the previous genealogy (as opposed to the ARG (Wiuf
and Hein, 1999)), and the new coalescence time must differ from
the previous time (no back-coalescence allowed). In this case, we
have,

1
1+p
The SMC’ model (Marjoram and Wall, 2006) is a variant of SMC

where back-coalescence is allowed. Under SMC' (Eriksson et al.,
2009; Wilton et al., 2015),

COVSMC' I:T,-7 ]}] — ZP/Ze—p/4(_p)_]/2_p/4

24p 2+p p

(The covariances of Egs. (16)—(18) are also equal to their respective
correlation coefficients, since Var[T] = 1 under either the ARG,
SMC, and SMC). In Fig. 6, we compare the correlation of T; and T;
across the different models as a function of p for N, = 100 and
different values of r. The ARG provides a very good approximation
under these conditions. In turn, the SMC’ model shows very slight
deviations compared to the ARG, while, as previously shown, the
SMC model deviates more substantially (Wilton et al., 2015).

The 2-sex DDTWF model is compared to the simplified DDTWF
model in Fig. 7. Compared to the full 2-sex model, the simplified
model is an extremely good approximation even for N, as small as
100: the maximum difference in the correlation coefficient (across
different values of r) between these two models was less than
0.005 (see also Fig. 2). Therefore, the simplified model should be
preferred due its much reduced complexity. For N, = 10, we
observe a more pronounced difference between the 2-sex and
the simplified DDTWF models, with a maximal difference around
0.025.

COVSMC [T,‘, T]] = (17)
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Fig. 6. A comparison of the correlation coefficient of the coalescence times at two
linked loci under models of increasing complexity. We compare the ARG, SMC, SMC’,
and the 2-sex DDTWF with N, = 100, across different values of p = 4N,r. The
predictions of the ARG and SMC’ are very good approximations for those of the 2-
sex diploid WF model (for the value of N, shown here).
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Fig. 7. A comparison of the correlation coefficient of the coalescence times at
two linked loci between the 2-sex and the simplified DDTWF models. We plot the
difference between the correlation coefficients of the two models vs p for N, = 10
and N, = 100. The predictions of the two models slightly diverge at N, = 10.

7. Summary and discussion

Previous studies of estimators of 6 using data from a single locus
have revealed properties rather different from classical statistical
results for independent samples, due to the non-independence
of samples exerted by their shared gene genealogy. In partic-
ular, Tajima (1983) demonstrated that the average number of
pairwise differences is an inconsistent estimator of 6 as the sam-
ple size at the locus tends to infinity, and Joyce (1999) showed
that there is no linear unbiased estimator using site-frequency
information that has a uniformly lower variance than Watterson'’s
estimator (Watterson, 1975). Our work adds a new dimension to
such studies by considering the statistical properties of estimators
as the number of independently segregating loci tends to infinity,
but with non-independence exerted by the population pedigree
that all loci share. Specifically, we have shown that even when sam-
pling infinitely many loci, the estimator of 6 based on the average
number of pairwise differences at many loci is not consistent and
has non-zero variance. We provided an approximate lower bound
on the variance for loci on non-homologous chromosomes, as well
as exact results for diploid, discrete time Wright-Fisher models
under various configurations of two sampled loci.

As mentioned above, the non-zero variance of 6 is a result of
the underlying pedigree shared between all loci (Laurie and Weir,
2003; Song and Slatkin, 2007; Bhaskar and Song, 2009). The shared

pedigree itself is assumed to be a single draw from a random demo-
graphic process (Wright-Fisher or another), with a characteristic
effective population size. Thus, even if we were able to perfectly
characterize the single pedigree at hand, we cannot hope to infer
with complete certainty the parameters of the demographic model.
It is worth noting that one can adopt a different (philosophical)
view, under which the pedigree itself is the subject of inference,
and is not a product of a random demographic process (Ralph,
2015). Under such a view, there is no such thing as an estimator
of the effective population size.

The analytical results in this paper are based on the Wright-
Fisher model. To gain insight on the behavior of more realistic
demographic models, we adapted the Wright-Fisher model ac-
cording to the family structure of real human populations. The
results demonstrated that the correlation of coalescence times is
different in the human-inspired models than in tpe WF model,
which should lead to differences in the variance of 6.

When using a demographic model, it is not always clear which
features of the real population are crucial (e.g., two sexes, diploidy,
etc.), or whether simplified models could display similar character-
istics. We used our analytical framework to study the correlation
of coalescence times as a function of the scaled recombination rate,
p, for the 2-sex and the simplified DDTWF models, and compared
the results to the coalescent with recombination and its Markovian
approximations. We found that, as expected, for sufficiently large
effective population size (N > 100), the results for the coalescent
(as well as for the SMC' approximation, but not for SMC) were
extremely close to those of the DDTWF models. In contrast, differ-
ences were observed for N = 10, even between the 2-sex and the
simplified DDTWF.

We have focused here on a sample of two individuals at two
loci. For unlinked loci, we showed that the variance of 6 for any
number of loci is reduced to the two-locus problem. Extending
the sample size to more than two individuals is expected to be
significantly more complicated. Deviations between the coalescent
and the discrete time haploid Wright-Fisher model for increasing
sample sizes were recently studied and shown to be important
for realistic human demographic histories (Bhaskar et al., 2014).
We similarly speculate the underlying shared pedigree to have an
increasingly significant effect on the variance of Tajima’s estimator
as the sample size grows, but this analysis is left for future studies.

Appendix A. Supplementary material

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.tpb.2017.03.002.

References

Bhaskar, A., Clark, A.G., Song., Y.S., 2014. Distortion of genealogical properties when
the sample is very large. Proc. Natl. Acad. Sci. USA 111, 2385-2390.

Bhaskar, A., Song, Y.S., 2009. Multi-locus match probability in a finite popula-
tion: a fundamental difference between the Moran and Wright-Fisher models.
Bioinformatics 25, i187-1195.

Bittles, A.H., Black, M.L., 2015. Global patterns and tables of consanguinity. URL
http://consang.net.

Chang, J.T., 1999. Recent common ancestors of all present-day individuals. Adv.
Appl. Probab. 31, 1002-1026.

Derrida, B., Manrubia, S.C., Zanette, D.H., 2000. On the genealogy of a population of
biparental individuals. J. Theor. Biol. 203, 303-315.

Edwards, S.V., Beerli, P., 2000. Perspective: gene divergence, population divergence,
and the variance in coalescence time in phylogeographic studies. Evolution 54,
1839-1854.

Eriksson, A., Mahjani, B., Mehlig, B., 2009. Sequential Markov coalescent algorithms
for population models with demographic structure. Theor. Popul. Biol. 76,
84-91.

Felsenstein, J., 2006. Accuracy of coalescent likelihood estimates: do we need more
sites, more sequences, or more loci? Mol. Biol. Evol. 23, 691-700.


http://dx.doi.org/10.1016/j.tpb.2017.03.002
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb1
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb2
http://consang.net
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb4
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb5
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb6
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb7
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb8

L. King et al. / Theoretical Population Biology 122 (2018) 22-29 29

Griffiths, R., Marjoram, P., 1997. An ancestral recombination graph. In: Tavaré,
S., Donnelly, P. (Eds.), Progress in Population Genetics and Human Evolution.
Springer Verlag, pp. 257-270.

Joyce, P., 1999. No BLUE among phylogenetic estimators. J. Math. Biol. 39, 421-438.

Kaplanis, J., Gordon, A., Wahl, M., Gershovits, M., Markus, B., Sheikh, M., Gymrek,
M, Bhatia, G., MacArthur, D.G., Price, A, Erlich, Y., 2017. Quantitative analysis
of population-scale family trees using millions of relatives. BioRxiv http://dx.
doi.org/10.1101/106427.

Kingman, J.F.C., 1982. The coalescent. Stochastic Process. Appl. 13, 235-248.

Laurie, C., Weir, B.S., 2003. Dependency effects in multi-locus match probabilities.
Theor. Popul. Biol. 63, 207-219.

Marjoram, P., Wall, ].D., 2006. Fast coalescent simulation. BMC Genet. 7, 16.

McVean, G.AT., 2002. A genealogical interpretation of linkage disequilibrium.
Genetics 162, 987-991.

McVean, G.A.T., Cardin, N.J., 2005. Approximating the coalescent with recombina-
tion. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 360, 1387-1393.

Ohta, T., Kimura, M., 1969. Linkage disequilibrium at steady state determined by
random genetic drift and recurrent mutation. Genetics 63, 229-238.

Pluzhnikov, A., Donnelly, P., 1996. Optimal sequencing strategies for surveying
molecular genetic diversity. Genetics 144, 1247-1262.

Ralph, P.L, 2015. An empirical approach to demographic inference. arXiv:1505.
05816.

Rosenberg, N.A., Nordborg, M., 2002. Genealogical trees, coalescent theory, and the
analysis of genetic polymorphisms. Nat. Rev. Genet. 3, 380-390.

Simonsen, K.L., Churchill, G.A., 1997. A Markov chain model of coalescence with
recombination. Theor. Popul. Biol. 52, 43-59.

Song, Y.S., Slatkin, M., 2007. A graphical approach to multi-locus match probability
computation: revisiting the product rule. Theor. Popul. Biol. 72, 96-110.

Tajima, F., 1983. Evolutionary relationship of DNA sequences in finite populations.
Genetics 105, 437-460.

Tajima, F., 1989. Statistical method for testing the neutral mutation hypothesis by
DNA polymorphism. Genetics 123, 585-595.

Wakeley, J., 2009. Coalescent Theory: An Introduction. Roberts & Company Publish-
ers, Greenwood Village, Colorado, USA.

Wakeley, J., King, L., Low, B.S., Ramachandran, S., 2012. Gene genealogies within
a fixed pedigree, and the robustness of Kingman's coalescent. Genetics 190,
1433-1435.

Wasserman, L., 2004. All of Statistics: A Concise Course in Statistical Inference.
Springer.

Watterson, G.A., 1975. On the number of segregating sites in genetical models
without recombination. Theor. Popul. Biol. 7, 256-276.

Weir, B.S., Cockerham, C.C., 1969. Group inbreeding with two linked loci. Genetics
63,711-742.

Wilton, P.R., Carmi, S., Hobolth, A., 2015. The SMC' is a highly accurate approxima-
tion to the Ancestral Recombination Graph. Genetics 200, 343-355.

Wiuf, C,, Hein, J., 1999. Recombination as a point process along sequences. Theor.
Popul. Biol. 55, 248-259.


http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb9
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb10
http://dx.doi.org/10.1101/106427
http://dx.doi.org/10.1101/106427
http://dx.doi.org/10.1101/106427
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb12
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb13
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb14
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb15
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb16
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb17
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb18
http://arxiv.org/abs/1505.05816
http://arxiv.org/abs/1505.05816
http://arxiv.org/abs/1505.05816
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb20
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb21
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb22
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb23
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb24
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb25
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb26
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb27
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb28
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb29
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb30
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31
http://refhub.elsevier.com/S0040-5809(17)30039-4/sb31

Supplementary Material

Extended methods and analytical results

S1 The number of shared ancestors

In this section, we derive the covariance of the number of shared ancestors at each generation for the diploid
discrete-time Wright-Fisher model (DDTWF), denoted x, in section 3.2 of the main text. The model is
defined in Section 4.2 of the main text and in Section S2 below. We proceed in three steps.

S1.1 The distribution of the number of ancestors from one generation to the
next

Consider a single individual in a population with non-overlapping generations in the 2-sex model. Each
generation, there are Ny males and N, females, where Ny + N,,, = N.. (We chose the notation f for males
for fathers and the m for females for mothers, as it makes clearer the derivations below.) We assume in the
numeric analysis that Ny = N,,, = N./2, but the derivations are general for any Ny and N,,. Let y, be the
number of ancestors of a particular individual at generation g in the past. During the first few generations
(going backwards in time), the number of ancestors grows very fast, and we expect y, ~ 29. As the number
of ancestors in a given generation starts to approach the size of the population, the ancestors overlap with
one another, and the growth of the number of ancestors slows down. We are interested in modeling the
exact distribution of the number of ancestors in generation g + 1, y441, given the number of ancestors in
generation g, yg4.
We can first divide the number of ancestors in generation g + 1 into males and females,

Yg+1 = F+ M, (1)

where F'is the number of fathers of individuals in y,, and M is the number of mothers of individuals in y,.

We have NAy g1
( f )J;;jzgyg»f)7 )

where Sy is the Stirling number of the second kind. The intuition behind this formula is that there are (1\;f )
possible ways of choosing f fathers among the N; available. There are then f! possible orderings of these
chosen males. The Stirling number of the second kind is the number of ways we can partition a set of y,
individuals into f categories. We divide all this by the total number of ways of making y, choices of fathers
among the Ny available, or N;¥¢. Likewise,

P(F = flyg) =

N |
) mlSa(yg, m)
Using convolution, we then obtain the number of ancestors a in generation g + 1,
a—1
P(yge1 = alyy) = Y P(F = flyg))P(M = a — fly,). (4)
f=1
The numbers y1,y2, ... form a Markov Chain. The preceding formula defines the transition matrix of y,41

given y,.
If we did not have a 2-sex model, but instead a bi-parental monoecious model, the formula for the number
of ancestors in generation g + 1 would be the following simpler expression,

() alS3(20y,0)

N2yg (5)

P(yg-H = a|yg) =

L. King et al. 151



S1.2 The overlap in the number of ancestors

In the previous subsection, we described the distribution of the number of ancestors at each generation.
Here, we start with a sample of two individuals, A and B, and we are interested in the distribution of the
number of shared ancestors at each generation. Let X be the set of common ancestors in generation g, A,
be the ancestors of A that are not in X, and By the set of ancestors of B that are not in X,. Let |A,|, | By|
and | X4| (= x4 in the notation of the main text) be the cardinality of these three disjoint sets. Let Fi4 be
the set of fathers of individuals in Ay, and let |F4| be the cardinality of F4. Likewise, we define Fx, Fg,
|Fx|, and |Fp|. Given |A4|, |Byl|, and | X/, the distribution of |F4|, |Fp|, and |Fx| is as described in the
previous subsection,

MY £S5 Ayl
.)- (; )fN?L 1) "

NOYF185(1Byl,
N}
Y 18201, )
Xg>:(f) \QXg|g :
Ny

; (7)

(8)

P <|FX =f

The number of fathers in common between individuals in A, and X, x,, follows a hypergeometric distribu-
tion with Fx success states, Ny — |Fx| failure states, and |F4| draws,
(|Fx\) (Nf*\Fx|)

Tq

|[Fal-wq
FON v
[Fal
The probability that individuals in B, have x; fathers in common with individuals in X, and a; fathers

in common with individuals in A, (but not with individuals already in X,), given that |Fa N Fx| = 2, is
defined by a trivariate hypergeometric distribution,

P(|[FanFx|=x4) =

IFx ) (IFal=za) (Ns=|(FxUFa)]|
|FAmFX|:ma):(f””)( = J)VE 'FB““““). (10)
)

The number of shared male ancestors in generation g + 1 is |X¢(y41)| = |Fx| + ap, the number of male
ancestors exclusive to A is [A¢y41)| = [Fa| — ap — 24, and the number of male ancestors exclusive to B is
|Bf(g+1)| = |FB| — ap — xp. To obtain the number of shared female ancestors, |X,,(441)|, we use the same
protocol, except replacing Ny by N,,. Finally, to derive the joint distribution of X411, Ag4+1 and Bgi1, we
take the convolution over the number of male and female ancestors.

In this way, we can derive a transition matrix T The entries T'[m][n] of the transition matrix give the
probability of entering state n = (|Ag41], |Bg+1l, | Xg+1]) at generation g+1, given state m = (|A,4|, | By, | X,1)
at the current generation g.

We plot the dynamics of the number of shared ancestors along the generations for N, = 10 in Supplemen-
tary Figure 1. The distribution of the number of shared ancestors in generation g is obtained by considering
the g-th power of T, assuming a sampling configuration of (1,1,0) and then summing over the probabilities
of all configurations with same | X,|.

For the simpler bi-parental monoecious model, let K4, Kp, and Kx be the parents of individuals in A,
By, and X, respectively. As in the previous subsection,

NV k1Sy (2| Ay, k)
P <|KA = k‘Ag) _ &) N;A"‘ 9 (11)

P <|FB N Fx| = 2, and |(Fz 0 Fa)\ Fx| = ap
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Distribution of the number of shared ancestors each generation

N. =10

—— 0 shared ancestors
— 1 shared ancestors
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.
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— 10 shared ancestors

0.2
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Supplementary Figure 1: The distribution of the number of shared ancestors in each generation
for the 2-sex DDTWF model. We used N, =10 (N,,, = Ny = 5).

and similarly for Kp and Kx. As above, the number of parents in common between individuals in A, and
Xg, xq, follows a hypergeometric distribution,
(Ile) (Ne*\KX|)

Ta

2 %a JMKalzTa ) 12
&) 12

The number of parents common to B, and X, as well as to B, and A, (but not X,), is similarly given by

P(|[KanKx|=24) =

(D () Cles a2

(\;(VQ)
(13)

As above, we have | X 11| = |Kx|+ ap, |Ag+1| = |Ka| — ap — 24, and |Bg11| = |Kp| — ap — 2. This fully
specifies the distribution of the configuration in generation g 4+ 1, given the configuration in generation g.

P(|KBHKX| =ap and [(KpNKa)\ Kx| = ap

‘KAﬂKx| =$a> =

S1.3 The variance and covariance of the number of ancestors at each generation

Finally, we calculate the covariances between the number of shared ancestors at generations ¢ and 7,
Cov(z;, z;), using the transition matrix T derived in the previous section. Recall that T'[m]|[n] is the prob-
ability of transitioning (going backwards in time) from state m = (|A,|,|Byl,|X,|) at generation g in the
past, into state n = (|Ag41], |Bg+1l, [ Xg4+1|) at the preceding generation g + 1. Let state 0 be the sampling
configuration (generation g = 0), 0 = (1,1,0). We have, for i < j,

Covlz;, 7;] = Elz;z;] — E[2i|E[z;] = E[z;E[z;|2;]] — E[zi]E[z;]

= ZP (zP(xi =z) Z kP(x; = k|z; = z)) — ZP zP(x; = 2) ZEZP(xj =z). (14)
z=0 k=0 z=0 z=0
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Supplementary Figure 2: The covariance and correlation of the number of shared ancestors
across the generations. In the left panel, we show the covariance of the number of shared ancestors,
x4, for each generation g and for N, = 10. The diagonal represents the variance of the number of shared
ancestors, and is highest in generations 3-5. In the right panel, we show the correlation coefficients. The
correlation between z, and x4, decreases with g.

Each value of the number of shared ancestors, z, is represented by multiple states of the chain. We refer to
the set of these states as “Conf z”. Thus,

Pwi=2)= Y  T'0]], (15)

¢eConf z
where T" is the i*" power of T', and
N. N, N, N.
Z <zP(J:z =z) Z kP(z; = klz;, = z)) = Zz Z T'10][¢] Z k Z T77*[¢][K]. (16)
z=0 k=0 2=0 (€Conf z k=0 keConf k

We plot the covariances and correlations for the 2-sex DDTWF model and for N, = 10 in Supplementary
Figure 2 .

We note that the entire derivation of this section can be generalized to the case when the number of
males and females is allowed to vary along the generations.

S2 The DDTWF models

S2.1 The 2-sex DDTWF model and transition matrix

The notation we use to label the states in this transition matrix is derived from the notation of Wakeley
and Lessard (2003), who used a similar transition matrix to analyze patterns of linkage disequilibrium in a
2-locus multi-deme model. The notation is explained in Supplementary Figure 3. For example, state {12,12}
represents the case where two copies of the first locus are located in two different individuals, and on the
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(Coalescence) {(1,1),(2,2)}@ @
(1.1 @ @ {(1,2),(1.2)}@ @
12,2} @ @ {12,1,2} @ @ @
{(1, 1)} @ {(12,1),2} @@
o &) w5 @)
(1,1,2,2) @@@@ {12,(1,2)} @@
{(1,1),2,2}@ @ @ (12,12} @ @
{1,1,(2,2)}@ @ @ {(12,12)) @
{(1,2),1,2}@ @ @

Supplementary Figure 3: The states of the 2-sex DDTWF model. Circles represent individuals;
the two lines within each individual represent a pair of homologous chromosomes; the square represents the
first locus and the diamond represents the second locus. For example, {12,12} corresponds to the sampling
configuration 1 in main text Figure 1.

same chromosome as the second locus. The comma separates the different chromosomes on which genetic
material is tracked, and the numbers 1 and 2 represent the loci on each chromosome.

In state {(12,12)}, the parentheses indicate that the tracked pairs of loci are present on two different
chromosomes in the same individual. In such a case, they must be located in different individuals in the pre-
vious generation. So, for example, state {(1,1)} transitions to state {1,1} in one generation with probability
1. The set of all possible states in our model is : {}, {1,1}, {2,2}, {(1,1)}, {(2,2)}, {1.1,2,2}, {(1,1),2,2},
{1,1,(2,2)}, {1,2,(1,2)}, {(1,1),(2,2)}, {(1,2),(1,2)}, {12,1,2}, {(12,1),2}, {(12,2),1}, {12,(1,2)}, {12,12} and
{(12,12)}. We show the communicating states for this transition matrix in table S2.1. Python code for the
complete transition probability matrix is given in the Supplementary Material.
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2-sex diploid DTWEF model

(12, 12)
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Table S2.1. The cell at coordinates (z,7) is 1 if the probability of transitioning to state j from state ¢ in one generation is non-zero.
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S2.2 The simplified DDTWEF model

We also consider a simplified version, namely a monoecious bi-parental DDTWF model. In this model, we
do not keep track of whether lineages are in the same individual or not. The diploidy only comes into play
in that recombination is possible, unlike in the haploid context. The complete list of states in this model is:
{}, {1,1}, {2,2}, {1,1,2,2}, {12,1,2}, and {12,12}, far fewer than in the 2-sex DDTWF model. In this model,
not all sampling configurations are available; for example, it is impossible to model sampling configuration
2, where the loci are sampled from two homologous chromosomes in the same individual. We show a matrix
of communicating states in table S2.2. Python code for the complete transition probability matrix is given
in the Supplementary Material.

Simplified diploid DTWF model

State coal 1,1 2,2 1,1,2,2 12,1,2 12, 12
coal 1 0 0 0 0 0
1,1 1 1 0 0 0 0
2,2 1 0 1 0 0 0
1,1,2,2 1 1 1 1 1 1
12,1,2 1 1 1 1 1 1
12,12 1 1 1 1 1 1

Table S2.2. The cell at coordinate (4, 5) is 1 if the probability of transitioning to state j from state
¢ in one generation is non-zero.

S2.3 The mean coalescence time under the 2-sex DDTWF model

If two lineages are located in two different individuals, then the probability they coalesce in a single generation
is just 1/(2N,). However, if they are present in different homologous chromosomes of the same individual,
they must have originated from two different individuals in the preceding generation. Because of this, the
expected time until coalescence will be slightly different than 2N, in the 2-sex DDTWF model (in the
simplified DDTWF, it is equal to 2N.). Assume that lineages are sampled in different individuals. In
generation g + 1, given that no coalescence occurred in any of the first g generations, the probability of the
two lineages to coalesce is

C(g+ 1) = P(coalescence at g + 1|No Coal at 1,..., g) (17)
1 1
= ZP(F(g)|No Coal at 1,...,9) + gP(H(g)|No Coal at 1,..., g),

where P(F(g)|No Coal at 1,...,g) and P(H(g)|No Coal at 1,..., g) are the probabilities that the two lineages
are located in full siblings and half siblings in generation g, respectively, given no coalescence in that gener-
ation or any of the previous generations. Next, we write

P(F(g),No coal at g|No coal at 1,....,g — 1)
P(No coal at g|No coal at 1,...,g — 1)
P(F(g)|No coal at 1,...,g — 1)

= . 18
P(No coal at g|No coal at 1,...,g — 1) (18)

P(F(g)|No Coal at 1,...,g9) =

The denominator is simply given by 1 — C(g). For the numerator, we note that for the two lineages to arrive
at full siblings in generation g, then first, we must exclude the possibility that the lineages are at the same
individual in generation g (given no previous coalescence), which happens with probability 2C(g), since the
probability of coalescence is half the probability to arrive at the same individual. Second, the probability
that these two individuals share both parents is 1/(N./2)2. Therefore,

P(F(g)[No Coal at 1,..., g) = 11—25(;9)) (N:/2)2'

(19)
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In a similar way,
~1-2C(g) 2 N./2-1

P(H(g)|N lat 1,... = 2
(H(g)[No Conl at 1....g) = =5 B2 n 2o, (20)
Collecting the terms and simplifying, we have
1-2C(g) 1
1) = ———~- . 21
Clo+ 1) =T P v (21)
The probability of coalescence at generation g (g > 2) is
g—1
P(Coal atg) = C(g) [[ [1 - C ()], (22)
i=1
with C(1) = 1/(2N,). Finally, the mean coalescence time, E(T), is
E(T) = _gP(Coal atg). (23)

g=1

We found numerically that E(T) ~ 2N, + 1 to very high accuracy. By solving C(g + 1) = C(g), we can
obtain the limiting coalescence probability as a function of N,

1+Ne7\/1+N€2 1 ]. —
C’(g%oo): ON - :W |:12N +O(Ne 3) (24)

(We used the root that gave a solution between 0 and 1.) An intuitive explanation for Eq. (24) is that
given no coalescence until a certain generation, the probability of coalescence is roughly the product of the
probability to arrive at two different individuals at the current generation (roughly 1 — 1/(2N.)) and the
probability to coalesce in the next generation (1/(2N,)).

S3 Building pedigrees with Familinx

We simulated our FAMILINX-based pedigrees over GEN = 100 non-overlapping generations. For each genera-
tion, we selected family units at random from the data until the total number of children across all family
units was greater than some pre-determined N., the population census size. In addition, we required the
total number of parents among the selected family units to be less than or equal to N.. Then, we connected
the GEN generations together by randomly assigning each parent in generation g to be one of the children in
generation g + 1, disallowing sibling mating. Finally, we connected the first and last generation so that the
pedigree is cyclical, with a period of GEN generations.

As a note, this procedure will not be appropriate for datasets where a substantial number of family units
contains only one child, because the algorithm requires the number of children to be greater than or equal
to the number of parents. When many families have only one child, families with more children will be
over-sampled, and the family structure of our constructed pedigrees will be very different from the family
structure we are attempting to replicate.

The value of N, was chosen to generate pedigrees (from each of which we will eventually sample a single
pair of individuals for computing the correlation) with a target effective population size, N.. For each N,
we estimated the effective population size of our pedigree by calculating the average time until coalescence
over 50 sampled pairs, and setting N, as half of that time. We then discarded the pedigree unless this value
was within oy, of the target N., where oy, was the standard deviation of the observed coalescent effective
sizes for a population of size N, = N, in the Wright-Fisher model. The reason we constrained our pedigrees
to be close to the target effective population size is to guarantee that the differences between the FAMILINX
pedigrees and the WF model are not only due to a potentially higher variance of the observed N..
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We note that under our algorithm, some information on the country-specific pedigree structure is lost
by breaking large genealogies into family units (e.g., inter-generational correlations in family size, or the
rate of first and second cousin matings). Nevertheless, sufficient information is retained so that pedigrees
with the same N, generated based on data from different countries are distinguished by their correlation of
coalescence times (main text Figure 4).

References

J. Wakeley and S. Lessard. Theory of the effects of population structure and sampling on patterns of linkage
disequilibrium applied to genomic data from humans. Genetics, 164:1043-1053, 2003.

L. King et al. 9SI



	A non-zero variance of Tajima's estimator for two sequences even for infinitely many unlinked loci
	Introduction
	The relation of the variance of hat θ to the correlation of the coalescence times
	Modeling the effect of the shared pedigree
	Statistical inconsistency of hat θ due to the underlying pedigree
	A lower bound on the limiting variance

	Exact results for the correlation of the coalescence times at unlinked loci
	The sampling configurations
	The DDTWF model

	Simulations
	Wright–Fisher simulations
	Simulations based on real human pedigrees

	Linked sites and model comparisons
	Summary and discussion
	Supplementary material
	References


