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A simple nonparameteric test for population structure was applied to temporally spaced samples of HIV-1 sequences
from the gag-pol region within two chronically infected individuals. The results show that temporal structure can be
detected for samples separated by about 22 months or more. The performance of the method, which was originally
proposed to detect geographic structure, was tested for temporally spaced samples using neutral coalescent simulations.
Simulations showed that the method is robust to variation in samples sizes and mutation rates, to the presence/absence of
recombination, and that the power to detect temporal structure is high. By comparing levels of temporal structure in
simulations to the levels observed in real data, we estimate the effective intra-individual population size of HIV-1 to be
between 10° and 10* viruses, which is in agreement with some previous estimates. Using this estimate and a simple
measure of sequence diversity, we estimate an effective neutral mutation rate of about 5 X 10~ per site per generation in
the gag-pol region. The definition and interpretation of estimates of such “effective” population parameters are

discussed.

Introduction

There are at least two levels at which studies of HIV
population genetics can be undertaken. The first is at
a global level and considers dynamics of the virus in the
whole population of infected individuals (Grassly, Harvey,
and Holmes 1999). Even more broadly, this might include
the whole immunodeficiency virus family (Mindell 1996).
The second level, at a smaller scale, focuses on viral pop-
ulations within an infected individual. The latter represents
the intra-host, or intra-individual, population level and is
the focus of the present study.

During HIV infection, changes in viral population
size are typically characterized by three phases (Coffin
1999). For several weeks after the infection, the first phase
is marked by an extensive increase in viral load, associated
with a decrease in the CD4+ cells. That phase ends, in
chronically infected individuals, when the immune system
reacts, leading to a decrease in the viral load of up to two
orders of magnitude (Daar et al. 1991). The third and last
phase is characterized by a slow increase of the viral load.
This phase usually ends when the virus infection over-
whelms the individual’s immune system, causing immu-
nodeficiency, illness, and death. In some individuals,
namely the long-term nonprogressors, this third phase is
extended and the viral load can remain relatively low for
decades.

In the present study, we analyzed ~1100 base pairs
(bp) of the gag-pol region of HIV-1 sampled at different
time points in two chronically infected patients. We pro-
pose a standard measure for analyzing the temporal
structure in HIV-1 populations, which is based on a test
for geographic population structure that was originally
proposed by Hudson, Boos, and Kaplan (1992). The test
compares the mean number of pairwise differences be-
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tween sequences within each population to a theoretical
distribution obtained by randomly shuffling the sequence
labels. We adapt this straightforward test to the case of
temporal structure between two samples of viral sequences
taken from the same individual at two different times. We
also use the test statistic as a measure of the amount of
population turnover.

The evolution of a virus within a host has been shown
to be strongly influenced by its environment. Some indi-
viduals are overwhelmed by the infection within a few
years and others are able to resist disease progression for
long periods of time. Two well-known examples of such
intra-host environmental constraints are the genotype of
the host, e.g., at histocompatibility and coreceptor loci,
which can induce selective changes in viral genotype
(Moore et al. 2002), and the application of therapeutic
drugs, which leads to the emergence of predictable well-
characterized drug resistant strains (Shankarappa 1999).
Such observations underscore the importance of selection
on intra-host evolutionary processes. Because the total
population size of HIV in the third phase has been
estimated to be very large, on the order of 10’ to 10®
infected cells and about 10'* individual viruses (Piatak et
al. 1993; Haase et al. 1996), it may be appropriate to
consider the dynamics of intra-host HIV genetic variation
to be deterministic (Coffin 1995), as if the population size
were infinite.

It has also been reported that, even if drugs do induce
predictable mutations conferring a resistant phenotype, the
frequency and timing of the fixation of these mutations is
highly variable from one individual to another (Leigh
Brown and Richman 1997). This observation has been
interpreted as a consequence of random variation of the
frequencies of resistant strains preexisting before the start
of drug therapy, together with deterministic selection.
Other possible explanations for differences among indi-
viduals include host-virus genotype interactions that affect
either the fitness of resistance mutations or the mutation
rate of the virus, and variation in the time for the mutation
that confers resistance to appear. In any case, variation in
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the timing of events among individuals would seem to
imply an important role for stochasticity, or random genetic
drift, during infection.

To reconcile a very large population size with a
nonnegligible effect of random genetic drift, it has been
proposed that the effective population size (V,) of viruses
inside each individual is several orders of magnitude
smaller than the real population size. The effective size is
defined as the corresponding size of a hypothetical neutral
idealized population (i.e., described by the standard
Wright-Fisher model) that gives the same amount of
genetic drift observed in the real population. Many factors
are known to make the effective size very different from
the real size, including selection, population structure, and
fluctuating population size. All methods of estimating N,
assume that observed genetic variation is neutral. Indeed,
the very concept of an effective population size is based on
this notion. In this respect, it is interesting to note that,
in a population of infinite size, a locus evolving under
directional selection can drive the turnover at a partially
linked neutral locus, mimicking genetic drift (Gillespie
2000). The neutral locus changes by a process similar to
hitchhiking (Maynard Smith and Haigh 1974; Kaplan,
Hudson, and Langley 1989). This “pseudohitchhiking”
model (Gillespie 2000) shows that a reduced effective size
at a genetic locus can be caused by selection even in an
infinite population.

In studies of HIV-1, several estimates of the intra-host
N, have been obtained by analyzing polymorphisms in the
env region (Leigh Brown 1997; Rodrigo et al. 1999;
Shriner et al. 2004). These studies support a relativelz%/
small effective population size, on the order of 10° to 10"
An alternative method to estimate N,, using linkage
disequilibrium between polymorphic sites, suggested that
N, is about 10° (Rouzine and Coffin 1999). However, a
recent reanalysis of the same data suggests that this higher
value was due to a bias in the analyzed polymorphisms
(Shriner et al. 2004) and that, after correction, this value is
on the order of 10°. All of these estimates of N, are much
smaller than the actual population size of the virus within
an infected person, which again may be 10'°, and imply an
important role for genetic drift in the dynamics of genetic
variation. A recent study that modeled resistance to Lami-
vudine (3TC) argued that even with N, on the order of 10°,
random drift may still play an important role in env region
(Frost et al. 2000). Gillespie’s (2000) pseudohitchhiking
model may help to reconcile these results, since strong
selective effects have been observed in the env region
(Nielsen and Yang 1998; Richman et al. 2003).

We show that temporally spaced samples (often
referred to as serial samples) within two chronically in-
fected individuals can be distinguished using the test
mentioned above. In addition, we determine the power and
size of the test using standard neutral coalescent simula-
tions. A number of previous methods, reviewed in Drum-
mond et al. (2003), have been developed to estimate the
mutation rate and the population size from serial samples
(Drummond and Rodrigo 2000; Rambaut 2000; Drum-
mond, Forsberg, and Rodrigo 2001; Drummond et al.
2002). All these methods assume that there is no recom-
bination, and they rely on the existence of a single simple
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coalescent history or genealogy for all sites in the locus. It
is not known how such methods will perform when there is
recombination. In contrast, the method we propose here
does not rely on a common genealogy for all sites, and
simulations show that it performs similarly well whether
recombination is rampant or completely absent.

Using the neutral coalescent simulations of serial
samples, we describe the rate of change of the test statistic
in an evolving population both with and without re-
combination. This allows the estimation of the effective
population size in one of the two patients by a comparison
between expected and observed rates of change in the test
statistic. Using a parametric bootstrap, i.e., by repeatedly
simulating samples and applying the method to them, we
can give confidence intervals on these estimates. We show
that the intervals for no recombination and for free
recombination are closely overlapping. We also calculate
an effective mutation rate, which reflects the neutral muta-
tion rate of these sequences.

Material and Methods
Origin and Analysis of the Sequences

Plasma samples were obtained at different times from
two untreated individuals with well-established HIV-1
infection. DNA sequences from about 20-50 individual
viral genomes were obtained for each sample using single
genome RT-PCR sequence (SGS) analysis of approxi-
mately 1,098 bp, including the p6 region of gag, protease,
and the first 900 nucleotides of RT (see more details on the
method in S. Palmer et al. [in preparation]). Summary
statistics of the sequences we used are described in table 1.

For each sample, sequences were aligned together by
using ClustalW (Thompson, Higgins, and Gibson 1994)
with default parameters. All alignments were visually in-
spected and frameshifts were removed using the sequence
editor SEAVIEW (Galtier, Gouy, and Gautier 1996). The
gap character was considered a fifth symbol in calculating
pairwise differences between the sequences.

Testing for Population Subdivision

We implemented the series of tests for population
subdivision described by Hudson, Boos, and Kaplan
(1992). The tests were originally proposed to detect asso-
ciations between genetic structure and geographic struc-
ture. However, the design of the tests, in which a matrix of
pairwise sequence differences is calculated from the data
then randomly permuted to assess the significance of
structure, is quite general and nonparametric, so it is easily
extended to other situations. Hudson, Boos, and Kaplan
(1992) investigated two measures of subdivision, called K
and K : deﬁne*d below, and showed in simulations that the
test using K, had more power to detect geographic
structure. Let n; be the number of sequences in the first
sample and 7, be the number of sequences in the second
sample.

K; is the mean number of differences between pairs of
sequences in sample i. K is defined as K, = wK; +
woK,, where wy = ny/(ny + np) and wo =1 — wy.
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Table 1
Characteristics of Sequences from Patients A and B

Date Days Number of Sequences Viral Load (RNA/ml) K; (estimated O)
Patient A (1,098 sites) First positive test 1991 — — — —
Sample 1 11/19/1998 0 16 27,252 8.88
Sample 2 12/15/1998 26 22 18,604 5.78
Sample 3 04/20/1999 142 7 24,648 9.52
Sample 4 08/26/1999 280 17 22,164 8.78
Sample 5 03/01/2000 468 13 136,760 10.95
Sample 6 05/26/2000 554 42 10,520 11.31
Sample 7 06/22/2000 561 15 11,934 9.31
Sample 8 07/11/2000 600 10 19,285 8.19
Sample 9 07/12/2000 601 7 15,362 9.95
Sample 10 07/13/2000 602 7 16,018 12.95
Sample 11 07/14/2000 603 16 16,446 11.09
Sample 12 07/15/2000 604 18 16,419 9.88
Sample 13 07/16/2000 605 16 16,904 9.89
Sample 14 07/17/2000 606 13 20,392 12.09
Sample 15 07/18/2000 607 9 18,918 12.00
Sample 16 07/19/2000 608 14 24,855 11.09
Sample 17 07/20/2000 609 17 21,600 11.16
Sample 18 12/27/2001 1,134 21 21,760 11.83
Sample 19 11/19/2002 1,461 53 30,111 11.00
Patient B (1,313 sites) First positive test July 2000 — — —
Sample 1 07/23/2001 0 53 19,783 17.38
Sample 2 01/07/2002 168 30 3,996 17.26
Sample 3 01/07/2002 357 5 3,263 16.60

K is defined as K; = Y0 S0 log(1 + Dap)/(%),
where D,, is the number of differences between
sequence a and sequence b of sample 7, and K: =
WlKT + WZK;. Hudson, Boos, and Kaplan (1992)
suggest that optimal weights for K, are w; = (n; — 2)/
(ny +n —4andwr,=1— wy.

This test generates a P value for the probability that
the level of structure between two samples of sequences
is due simply to chance. To do this, the sequences are
randomly relabeled (“population 1” and “population 2”)
a large number of times, holding 7, and n, constant, and the
statistics are computed for each such permutation. Except
where specified below, we used 10,000 relabelings/
permutations to obtain P values. The P value of the ob-
served statistic is equal to the fraction of times the value for
the permuted data is less than or equal to the observed
value. This procedure detects patterns of genetic structure
in which pairwise differences within samples tend to be
smaller than pairwise differences between samples. If the P
value is less than the nominal level of significance, which
we denote o, the null hypothesis of no structure is rejected.

Coalescent Simulations

We simulated samples of sequences to estimate the
size of the test (i.e., the validity of the significance level o)
and the power of the test to detect temporal structure as
a function of the time between samples. We also used
simulations to investigate how the average P value changes
with the time between samples. Simulations followed the
standard coalescent methods (see, e.g., Hudson 1990), in
which a genealogy is constructed and then a Poisson-
distributed number of neutral mutations is randomly placed
on the genealogy. We assumed that each mutation gave rise

to a unique polymorphic site (the infinite-sites mutation
model). For each mutation, a branch is chosen randomly in
proportion to its length and every descendent of that branch
inherits the mutation. We allowed two different possibil-
ities for recombination in this infinite-sites mutation model,
either (1) no recombination occurred (Waterson 1975), or
(2) recombination occurred freely between all pairs of sites
(Kimura 1969). The results below are based on 10,000
simulation replicates for each set of parameters.

To build a genealogy, we first chose a sample size for
the first and the second time points, respectively. We then
used a standard neutral coalescence process (Kingman
1982a, 1982b; Tajima 1983), which depends on the neutral
mutation parameter © = 2N, u (where p is the neutral
mutation rate per sequence per generation) and on both
sample sizes. We simulate the history of the second sample
back to the time when the first sample was taken. The
number of coalescent events during this part of the history
depends on the time f,_; (in number of generations)
between the two samples. As usual in the coalescent, this
time is rescaled so that the unit of measurement is N
generations: T,_1 = (t,—1)/N (where N is the population
size). The expected number of mutations along a single
lineage over this time period is equal to pt,—; =T>_1 X ©/2.
When the simulation reaches time point 1, the sequences
from sample 1 are added to the ancestral lineage(s)
remaining from sample 2. The coalescent process continues
until the most recent common ancestor of both samples is
reached. A realization of such genealogy is shown in figure
1. This approach is identical to the way in which the
coalescent process has previously been applied to HIV
evolution (Rodrigo and Felsenstein 1999; Rodrigo et al.
1999). In the same manner, it is straightforward to include
samples from more than two time points.
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Fic. 1.—Coalescence of two time series samples. An example of
a simulated neutral standard coalescent genealogy of two samples from the
same population but separated by a defined time interval. In this case, we
used n; = 10 sequences in the first sample (1) and n, = 10 in the second
sample (2). We also used a value of ©(2Np) of 10 and choose a time interval
(Tr—1) of 0.4 (in number of N generations); one should note that the
expected time to the most recent common ancestor is less than 2 and the
expected time for two lineages (like the last two ones) to coalesce is 1.

Estimation of the Effective Population Size with
Confidence Intervals

By matching the results of simulations with the results
for the data, it is possible to estimate the effective population
size N, of HIV within a patient. There are a variety of ways
this might be done. Here, we first estimate of the number of
HIV generations between a pair of data samples such that
there is a 50% chance of rejecting the null hypothesis at the o
= 0.05 level. Then, we equate this to the scaled time of
separation in simulations that gives 50% power to reject the
null hypothesis at the same o= 0.05 significance level, and
we solve for N,.. The value of 50% power was chosen based
on preliminary simulations so we could use linear in-
terpolation between different times of separation (on a log
scale) without serious error. In contrast to the simulations in
which the time of separation can be controlled, the sampling
times for the data samples are fixed (table 1). Therefore, to
estimate the 50%-power separation time for the data, we
ordered the 171 sample pairs by time of separation then used
a sliding window of 20 paired sample points to search (with
the aid of interpolation) for the separation time that gave 10/
20 rejections of the null hypothesis. We used the mean time
of separation among the 20 points in the window as the
estimate of the separation time.

We used a parametric bootstrap procedure to obtain
confidence intervals for our estimate of N,. Specifically, we
assumed that the true values of N, and © were those we
estimated from the data and then simulated 10* genealogies
of the 19 samples with separation times (table 1) rescaled by
N,, assuming either no recombination or free recombination.
For each set of simulated sequences, we performed the test
on all pairwise comparisons between samples and estimated
N, exactly as we did for the actual data. The upper and lower
2.5% cutoffs for these simulated distributions of estimates of
N, are taken as the 95% confidence interval.

Results

Because we were interested in finding a useful
standard measure to compare population change through
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time within an individual, we investigated different sample
sizes and times of separation of the serial samples in
simulations. The coalescent process we used to create
pseudosamples of sequences depended on four parameters:
the sample sizes n; and n,, the population mutation rate O,
and the scaled time interval T,_; between two samples. In
most of what follows, we discuss results where © is equal
to 10. This value is very close to the one we estimated for
the data from patient A (see table 1) using average
pairwise differences. Smaller and larger values for ©,
specifically © =1 and © = 100, gave essentially the same
results for all analyses and will be discussed later. We
applied the test of Hudson, Boos, and Kaplan (1992) to
each set of pseudosequences from the simulations to assess
whether temporal structure could be detected. We exam-
ined the performance of both K, and K.

Size of the Test

By setting T, to 0, we create two sets of sequences
sampled from a single time point. This case represents the
null model of no temporal structure and can be used to
measure the size of the test (i.e., frequency of false positive
outcomes). To do this, we counted the number of times we
would reject the null model, at the 5% significance level,
for each set of parameter values. This addresses the con-
cern that arises from the fact that an unknown genealogical
structure exists and shapes genetic variation in the sample
and that small or unbalanced samples (n; < n, or n; > n,)
might lead spurious rejections of the null hypothesis. Thus,
we investigated different values of n; and n,.

Results show that K’: is largely insensitive to sample
size and to asymmetry of sample sizes from the two time
points (fig. 2). The performance of K; does depend on
sample size when n; is small and n, is large. However, the
direction of deviation is conservative (lower than expected
chance of rejecting the null hypothesis when it is true).
This result shows that these two measures exhibit the
expected fraction (or fewer) of false positives even with
small samples sizes. The test based on K, was recom-
mended by Hudson, Boos, and Kaplan (1992) because it
was more sensitive for detecting geographical structure. In
our simulations we found the same tendency and thus
present only results from tests using K: However, using
K results in only a subtle decrease of the power of the test.

Power to Detect Temporal Structure in a Neutrally
Evolving Population

If we set the time interval between the two samples to
a nonzero value, we simulate a sampling process at two
different time points. To assess the power of the test, we
chose a range of times. Again, as in a standard coalescent
process, the time of separation T,_; is scaled by the
population size T,_ = (t,—1)/N, where t,_; is the number
of generations between the second and the first sample. To
assess the effect of recombination we created two series of
artificial sequences. In the first series (no recombination;
fig. 3a), all sites are so tightly linked that they always share
the same genealogy. In the second one (free recombina-
tion; fig. 3b), all sites are segregating independently so that
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a) ny =15 (size of second sample). © =10 and T, ; = 0.

0.1 — tests based on K
0.09 — — — — tests based on K*
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b) n, =20 (size of second sample). © =10 and 7,_; = 0.
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0

fraction of P< 0.05
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Fic. 2.—Size of the test using four different measures. The
frequencies at which the null hypothesis is rejected (at an alpha risk of
5%) are plotted as a function of the first sample size. Since the time
between the early and the late sample is 7, =0, one would expect not to
observe more than 5% of false positives. The coalescent parameters used
here are © = 10. In (a), the size of the late sample n, is set to 5 and the
size of the early sample n; varies from 5 to 50. In (), n, is set to 20 and
ny varies from 5 to 50.

each site has its own genealogy. We fixed the sample size
from each time point to be equal to 20.

The results show that, for © = 10, the null hypothesis
that the two samples come from the same time point is
rejected at greater than 5% frequency if the scaled time of
separation between the two samples is larger than ~0.01.
They also show that after one scaled time unit (i.e., at
T>—1 = 1 or greater), the samples are essentially always
distinguishable from each other. This reflects the fact that
many coalescent events will have occurred between the
members of the later sample over this amount of time. In
fact, from equations 6.1 and 6.2 in Tavaré (1984), the
probability that there are more than three ancestral lineages
of the later sample remaining at the time (7>—; = 1) of the
earlier sample is less than 0.05. Comparison of figure 3a to
figure 3b shows that recombination increases the power
of the test slightly, although mostly just in the vicinity of
Tzfl == 01 .

Analyses of other values of © show that for smaller
values (i.e., © = 1) the power of the test decreases and the
effect of recombination almost disappears (fig. 3). In
contrast, for higher values (i.e., © = 100), the power of the
test without recombination does not change but the effect

of recombination is stronger (it increases the power of the
test by an order of magnitude in T,_).

Application to HIV-1 gag-pol Sequences

These results show that the Hudson, Boos, and Kaplan
(1992) test of subdivision provides a standard measure of
the population structure through time, which can be used to
tackle biological questions concerning the timing of
population turnover. This can be done either with or
without recombination in the sequences. We can now use
this test to analyze the extent of intra-host HIV-1 popula-
tion evolution. To do so, we used sequences sampled from
two chronically infected individuals, here called A and B
for reference, picked at different time points long after the
primary infection (see table 1) and spaced by different time
intervals.

As a visual test for structure, we reconstructed trees
relating the samples, which are genealogies under the
assumption that no recombination had occurred. This was
done using the neighbor-joining method (Saitou and Nei
1987) with a Kimura two-parameter distance correction
(Kimura 1980). An example tree of samples from two
relatively distant time points from individual A is shown in
figure 4. Although the tree does appear to show some
structure, the significance of this structure is difficult to
assess, both because it is just a visual comparison and
because the assumption of no recombination is likely to
be wrong. Recombination invalidates the usual interpreta-
tion that the branches of the tree represent ancestral
lineages. Using the test based on K (or the one based on
K) leads to rejection of the null hypothesis of no structure
for these samples (P < 0.003). It is possible that the very
shape of the tree implies recombination, because under
complete linkage the expected tree should have long
internal branches and short external ones (i.e., see fig. 1).
As figure 3 shows, the presence of recombination only
increases the power of the test, so the null hypothesis is
rejected in either case for these samples.

We analyzed samples from 19 time points in
individual A and the three time points in individual B.
We made all 171 possible pairwise comparisons between
samples from different time points in A and between the
single pair of time points in B. The results, which are
shown in figure 5, indicate that the test systematically
rejects the null hypothesis (no population structure over
time) after about 666 days, or 22 months. Compared to the
very rapid adaptation that can sometimes be observed
(e.g., in response to drug therapy; Shankarappa 1999),
turnover of the HIV-1 population in these chronically
infected individuals appears to be relatively slow, taking
more than one year to be detectable at the 5% level using
this test.

Estimation of the Effective Population Size

It is difficult to draw conclusions from the few
comparisons we have for individual B. However, assum-
ing neutrality of the observed mutations, it is possible to
roughly estimate the effective population size of HIV-1 for
individual A. The effective size N, is defined as the
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Fic. 3.—Temporal structure in neutrally evolving populations. Diamonds with continuous lines represent the median probability P (estimated by
using K:) and its first and third quartiles as a function of the rescaled number of generations (7,—) that separates the late from the early sample.
Triangles and dashed lines represent the frequencies where the null hypothesis is rejected (at an alpha risk of 0.05) by the test as a function of T,_;. We
used the following set of parameters: © = 1, 10, or 100 and n; = n, =20. In («) all sites share a single genealogy: there is no recombination and all sites
are in complete linkage. In (b) each site has its own genealogy: all sites segregate independently.

population size in our simulations that gives the same
amount of population change over time (by neutral drift
alone) as the one observed in the data. To do so, we
compared the expected rate of change for a neutrally
evolving population shown in figure 3 to the correspond-
ing data observed in figure 5.

We estimate the scaled time interval for which the test
null hypothesis is rejected for half of the paired samples
(see Materials and Methods). Assuming no recombination
(fig. 3a with © = 10), this time is estimated to be T,_; =
0.142. In figure 5b, this time corresponds to 223 days. The
generation time of HIV-1 in vivo has been estimated to be
about 1.5 days (Rodrigo et al. 1999; Fu 2001; Seo et al.
2002; Markowitz et al. 2003). Thus, with the definition of

the scaled time T, =(d>—1)/(1.5 X N,), where d,_ is the
number of days between the samples, we have N, = (d,_)/
(1.5 X T_,). This leads to an estimate of N, equal to
1,047. Finally, by simulating 10* genealogies of the 19
samples and by using all pairwise comparisons (see
Materials and Methods), we estimated the 95% confidence
interval to be 445-2,655 under the assumption of no
recombination. Assuming free recombination, but other-
wise identical methods, we estimated N, to be equal to
3,026 with a 95% confidence interval of 864—4,955.

We compared these estimates of N, to that obtained
from another method on the data from patient A. We
used a recently proposed method that employs Monte
Carlo simulations to estimate the likelihood of different
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population sizes in a Wright-Fisher model (Anderson,
Williamson, and Thompson 2000). The method uses
changes in allele frequencies between two time points
and tries to fit the real data to the expectation of a simulated
time series sampling process of a neutral population. Since
the method assumes that no mutations occur between the
time points, we used frequency information from sites that
are polymorphic in all samples of A. Note that this might
lead to an upward bias because we have excluded some of
the more extreme changes in allele frequency. We used the
11 samples with 15 sequences or more (see table 1) to
increase the number of shared polymorphic sites to seven.
This calculation gave an estimated N, of about 2,800
haploid genomes, which is within the range we estimated
using K:

Estimation of an Effective Mutation Rate

Based on our estimate of N, we can estimate an
effective mutation rate per generation for the whole
sequences corresponding to these data (1,098 sites). We
have estimated © = 2N, to be about 10 using a method
(average pairwise differences) that is unbiased under the
assumptions of infinite-sites mutation and selective neu-
trality (Tajima 1983). Thus, p is interpreted as the effec-
tive neutral mutation rate per sequence per generation.
Then, © = 10 translates into an estimate of p = 10/(2 X
1,047) = 4.8 X 1073, using the estimate of N, obtained
assuming no recombination. This gives a mutation rate per
site per generation of 4.35 X 10~ ° (= 4.8 X107 /1,098).
Using the 95 % confidence interval, we can compute
a confidence interval for our estimation of the effective per
site mutation rate that ranges from 1.7 X 10”7 to 1.0 X 10
~3_If we assume free recombination, the estimation of the
effective mutation rate is 1.5 X 1077 and the associated
confidence interval ranges from 9.2 X 10~ 7 to 5.2 X 10™°.

To validate our rough estimation, we used another
approach to estimate this effective mutation rate. Fu (2001)
developed a framework to estimate the mutation rate per
day using multiple samples spaced by time interval. As
with ours, this method uses the mean pairwise differences
within and between the time points. The estimated ef-
fective mutation rate per day found by this method is
0.0058. Assuming a generation time of 1.5 days, we cal-
culate a p of 0.0024 for the whole sequence (about 1,100
sites) and, thus, a mutation rate per site per generation of
2.18 X 107°. This is in good agreement with our estimate
based on K.

Finally, we used an alternate method that estimates
both the effective population size and the effective muta-
tion rate. This method reconstructs the likely genealogies
(under the assumption of no recombination) using
Bayesian statistical inference and Markov Chain Monte
Carlo integration (Drummond et al. 2002). A recent version
of this strategy was implemented by Drummond and
Rambaut (2003) in the program Beast (available at http://
evolve.zoo.ox.ac.uk/beast/). Using an HKY model for
mutation (with default parameters), we ran Beast on all our
sequences. The chain appeared converged after 1.65 X 10’
replicates and exhibited ESS (effective sample size) values
above 100 (minimum ESS values recommended by the

B Second sample

O First sample

Fic. 4—Phylogenetic trees of two samples of A. A simple neighbor-
joining phylogenetic reconstruction of two samples from individual A. In
table 1, the first sample is the “sample 17” and the second one is the
“sample 18.” These two samples are spaced by 525 days. Using the
subdivision test (with 10° random labelings for the test), we obtain
a probability of P < 0.003 that the two samples are picked from the same
time point.

authors). As the estimated values given by Beast were per
day, we rescaled them to compare them to our estimations
per generation. This gives an effective population size
of 9.1 X 10 and a 95% confidence interval ranging from
7.4 X 10% to 1.1 X 10*, For the mutation rate, it gives an
estimate of 1.9 X 1072 , with a 95% confidence interval
ranging from 1.5 X 107> t0 2.3 X 10>, These estimates are
larger than ours, but the estimate of N, is still much smaller
than the actual population size. Our methods and those of
Drummond et al. (2002) differ in two significant ways: (1)
we assume infinite-sites mutation in estimating © whereas
Drummond et al. (2002) allow for multiple mutations, and
(2) we examine both no recombination and free re-
combination (and show that our estimates are fairly robust)
whereas Drummond et al. (2002) assume no recombination
(and account for deviations from this in the data with
multiple mutations). Presumably, the differences between
the methods explain the differences in parameter estimates,
including the fact that Beast gives an inferred value of ©
equal to 2 X 1,098 X 1.9 X 107> X 9.1 X 10° = 380,
compared to our © = 10.

Discussion
A Standard Measure for the Rate of Population Change

Although temporal structure in HIV-1 sequences
from the region analyzed (comprising ~1,100 bases from
the P6 region of gag through pro and most of the RT
region) from a chronically infected individual is not ap-
parent (visually) in genealogical trees reconstructed from
the data, we have found that such a structure can be
detected if the interval between two samples is about 22
months or more. For this purpose, we used a test that was
originally proposed to detect geographic structure
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Fi6. 5.—Temporal structure in real data. The probability P (estimated by using K :) that two samples could be sampled from the same population is
depicted as a function of the number of days between the samples. We used here all 171 possible two-by-two comparisons between the 19 samples of
patient A and three comparisons between the three samples of patient B (see table 1). All values of P are plotted as dots for patient A and as stars for
patient B. All tests were done using with 10° random labelings. In (a) all points are shown, whereas in (b) the median P value (diamonds with
continuous lines) as well as the frequency where the null hypothesis is rejected, at an alpha risk of 5% (triangles with dashed lines), are given by the

average day in a sliding window of 20 data points.

(Hudson, Boos, and Kaplan 1992) as a standard measure
of temporal structure. This standard measure could be used
to compare the rate of evolution of other populations under
various conditions. For example, it might be interesting to
measure the rate of evolution of HIV-1 population in
a host treated with antiretroviral drugs.

An important assumption of the simulations above is
that © =2N, is constant over time. Note that this is not an
assumption of the nonparametric test we have applied, but
it is an important part of using the same statistics to
estimate effective size. Changes in the diversity over time
would tend to increase the power of the test because: (1)
sequences sampled from a population with reduced diver-
sity would tend to cluster together, and (2) bottlenecks
between time points would increase the rate of population
turnover. Although the mutation rate is contained in ©, it
is doubtful that the mutation rate would change over the
times separating these samples. Interestingly, measures of
sample sequence diversity and the independent viral load
counts (table 1) do not show dramatic changes between

time points, at least not in individual A. In individual B,
there was a change in viral load but the diversity seems to
be almost unaffected by it.

Another phenomenon that would influence the power
of the test is recurrent mutations. It has been reported that
the G—A and T—C mutations occur at higher frequencies
than others (Mansky and Temin 1995). In the sequences of
patient A, G/A and T/C pairs represents ~55% and ~30%
of all polymorphisms, respectively. It is possible that
multiple transition mutations have occurred at these sites,
rendering some mutations unobservable. Indeed, we ob-
served more sites that are polymorphic in both of the two
patients than expected by chance (data not shown). This
complication probably erodes the power of the tests since
multiple, unobserved mutations would more likely affect
pairwise comparisons between time points (Kj,) than
pairwise comparisons within time points (K; and K5). It
could lead to relatively larger K or K j than if the infinite-
sites mutation model was correct. This would then
decrease the power of the test.
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A Small Effective Population Size

The definition of effective population size is the size
of an idealized population, exactly the population model of
our simulations, which would give an equivalent rate of
genetic drift as the one observed in the population under
study. The “rate of genetic drift” can be defined in a
variety of ways (Ewens 1979), leading to slightly different
estimates of V.. We estimated the expected rate of change
of a neutrally evolving population by measuring the
temporal structure of simulated samples. The comparison
of this expected rate of change with the one we observed
for real HIV-1 populations within a chronically infected
individual leads to an estimate of its effective size of
roughly 10% to 10*. Like all previous estimates, this result
is several orders of magnitude smaller than the actual
count of replicating virus, which may be as high as 10'°.
Most deviations from the idealized model—in fact all of
them except some kinds of population structure—give
values of N, that are smaller than the actual population
size. Thus, our observations are consistent with many
possible causes.

The most obvious deviation from the null model,
with regard to HIV-1 intra-host evolution, concerns the
neutrality of the observed variation. Clearly HIV-1 is
under tremendous selective pressure during an infection. In
these data, evidence that selection is operating can be seen
in the ratio of the rate nonsynonymous (dy) to synonymous
(dg) mutations, which is estimated using Nei and
Gojobori’s method (Nei and Gojobori 1986) with Jukes
and Cantor distance (Jukes and Cantor 1969) between 0.05
and 0.01 for the samples listed in table 1. A ratio of dy/ds
of 1 is expected under neutrality and a ratio smaller than 1
under a purifying selection regime. These results then
suggest that the sequences are under a regime of strong
purifying selection for protein structure and function. In
addition, there may be selection on synonymous sites for
translation efficiency, as has been observed in other
organisms (Duret and Mouchiroud 1999). There might
also be selection for RNA structures in both nonsynon-
ymous and synonymous sites. Selection on synonymous
sites would tend to increase the ratio of dy/ds. This would
reduce dg and then imply that purifying selection for amino
acid replacement is stronger than if synonymous sites
where merely neutral. Interestingly, our estimation of the
effective size, computed using the gag-pol region, is very
similar to the estimates computed with the env gene. This
suggests that even though there is evidence that the
selection regime is very likely to be different in those two
regions (gag-pol being mostly under purifying selection
[see above] where env is subject to positive selection
[Nielsen and Yang 1998; Richman et al. 2003]), other
force(s), yet uncharacterized, constrain HIV populations
all along their genomes.

A second possible explanation could be that HIV-1
populations do not evolve under panmixia, but rather with
some population structure that causes a reduction in
effective size. There is evidence that HIV populations are
spatially structured because resistant strains can be in
different frequencies in different organs (Epstein et al.
1991) or even in different cell types (Potter, Dwyer, and

Saksena 2003). It has been suggested recently that HIV
populations within patients might exhibit metapopulation
structure (Frost et al. 2001), in which local populations of
the virus become extinct and are recolonized by prop-
agules from other local populations. It is well known that
such patterns of colonization and replacement can reduce
N, dramatically (Slatkin 1977; Whitlock and Barton 1997,
Rousset 2003; Wakeley 2004). Note that changes in
population size over time are another possible cause of
small N,, but the metapopulation model we apply includes
such changes, so we do not consider them as a separate
force.

For illustration, we consider both metapopulation
dynamics and natural selection as possible causes of the
reduced intra-individual effective size of HIV. Prior
estimates of intra-host N, for HIV range from about 10°
to 10* (Leigh Brown 1997; Rodrigo et al. 1999; Rouzine
and Coffin 1999; Shriner et al. 2004). The estimates we
made here are also in this range, although at the lower end
of it. These estimates of N, cover a broad range, but they
are all much smaller than the actual intra-host population
size of infected cells, which can be up to 10'° (Piatak et al.
1993; Haase et al. 1996). Thus, very roughly, there is
between a 10°-fold and 107-fold reduction in HIV effective
population size that needs to be explained. Using either the
standard metapopulation model (Slatkin 1977) or Gilles-
pie’s (2000) “pseudohitchhiking” model, it is possible to
make a theoretical prediction for this ratio.

A general model of a metapopulation includes two
kinds of dispersal: (1) regular migration and (2) recoloni-
zation after extinction (Slatkin 1977). For simplicity, we
will assume that there is no regular migration among sub-
populations (here cells) and, further, that extinct subpopu-
lations are recolonized by single virus particles. In this
case, the ratio of the effective size (N,) of the population to
the total size (N7) of the population is given by N./Ny =
(1 = eg)/{N.[1 — (1 — ep)’]}, in which ¢, is the pro-
portion of local populations that go extinct and are re-
colonized every generation and N, is the size of each
local population (see Rousset [2003] or Wakeley [2004]). If
we adopt a metapopulation model in which each infected
cell is a local population, and we assume IV, to be about 100
viruses (Haase et al. 1996), we infer a high rate of
extinction, or turnover, of local populations. In particular,
the fraction of cells (1 — ¢p) that do contribute to the future
intra-host population of HIV is between 10~ to 10>

In the pseudohitchhiking model, when no crossover is
assumed, the ratio of the effective intra-host population
size of HIV to the total intra-host population size is given
by N./N7=1/(1 + 2N7p), where N7 is the total size of the
population, which is assumed to be panmictic, and p is the
per-generation probability of a selective sweep (Gillespie
2000). In this case, using N = 10'°, the rate of sweeps p
ranges from 5 X 10~% to 5 X10~>. The violation of the no-
recombination assumption would lead to higher p values,
depending on the frequency of crossover events. The high
per-site, per-replication mutation rate of HIV, about 3.4 X
10~° (Mansky and Temin 1995), might appear to violate
the Poisson-process assumption of the pseudohitchhiking
model. However, if two or more particular mutations are
required for selective benefits or if only a small minority of



sites have the potential to drive a selective sweep, then this
assumption might be reasonable. In contrast to the case of
a metapopulation, under the pseudohitchhiking model even
a small per-generation probability of a selective sweep can
explain a large reduction in N,, because N is so large and
this appears in the denominator of the ratio. Clearly, selec-
tion and metapopulation dynamics are just two possibilities
to consider, and even these are not mutually exclusive. It
seems likely that a combination of factors act together to
reduce the intra-host effective population size of HIV-1.
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